
Peachy Parallel assignments
https://tcpp.cs.gsu.edu/curriculum/?q=peachy

• Tested

• Adoptable

• Cool and inspirational

Using MPI For Distributed Hyper-Parameter Optimization and
Uncertainty Evaluation

John Li, Erik Pautsch, Silvio Rizzi, Maria Pantoja, and George K. Thiruvathukal,

5/3/23 2

Goal Accelerate Uncertainty Evaluation in AI

3

How to Accelerate Uncertainty Evaluation

4

Code And Slides
The link for the above assignment can be found
https://drive.google.com/drive/folders/1KrxWlMZpoJzph0Y7VbZj_yYyACK-Jusl?usp=sharing

5

Thanks to:
Sustainable Horizons Institute which is part of the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration and by Argonne National
Laboratory.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357.

https://drive.google.com/drive/folders/1KrxWlMZpoJzph0Y7VbZj_yYyACK-Jusl?usp=sharing

Solving the 1D Heat Equation in Chapel

Jeremiah Corrado

11/12/23 6

Assignment Summary
Background and Algorithm

11/12/23 7

! = 0 ! = $
!"
!# = % !

!"
!&!

% = 0 % = &

""#$% = ""# + 	% ""&%# − 2""# + ""$%#

1D Heat Equation:

Finite-Difference Heat Equation:

Finite Difference Algorithm:
• define Ω to be a set of discrete points along the x-axis
• define (Ω over the same points, excluding the boundaries
• define an array) to over Ω
• set some initial conditions
• create a temporary copy of), named)%
• for & timesteps:

 (1) swap) and)%
 (2) compute) in terms of)% over (Ω

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

Assignment Summary
Distributing a parallel program

11/12/23 8

)!

)!"#

$ − 1	 $	 $ + 1

$

Parallel Program

. . .

)!"#

)!

Node 0

. . .

. . .

Node 1 Node P

Distributed Parallel Program

!!"#$ = !!" + 	% !!%$" − 2!!" + !!#$"

1

2

• Start with a simpler data-parallel program
• Provide students with examples of using distributed arrays in Chapel
• Ask students to modify the data-parallel program to use distributed arrays

• Start with a lower-level task-parallel program
• Provide students with examples of controlling the locality of task execution in Chapel
• Ask students to modify the task-parallel program to execute tasks across multiple compute nodes

.

Key HPC Concepts Covered

11/12/23 9

Parallelizing order independent loops

)!

)!"#

Locality of data and computation

Barriers and synchronization Inter-node communication

Node 0 Node 1

Node 0 Node 1

)!
)!"#
)!")
)!"*

Array A
Array B
Array B
Array A

Barrier
A ó B

Array A
Array B

. . .

Barrier
A ó B

Key HPC Concepts Covered

11/12/23 10

Parallelizing order independent loops Locality of data and computation

Barriers and synchronization Inter-node communication

forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);

const omega = Block.createDomain({0..<nx});
var u : [omega] real;

coforall tid in haloDist do
 on tid.locale do
 taskSimulate(tid);

var b = new barrier(nTasks);
...
for 1..nt {
 ...
 b.barrier();
 uLocal1 <=> uLocal2;
 ...
}

if tid != 0 then halos[tid-1][RIGHT] =
 uLocal2[omegaLocal.low];
if tid != nTasks-1 then halos[tid+1][LEFT] =
 uLocal2[omegaLocal.high];

Summary

• An introductory HPC assignment that uses a practical problem to teach several concepts:
• parallelism, synchronization, locality, communication

• Leverages Chapel's first-class notions of parallelism, locality and distributed arrays
• less focus on the software engineering

• more focus on the HPC concepts themselves

• Students are asked to do the same thing in two different ways (data parallel & task parallel)
• repetition helps cement fundamental concepts

• exposes students to multiple perspectives on the same problem

11/12/23 11

Q &A

Resources:
Github Repo for assignment: https://github.com/jeremiah-corrado/Chapel-Heat1D-PPA

Chapel Homepage: https://chapel-lang.org/

Chapel Blog: https://chapel-lang.org/blog/

Contact:
email: jeremiah.corrado@hpe.com

chapel discourse: https://chapel.discourse.group/

11/12/23 12

https://github.com/jeremiah-corrado/Chapel-Heat1D-PPA
https://chapel-lang.org/
https://chapel-lang.org/blog/
mailto:jeremiah.corrado@hpe.com
https://chapel.discourse.group/

k Nearest Neighbor in MapReduce MPI

MapReduce MPI

I Developped by K. Devine and S.

