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© Problem Definition



The Problem of Coloring Stencils with Intervals

2D Example (4x4)

A graph which is a
e 2D 9-pt stencil
e or 3D 27-pt stencil
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Each vertex has a weight w(v)

@ Color each vertex with an interval larger than its weight

Example Solution o Intervals should have the form [start(v), start(v) + w(v))

02H56H02H35 @ No adjacent vertices can have overlapping intervals

maxcolors is the largest right endpoint in the set of intervals

Objective is to minimize maxcolor







@ Solving Special Cases



Cliques can be Colored in Linear Time

K4 Example
2 H 1 Algorithm
@ No vertex can share any color with any other vertex in clique
I I @ We must use at least ) ., w(v) colors
1T H 2 o Greedily color the interval with the lowest available start(v)
o Complexity ©(V)
K4 Solution
Implications
0,2 ] 5,6 @ Each square block of 4 vertices is a K4
e Sum of weights of K4 is a lower bound of 2D 9-pt stencil
I I @ Each square block of 8 vertices is a K8
2’3 | 3’5 o Sum of weights of K8 is a lower bound of 3D 27-pt stencil




Bipartite Graphs can be Colored in Linear Time

Bipartite Example :
Algorithm

2 } o Partition vertices into A, B, s.t, (i,/) € E = i€ A, j,€ B

2 o Compute maxcolor = max; jjeg w(i) + w(j)

@ Color i € A starting at 0 with [0; w(/))

@ Color j € B ending at maxcolor with [maxcolor — w(j); maxcolor)
o Complexity ©(E)
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Bipartite Solution

| A\

Implications
02 69 . o .
Many subgraphs of a stencil are bipartite and induce lower bounds:

03 79 @ Each edge in the graph

@ 2D 5-pt stencils
@ 3D 7-pt stencils

0,1 3,9

/)N

79

@ Many cycles of even length

\




Odd Cycles can be Colored in Linear Time

Odd Cycle Example :
Algorithm

18H 6 . . .
@ Let maxpair be the largest sum of any 2 consecutive vertices
7 18 @ Let minchain3 is the smallest sum of 3 consecutive vertices
1 o 5 .
18 p @ We have maxcolor = max(maxpair, minchain3)

o ldentify the minchain3 triplet: 0,1,2

Color 0 with [0; w(0))

o Color 1 with [w(0); w(0) + w(1))

e Color 2 with [w(0) + w(1); w(2))

o Color the other alternatively with [0; w(v))
e or [maxcolor — w(v); maxcolor)

7

Odd Cycle Solution

725 H 0,6

07 624 o Complexity ©(E)

7,25 24,30 . .
Implications
07 Many odd cycles in 2D 9-pt stencils and 3D 27-pt stencils




e Coloring 27pt-Stencil with Intervals is NP-Completeness



27pt-Stencil is NP-Complete by Reduction from NAE-3SAT

NAE-3SAT: Not-All-Equal 3-SAT

@ n binary variables in m groups of 3 variables

@ Assign true or false to each variable

@ The instance is positive if every group has at least one variable that is true and at least
one that is false

NAE-3SAT is known to be NP-Complete




Solving NAE-3SAT by Coloring a Simple Graph with 14 Colors

NAE-3SAT Instance
Variables: {a, b, c,d}; Clauses: {(a, b, c),(b,c,d)}

a b C d

clal

use
(bcd)
11,14 7,




Embedding the Constructed Graph in a 3D 27-pt Stencil

m ... To a 27-pt 3D stencll

Layer 1 Layer 2 Layer 3
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@ Designing Heuristics



Greedy Principles

Any greedy coloring will color vertex v with an interval that ends before:

2jer(vy W) + (T(v) + Dw(v) = T(v)

v

By Vertex
o Greedy Largest First
@ Greedy Line by Line
o Greedy Z-Order )
BySset . . |
@ Greedy Largest Clique First
e Schedule vertices in the largest clique first; order within clique uses vertex id

@ Smart Greedy Largest Clique First
e Permute each clique and use the order with least maxcolor




Bipartite Decomposition is a 2-approx. in 2D (and 4-approx. in 3D)

m Do Rows Independently Shift Odd Rows by Max Color

2 H3H2HS5 02 H47H02H27]|7 02H47H02H 27
I I I I I I I I
TH2H1THA4 0TH35HO01H 155 7,8 H1.12H 7,8 H6,10
I I I I I I I I
S H3H3H! 03H 36HO03HS56|6 03H36H03H 56
I I I I I I I I
TH2H1TH?2 0TH13HO1TH 133 7,8 H8,10H 7,8 H8,10
< 4 V.

Bipartite Decomposition with Post Optimization

@ Sort K4 or K8 (in 3D) by non-increasing order by the sum total of their weights
@ Sort vertices within K4 by increasing order of lowest value in their scheduled interval

@ Recolor each vertex one at a time using a greedy principle




© Heuristics Perform Well on Most Instances



Experimental Settings

Instances from an Application

(lat,long) prOJectlon of (lat,long, tlme) instances

Dengue-highres lowbu:

@ Algorithms written in Python

@ ILP modeled in python-mip
e Solved with Gurobi

.

@ Intel i19-9900K
@ Windows 10
o CPython 3.9.4

.

FluAnimal PoIIenUS




Instance Structure Impacts Algorithm Performance Significantly

Proportion

I
IS

1.0

0.8

o
o

0.2

0.0

Bipartite Decomposition

Bipartite Decomposition + Post
Greedy Line by Line

Greedy Largest First

Greedy Largest Clique First
Smart Greedy Largest Clique First

FHtss

1.0

1.2

T T T

14 1.6 1.8
tau

Pollen

2.0

1.0+

0.8

Proportion
o
o

.,

o
IS
PPk

0.2 1

Bipartite Decomposition

Bipartite Decomposition + Post
Greedy Line by Line

Greedy Largest First

Greedy Largest Clique First
Smart Greedy Largest Clique First

Pitees

0.0
1.0

12

T T T

1.4 1.6 1.8
tau

FluAnimal

2.0



Bipartite Decomposition is Particularly Good

1.0
0.8
c c 0.6
S S k
b= t
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Heuristics find Solutions Close to Optimal
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@ Interval Coloring Improves the Performance of Space-Time Kernel Density Estimation



Problem of Space-Time Kernel Density Estimation

Space-Time Kernel Density Estimation Parallelizing over Distant Boxes

gt

Al it
g Ty K,
G - When parallelizing boxes, the points in a

box can spill to neighboring boxes.

_ ‘a ) ., W This creates the constraint that two

Ti" e il b neighboring boxes can't be processed at
the same time.

‘‘‘‘‘‘‘‘‘ . '} Hence the stencil structure.




Number of Colors
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@ Conclusion



Conclusion

Work Accomplished

@ Load balancing some spatial applications
as interval coloring of stencil graphs
@ Solved sub-problems
e Clique
o Bipartite graphs
e Odd cycles
@ Proved that interval coloring of 3D 27-pt
stencil is NP-Complete
@ Designed heuristics, including
e 2-approximation for 2D 9-pt stencil
e 4-approximation for 3D 27-pt stencil
o Evaluated heuristics

@ Confirmed model validity on the STKDE
application

Open Problems

Can we find the odd cycles of highest
number of colors in polynomial time?

Is interval coloring 2D of 9-pt stencil
NP-Complete?

Are there better approximation
algorithms than BDP for 3D 27-pt
stencil?

Study cost of coloring vs benefit of
coloring in STKDE application

Use interval coloring in other
applications
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