
Postmortem Computation of Pagerank on Temporal Graphs

Md Maruf Hossain, Erik Saule

University of North Carolina at Charlotte

{mhossa10,esaule}@uncc.edu

This work is supported by the National Science Foundation CCF-1652442

Outline

1 Temporal Graph Analysis

2 Postmortem Page Rank of Sliding Window Graphs

3 Techniques
Partial Initialization
Representation
Parallelization

4 Conclusion

Traditional graph analysis

Static graph analysis
Given a graph compute some analysis

PageRank
Centrality
Clustering
...

Streaming graph analysis
The graph is revealed over time
As new events come in, update an
existing analysis to the most current
graph.

Postmortem Analysis on Temporal Graph

Temporal Graph
A graph that changes over time.
Events at a particular time induce the creation and deletion times of
edges or vertices.

Postmortem analysis
Provided the entire temporal graph

all data are available at the beginning
Perform a particular analysis of the graph

Pagerank
Centrality
Partitioning

At different points in time
possibly sampled uniformly
sampled based on activity in the graph

Why study the postmortem setting?
It is the setting of your typical data analyst.
It is understudied.

Can’t we use streaming analysis techniques in the postmortem setting?
We can! And they serve as prior work.
But techniques for the streaming setting spend effort managing the uncertainty about the
future.
Postmortem techniques know the future.

Can’t we use static techniques in the postmortem setting?
We can! And they serve as prior work.
But static techniques assume the graph never changes.

We show for a particular problem that
Postmortem analysis can be much faster than
both static and streaming

Outline

1 Temporal Graph Analysis

2 Postmortem Page Rank of Sliding Window Graphs

3 Techniques
Partial Initialization
Representation
Parallelization

4 Conclusion

The sliding-window event model

Event induced graphs
The graph is defined by event that induces vertices and edges.
At a particular time, the graph is defined by the vertices and edges induced by the events
that happened recently, within the last δ time units known as window size.

Regularly sampled temporal graph
The temporal graph is sampled at a regular interval sw , known as sliding offset.

T0 T0+sw T0+2*sw

?

G1

Time

G0

G2

Postmortem Graph Analysis to Compute Pagerank!

Pagerank:
Sort out valuable vertices or ranking them based on the popularity on the graph.

Why does it matter:
Google’s link authority algorithm is basically Pagerank.
To find a central node or sub-graph within a larger graph.
Sports: find the best teams and athletes.
Predicting road and foot traffic in urban spaces.
Neuroscience: identify parts of the brain that change together as subjects aged.

Page Rank algorithm to find the most crucial players in soccer match.

Postmortem Graph Analysis to Compute Pagerank!

Pagerank Equation

PR(v) =
α

|V |
+ (1− α)

∑
u∈Γ−(v)

PR(u)

|Γ+(u)|

Computed with a converging iterative process.

Pagerank on Temporal Graph
Input: Events, sw , δ,T0,m

1: i ← 0
2: while i ≤ m do
3: PAGERANKi ← PagerankAlgorithm(G (Ti , Ti + δ))
4: i ← i + 1
5: Ti ← Ti−1 + sw
6: end while

Outline

1 Temporal Graph Analysis

2 Postmortem Page Rank of Sliding Window Graphs

3 Techniques
Partial Initialization
Representation
Parallelization

4 Conclusion

Graph storage system

Edges Edge Arrival Time Time Interval
v1 v2 T1 T2 T3
1 2 06/21/2021 X × ×
3 5 06/25/2021 X × ×
4 6 07/11/2021 X X ×
2 3 08/01/2021 X X X
2 4 08/11/2021 X X X
5 6 09/13/2021 X X X
2 7 10/02/2021 × X X
4 7 10/05/2021 × X X
5 7 10/06/2021 × X X
6 7 10/09/2021 × X X
1 2 11/05/2021 × × X
1 3 11/06/2021 × × X
2 5 11/09/2021 × × X
3 5 11/12/2021 × × X

Figure: Temporal edge list[Time interval T1 =

(6/1/2021-9/15/2021), T2 = (7/1/2021-10/15/2021) and T3 =

(8/1/2021-1/15/2022)]

2
4

3 5

76

1

Active at Interval T1

Active at Interval T2

Active at Interval T3

Figure: Temporal Graph

rowA = [0, 3, 9, 12, 16, 21, 24, 28]
colA = [2, 2, 3, 1, 1, 3, 4, 5, 7, 1, 2, 5, 5, 2, 6, 7, 2, 3, 3, 6, 7, 4,

5, 7, 2, 4, 5, 6]
timeA = [06/21/2021, 11/05/2021, 11/06/2021, 06/21/2021,
11/05/2021, 08/01/2021, 08/11/2021, 11/09/2021, 10/02/2021,
11/06/2021, 08/01/2021, 06/25/2021, 11/12/2021, 08/11/2021,
07/11/2021, 10/05/2021, 11/09/2021, 06/25/2021, 11/12/2021,
09/13/2021, 10/06/2021, 07/11/2021, 09/13/2021, 10/09/2021,

10/02/2021, 10/05/2021, 10/06/2021, 10/09/2021]

Figure: Temporal CSR Representation

Where do we stand?