Plimpton at Sandia

I Essentially a distributed hash table

processing engine

I Sit atop MPI

I Used for data processing in MPI

codes

I Will do out of core if necessary

I If you teach MPI, it’s easy to teach

MapReduce

k-NN
I N categorized points in d dimensions

I q query points

I For each query points

I Find the k closest points

I Vote to guess the category

?

CC A-SA 3 U by Antti Ajanki

k Nearest Neighbor in MapReduce MPI

Rough solution

I All processes read queries

I Map the datapoints files in parallel to

generate (query , (dist, class)) pairs

I Reduce per query to get

(query , (dist1, class1, . . . , distk , classk))

I Map to get

(query , (pred1, count1, pred2, count2, . . .))

I Dump to output

Some optimization:

I O(nq) computation

I Reduce causes O(nq) comm

I Local reduce gives comm in O(qkP)

Thoughts

I Non trivial application of Map Reduce

I Reinforces locality

I Tons of data available

I Possible optimization to prevent

O(nq) calculations

I Can be adapted to MPI for python

I Can be adapted for hybrid

MPI-OpenMP

I Can be adapted in Date Structures

Parallelizing a 1­Dim Nagel­Schreckenberg Traffic Model

Ramses van Zon (SciNet HPC, UofT) Marcelo Ponce (Comp. & Math. Sciences, UTSC)

EduHPC­23, SC23, Denver

November 13, 2023

Ramses van Zon (SciNet HPC, UofT), Marcelo Ponce (Comp. & Math. Sciences, UTSC) (EduHPC­23, SC23, Denver)Parallelizing a 1­Dim Nagel­Schreckenberg Traffic Model November 13, 2023 1 /4

Peachy Assignment

The Nagel­Schreckenberg traffic model is a simulation using pseudo­random numbers.

A serial starter code in C++ is provided.

Task:
Parallelize withOpenMP.
Do so in a reproducible way: output has to be independent of number of threads.
Aim for good strong and weak scaling.

Model
Cars have discrete positions and velocities on a circular road.
At discrete time steps, for each car:

Speed­up: If velocity ԥ � ԥԜԐԧ, increase ԥ by one.
Avoid collision: If ԥ would lead to a collision with car in front, reduce ԥ.
Randomly break: With given probability ԟ, reduce ԥ by one.
Drive: Move car forward by ԥ steps.

Ramses van Zon (SciNet HPC, UofT), Marcelo Ponce (Comp. & Math. Sciences, UTSC) (EduHPC­23, SC23, Denver)Parallelizing a 1­Dim Nagel­Schreckenberg Traffic Model November 13, 2023 2 /4

Nagel­Schreckenberg traffic model results

Ramses van Zon (SciNet HPC, UofT), Marcelo Ponce (Comp. & Math. Sciences, UTSC) (EduHPC­23, SC23, Denver)Parallelizing a 1­Dim Nagel­Schreckenberg Traffic Model November 13, 2023 3 /4

Crux of the solution
PRNG are generated serially but some PRNG allow log	ԝ
 skip­ahead.

Intel Xeon Sandybridge 2.0GHz
g++ ­O2 ­march=native (gcc/9.2.0)

Archive paper: https://arxiv.org/abs/2309.14311
Starter code and assignment description:
https://github.com/Practical­Scientific­and­HPC­Computing/Traffic_EduHPC­23

Ramses van Zon (SciNet HPC, UofT), Marcelo Ponce (Comp. & Math. Sciences, UTSC) (EduHPC­23, SC23, Denver)Parallelizing a 1­Dim Nagel­Schreckenberg Traffic Model November 13, 2023 4/4

https://arxiv.org/abs/2309.14311
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23

Marieke Plesske
H. Martin Bücker, Johannes Schoder, Wolf Weber

Favorite Data Science Pipeline
11/13/2023

1

Program Your Favorite Data Science Pipeline

Marieke Plesske 11/13/23
EduHPC 2023, SC23 Denver

in teams (~ 3 students)

