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The Problem of Coloring Stencils with Intervals

2D Example (4x4)

2 1 2 2

1 2 1 1

1 2 0 2

2 1 2 0

Example Solution

0,2 5,6 0,2 3,5

2,3 3,5 2,3 5,6

5,6 0,2 0,0 0,2

2,4 4,5 2,4 0,0

A graph which is a

2D 9-pt stencil
or 3D 27-pt stencil

Each vertex has a weight w(v)

Color each vertex with an interval larger than its weight

Intervals should have the form [start(v), start(v) + w(v))

No adjacent vertices can have overlapping intervals

maxcolors is the largest right endpoint in the set of intervals

Objective is to minimize maxcolor



Spatial Applications often Parallelize as Stencils

1 2 2 1

2432

1 4 1 0

1110

0 1 0 1
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Cliques can be Colored in Linear Time

K4 Example

2 1

1 2

K4 Solution

0,2 5,6

2,3 3,5

Algorithm

No vertex can share any color with any other vertex in clique

We must use at least
∑

v∈K w(v) colors

Greedily color the interval with the lowest available start(v)

Complexity Θ(V )

Implications

Each square block of 4 vertices is a K4

Sum of weights of K4 is a lower bound of 2D 9-pt stencil

Each square block of 8 vertices is a K8

Sum of weights of K8 is a lower bound of 3D 27-pt stencil



Bipartite Graphs can be Colored in Linear Time

Bipartite Example

2 3

3 2

1 6

2

Bipartite Solution

0,2 6,9

0,3 7,9

0,1 3,9

7,9

Algorithm

Partition vertices into A,B, s.t, (i , j) ∈ E =⇒ i ∈ A, j ,∈ B

Compute maxcolor = max(i ,j)∈E w(i) + w(j)

Color i ∈ A starting at 0 with [0;w(i))

Color j ∈ B ending at maxcolor with [maxcolor − w(j);maxcolor)

Complexity Θ(E )

Implications

Many subgraphs of a stencil are bipartite and induce lower bounds:

Each edge in the graph

2D 5-pt stencils

3D 7-pt stencils

Many cycles of even length



Odd Cycles can be Colored in Linear Time

Odd Cycle Example

0 18 6 0

7 0 0 18

18 0 6 0

0 7 0 0

Odd Cycle Solution

0,0 7,25 0,6 0,0

0,7 0,0 0,0 6,24

7,25 0,0 24,30 0,0

0,0 0,7 0,0 0,0

Algorithm

Let maxpair be the largest sum of any 2 consecutive vertices

Let minchain3 is the smallest sum of 3 consecutive vertices

We have maxcolor = max(maxpair ,minchain3)

Identify the minchain3 triplet: 0, 1, 2

Color 0 with [0;w(0))
Color 1 with [w(0);w(0) + w(1))
Color 2 with [w(0) + w(1);w(2))
Color the other alternatively with [0;w(v))
or [maxcolor − w(v);maxcolor)

Complexity Θ(E )

Implications

Many odd cycles in 2D 9-pt stencils and 3D 27-pt stencils
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27pt-Stencil is NP-Complete by Reduction from NAE-3SAT

NAE-3SAT: Not-All-Equal 3-SAT

n binary variables in m groups of 3 variables

Assign true or false to each variable

The instance is positive if every group has at least one variable that is true and at least
one that is false

NAE-3SAT is known to be NP-Complete



Solving NAE-3SAT by Coloring a Simple Graph with 14 Colors

NAE-3SAT Instance

Variables: {a, b, c , d}; Clauses: {(a, b, c), (b, c, d)}

Constructed Graph Instance

clause 
(a,b,c)

clause 
(b,c,d)

a b c d
7 7 7 7

7 7 7 7

3

3 3

3

3 3

Solution in 14 Colors

clause 
(a,b,c)

clause 
(b,c,d)

a b c d
0,7 7,14 0,7 7,14

7,14 0,7 7,14 0,7

11,14

0,3 3,6

3,6

11,14 7,10



Embedding the Constructed Graph in a 3D 27-pt Stencil

From Graph ...

clause 
(a,b,c)

clause 
(b,c,d)

a b c d
7 7 7 7

7 7 7 7

3

3 3

3

3 3

... To a 27-pt 3D stencil
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Greedy

Greedy Principles

Any greedy coloring will color vertex v with an interval that ends before:∑
j∈Γ(v) w(j) + (Γ(v) + 1)w(v)− Γ(v)

By Vertex

Greedy Largest First

Greedy Line by Line

Greedy Z-Order

By Set

Greedy Largest Clique First

Schedule vertices in the largest clique first; order within clique uses vertex id

Smart Greedy Largest Clique First

Permute each clique and use the order with least maxcolor



Bipartite Decomposition is a 2-approx. in 2D (and 4-approx. in 3D)

Example

2 3 2 5

1 2 1 4

3 3 3 1

1 2 1 2

Do Rows Independently

0,2 4,7 0,2 2,7

0,1 3,5 0,1 1,5

0,3 3,6 0,3 5,6

0,1 1,3 0,1 1,3

7

5

6

3

Shift Odd Rows by Max Color

0,2 0,2 2,7

7,8 10,12 7,8 6,10

0,3 3,6 0,3 5,6

7,8 8,10 7,8 8,10

4,7

Bipartite Decomposition with Post Optimization

Sort K4 or K8 (in 3D) by non-increasing order by the sum total of their weights

Sort vertices within K4 by increasing order of lowest value in their scheduled interval

Recolor each vertex one at a time using a greedy principle
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Experimental Settings

Instances from an Application

(lat,long) projection of (lat,long,time) instances

Dengue

FluAnimal

Pollen

PollenUS

Software

Algorithms written in Python

ILP modeled in python-mip

Solved with Gurobi

Machine

Intel i9-9900K

Windows 10

CPython 3.9.4



Instance Structure Impacts Algorithm Performance Significantly
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Bipartite Decomposition is Particularly Good in 2D
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Heuristics find Solutions Close to Optimal
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Problem of Space-Time Kernel Density Estimation

Space-Time Kernel Density Estimation Parallelizing over Distant Boxes

When parallelizing boxes, the points in a
box can spill to neighboring boxes.
This creates the constraint that two
neighboring boxes can’t be processed at
the same time.
Hence the stencil structure.



Number of Colors Correlate with Runtime
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Conclusion

Work Accomplished

Load balancing some spatial applications
as interval coloring of stencil graphs

Solved sub-problems

Clique
Bipartite graphs
Odd cycles

Proved that interval coloring of 3D 27-pt
stencil is NP-Complete

Designed heuristics, including

2-approximation for 2D 9-pt stencil
4-approximation for 3D 27-pt stencil

Evaluated heuristics

Confirmed model validity on the STKDE
application

Open Problems

Can we find the odd cycles of highest
number of colors in polynomial time?

Is interval coloring 2D of 9-pt stencil
NP-Complete?

Are there better approximation
algorithms than BDP for 3D 27-pt
stencil?

Future Works

Study cost of coloring vs benefit of
coloring in STKDE application

Use interval coloring in other
applications
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