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Luby's Algorithm is an Example of a Dataflow Algorithm

Luby's Algorithm for Maximal Independent Set

® Each vertex v picks unique random number r(v) uniformly in [0; 1)

® v sends r(v) to each of its neighbors u
® v notes which neighbors u have the property r(u) > r(v)
® v marks its own state as unknown

® v awaits a message from each of its neighbors v if r(u) < r(v)

If the state of u is marked, the state of v is changed to unmarked

o After receiving messages from all neighbors u, if the state of v is unknown, the state of v
is changed to marked

® v sends its state to all neighbors u, such that r(u) > r(v)

® All vertices in the marked state are a maximal independent set






Introduction to Dataflow Algorithms
Distributed Dataflow Algorithms

® Only use local information

® Processing order of vertices is generated randomly

® Once the order is picked the vertices are processed from low to high in each neighborhood
® Cost to determine other desirable properties is too high

® We are interested in these methods as a model for distributed graph algorithms

® Luby’'s Algorithm for Maximal Independent Set
® Jones-Plassmann Algorithm for Graph Coloring




Choice of Random Order Affects Algorithm Runtime
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Developing a Dataflow Model for Distributed Graph Algorithms

® Let G = {V, E} be an undirected graph and w : V — Z" be a weight function

® Assign r(v) to each vertex v with your algorithm of choice

e Construct directed graph G by orienting the existing edges from low r(v) to high r(v)
e Calculate length of critical path of G

Critical Path

Longest weighted path in G

Minimizing the length of the critical path (which minimizes the algorithm execution time)




The Weight Function is Non-trivial

Special Case: w(v) =1

® Execution time is dominated by latency.
® The critical path is the number of phases for the graph.

® (ritical path is the same as longest path using euclidean distance

Special Case: w(v) = d(v)

® Bandwidth or the cost of algorithms on the vertices themselves dominates the total
execution time of the algorithm.

® Each vertex sends and receives 0(v) messages
® Most dataflow algorithms have each vertex do O(d(v)) computations

® |argest Degree First Order closely resembles that of Largest Processing Time First



The Centralized Problem is Coloring Vertices with Intervals

General Results on Arbitrary Graphs

o NP-Complete
® No Constant Approximation

On Stencil Graphs (IPDPS 2022)
® Studied the Interval Vertex Coloring Problem on 9-pt 2D stencils and 27-pt 3D stencils
® Proved the problem of interval coloring of the 27-pt 3D stencil is NP-Complete
® Developed and evaluated greedy heuristics based on analyses of special cases

® Showed number of colors correlates with real application runtime

Distributed Dataflow Graph Algorithms (PDCO 2023)
® Provide a model for dataflow algorithms as a distributed graph coloring problem

® Understand behavior of algorithms using different methods of generating partial orders



Deriving Better Partial Orders for Distributed Graph Algorithms

Uniform (aka draw in [0;1))
® Existing method of random number generation in dataflow algorithms

Linear (aka draw in [0; d(v)))
® v is guaranteed to be after all vertices u, such that 6(uv) = 0(v) — 1 with probability ﬁ
® Good approximation of Largest Degree First with vertices of dramatic difference in degrees

® Poor approximation when A(G) is large and G has many vertices of large degrees

Exponential (aka draw in [0;2°(V)))
® v is guaranteed to be after all vertices u, such that §(u) = §(v) — 1 with probability > 3

® Better approximation of Largest Degree First

® Communication and Computational cost is the same for each algorithm

® Sampling uniformly in those intervals despite naming conventions



© Evaluation



Introduction to RMAT Graphs

Vertex v
o
® 2" nodes . | d °
® Recursively split square matrix into 4 quadrants: a, b, ¢, d a
® Each quadrant has an associated probability that a given ¢ d

Vertex u

edge will fall into that quadrant: a4+ b+c+d=1

® Edges are generated one at a time and placed in a
quadrant recursively following those probabilities until the c d
edge is placed in a 1 x 1 submatrix.

® of x2" edges



RMAT Graphs Study
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Understanding the Results of the RMAT Graphs Study

Why is Exponential better on RMAT Graphs

® RMAT Graphs have the same properties of a social network

® Social networks are " Onion-like" - dense core, but outer layers become less dense

® Exponential is similar to Largest First
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Figure 3: Hierarchy of Dense Subgraphs by Sariyuce et al. (2015)



Building a Real World Application from the RMAT Graphs Study

Real World Application

® Conducted similar experiment on real world graphs from SNAP

® All graphs have small world properties, except roads of Pennsylvania

® Exponential was better except on ca-HepPh and roadNet-PA

Max | Clustering

Name Vertices Edges | Degree | Coefficient | Diameter | Uniform CI Exp ial Cl Linear CI U/E |U/L |L/E

CA-HepPh 89,209 118,521 491 0.6115 13 || [1030; 1036] 1040; 1045] 1032; 1037] 0.991 | 0.999 | 0.992
Email-Enron 36,692 183,831 1,383 0.4970 11 || [43437; 43720] 38836; 38982] 40688; 41002] 1.120 | 1.067 | 1.050
p2p-Gnutella04 10,879 39,994 103 0.0062 9 | [911; 925] 568; 575] 728; 740] 1.606 | 1.251 | 1.284
roadNet-PA 1,090,920 | 1,541,898 9 0.0465 786 || [49; 49] 49; 50] 48; 49] 0.990 | 1.010 | 0.980
soc-Epinions1 75,888 405,740 3,044 0.1378 14 || [94793; 95270] 88297; 88593 80488; 90034] 1.074 | 1.059 | 1.015
soc-pokec-relationships | 1,632,804 | 22,301,964 | 14,854 0.1094 11 || [118924; 119528] 96958; 97239 100836; 101775] 1.228 | 1.177 | 1.043
web-Google 916,428 | 4,322,051 6,332 0.5143 21 || [80466; 81618] 18166; 18192 20577, 21084] 4.458 | 3.891 | 1.146
WikiTalk 2,394,385 | 4,659,565 | 100,029 0.0526 9 | [1352414; 1357165] | [1101248; 1103043] | [1145942; 1151894] || 1.229 | 1.179 | 1.042




of the Real World Application
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® Conclusion



Conclusion

® We provided a model for dataflow algorithms as a distributed graph coloring problem.

® \We presented new ways to generate partial orderings and provided a theoretical argument
for why they are sound.

® \We studied the behavior of algorithms using different partial orders on both randomly
generated RMAT graphs and graphs from real world applications.

® We showed that Exponential algorithm yields a shorter critical path than other partial
orderings in the study of RMAT graphs and real world applications.

® Develop a stronger theoretical argument for why Exponential performs better than
Uniform

® Consider other graph models



Thank you!
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