3 weeks

~ 3 data analyses on ~ 2 datasets

submission of report and executable code

presentation of results

2
EduHPC 2023, SC23 Denver

Marieke Plesske 11/13/23

Data Science Pipeline – NYC Crime
Data Aggregation Cleaning, Filtering & Analysis Visualization & Presentation

https://git.uni-jena.de/
big_data_assignments/
projects

https://git.uni-jena.de/big_data_assignments/projects
https://git.uni-jena.de/big_data_assignments/projects
https://git.uni-jena.de/big_data_assignments/projects

3
EduHPC 2023, SC23 Denver

Marieke Plesske 11/13/23

Assignment Evaluation

4
EduHPC 2023, SC23 Denver

Marieke Plesske 11/13/23

Assignment Evaluation

5
EduHPC 2023, SC23 Denver

Marieke Plesske 11/13/23

Assignment Evaluation

Thank you for your attention!
Marieke Plesske

https://git.uni-jena.de/big_data_assignments/projects

Find our NYC Crime example at ...

https://git.uni-jena.de/big_data_assignments/projects

K-Means:

An assignment for OpenMP, MPI and CUDA/OpenCL

Diego Garćıa-Álvarez, Arturo Gonzalez-Escribano

Trasgo Group, University of Valladolid, Spain

EduHPC’2023

Nov 13th, 2023

1 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

Context

I Di↵erent parallel programming models
I Di↵erent approaches for parallelizing the same problem
I Understand the di↵erences is key
I Needed in modern heterogeneous systems

I Target: Parallel Computing course
I Computer Engineering degree, 3rd year, Major elective
I Three practical programming blocks: OpenMP, MPI, CUDA

I Teaching methodology:
I Based on projects
I Competitive + Collaborative gamification

I Series of peachy assignments used for the contest activity:
EduHPC’18, ’19, ’20, ’21, ’22

2 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

Assignment objectives

I Use the same example program in the three blocks

I Show portability of di↵erent key parallelization approaches and techniques

I Observation: Large gap between examples of programming primitives/structures
and complex contest codes

I This year: A simpler assignment, focus on basic concepts and their portability
I Students start with:

I Handout
I Sequential code with the part to parallelize clearly marked
I Some examples of input arguments (more can be easily generated)

3 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

K-means clustering

I Powerful and popular data mining algorithm:
Segmentation, pattern analysis, image compression, etc.

I Split a cloud of n-Dimensional points in clusters
with minimum distance to a centroid
I Init: Read points, randomly fix centroid positions
I Main clustering loop

I Re-assign points to the nearest centroid
I Compute new centroid locations:

Arithmetic mean of assigned points

(until few re-assignments or max. iterations)

ce1

ce3

ce2

x1 d = sqrt((x12 - ce12)2 + (x12 - ce12)2)

4 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

Approach and concepts covered

I Previous educational approaches for OpenMP, MPI, and/or CUDA:
I Skip to parallelize the computing of new centroid locations (load-balance problems)
I Use dynamic bu↵ers for cluster points

I Our approach:
I Parallelize all stages; static data structures (simple to manage, easier to debug)
I Parallelization strategy provided: Help students to apply theory systematically

I Loop parallelization

I Solve write and update race conditions: Critical regions, atomics, reductions

I Basic collective operations and communications, distributed reduction

I Thread-blocks, coalesced memory access

I Reduction porting and evaluation

I Advanced students: Locality optimizations, load balancing problems, ...

5 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

Using the assignment

I Course and students:
I Students background: O.S. and concurrency, C programming
I 48 students enrolled, working in small teams (2 people)
I One week time for the solution on each model

I Tools:
I Modern C compiler with OpenMP, any MPI library, CUDA or OpenCL toolkit
I Code output can be automatically checked for correctness: Tablon
I Better a shared platform for students to compare and discuss results
I In our case: AMD server 64 cores + Intel servers 12 cores, 32 cores + 4 NVIDIA

CUDA 3.5 GPUs

6 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

Results

I Lower complexity than previous peachy assignments: Lower number of test
submissions to the cluster

I Personal interview for each block + survey at the end of the course

I All students agreed that the project improves the concepts understanding

I For the first time: 60% students prefer MPI over OpenMP !!

I Solving race conditions is always nasty, Collective communications + static data
structures are easy

7 / 7
K-Means: An assignment for OpenMP, MPI and CUDA/OpenCL

N