Offline
Edge list loaded once.
Build each window graphs in CSR.
Converge Pagerank with a vertex parallel algorithm.

Streaming
STINGER implementation of streaming Pagerank.
Modified to have vertex/edge batches that match the
sliding window definition.

Postmortem
One graph representation with timestamp on edges.
Windows are processed one at a time with a vertex
parallel algorithm.

Offline vs Streaming vs Postmortem Pagerank.

10.0 15.0 90.0 180.0
Window Size(days)

0

50

100

150

200

Ti
m

e
in

 s

Sliding Offset: 259,200
Offline
Streaming
Postmortem

Partial initialization

Pagerank is a converging iterative algorithm

Static usually initializes Pagerank by 1
|V | .

The closer the initialization is to the Pagerank, the shorter the convergence.

Proportional initialization
In a temporal analysis, most vertices co-exist in consecutive intervals.
Custom partial initialization for the existing vertices.

PRi [u] =
|Vi ∩ Vi−1|
|Vi |

∗ PRi−1[u]∑
v∈Vi∩Vi−1

PRi−1[v]

1
|V | for the new vertices.

Partial initialization improves performance significantly

10.0 15.0 90.0 180.0
Window Size(days)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee

du
p

Sliding Offset: 43,200

Full/Partial Initialization

Wiki-talk

Multi-windowing

Problem
Traversing the graph for a particular window-graph requires traversing every edge.

Solution
Split the temporal graph in multiple chunks: multi-window graphs.
Traversing one timestamp graph only requires to traverse one multi-window.
Some edges need to appear in two multi-window graphs.

Parallelism

Levels of parallelism
Window-Level parallelization.
Application-Level parallelization.
Nested parallelization.

Concerns
Nested parallelism can bring potential load imbalance because of different size of tasks.
Processing window-graph t and t+1 at the same time prevents partial initialization.

Work-stealing (implementation with Thread Building Block)
The threads will be originally allocated a chunk of contiguous work.
Contiguous chunk will only be broken when the other threads are running out of work.
Opportunistically use partial initialization.

Impact of window size on the postmortem graph analysis. (wiki-talk)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

100

200

300

Sp
ee

du
p

PR Level Parallelization
Multi-Windows = 6
Multi-Windows = 32
Multi-Windows = 256
Multi-Windows = 512
Multi-Windows = 1,024

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

100

200

300

Window Level Parallelization
Multi-Windows = 6
Multi-Windows = 32
Multi-Windows = 256
Multi-Windows = 512
Multi-Windows = 1,024

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

100

200

300

Nested Parallelization
Multi-Windows = 6
Multi-Windows = 32
Multi-Windows = 256
Multi-Windows = 512
Multi-Windows = 1,024

(Speedups are computed relative to the streaming implementation.)

Computing multiple window-graph at the same time (SpMM)

The opportunity
A multi-window graph represents multiple graphs for different times.
When two graphs in the same multi-window are traversed, the same memory location in
the multi-window graph are traversed.
When the Pagerank of two window-graphs are computed, once can synchronize the access
to the Pagerank vectors for more memory regularity.

Interleaved execution
Compute Pagerank on k graphs at a time inside a multi window.
Interleave the Pagerank vectors in a Pagerank matrix to regularize memory accesses.
Compute Pagerank on non consecutive graphs.

g0, g10, g20, g30, first
g1, g11, g21, g31, then benefit from partial initialization

SpMV vs SpMM for different partitioners (wiki-talk)
1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

10

20

30

40

50

60

70

Sp
ee

du
p

TBB::auto_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

10

20

30

40

50

60

70

TBB::simple_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

10

20

30

40

50

60

70

TBB::static_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

Sliding Offset: 86,400, Window Size: 90 days, Windows: 1,024

Outline

1 Temporal Graph Analysis

2 Postmortem Page Rank of Sliding Window Graphs

3 Techniques
Partial Initialization
Representation
Parallelization

4 Conclusion

Best performance gain by postmortem compared to Streaming

43200 86400 172800 259200
Sliding Offset in s

10
15

90
18

0
W

in
do

w
Si

ze
 in

 d
ay

s 371 224 176 192

294 204 189 177

164 132 115 119

171 140 129 117 150

200

250

300

350

Conclusion

Postmortem is an important HPC case for temporal network analysis.
Partial initialization of postmortem Pagerank analysis can bring significance improvement.
Postmortem analysis enables multi-level parallelization for Pagerank.
Our work show the significance of the Work-stealing model for the postmortem analysis.
We show the comparison of SpMV and SpMM Pagerank for the postmortem graph
analysis.
Postmortem analysis can be conducted from 50 to 800 times faster than a streaming
analysis.

Thank you!

Questions?

Image references

https://totalfootballanalysis.com/data-analysis/using-google-page-rank-algorithm-build-
up-crucial
https://www.cs.cmu.edu/˜christos/PUBLICATIONS/siam04.pdf
https://arxiv.org/abs/2003.13212

	Temporal Graph Analysis
	Postmortem Page Rank of Sliding Window Graphs
	Techniques
	Partial Initialization
	Representation
	Parallelization

	Conclusion

