Optimizing the Critical Path of Distributed Dataflow Graph Algorithms

Dante Durrman, Erik Saule

The University of North Carolina at Charlotte

PDCO 2023

Luby's Algorithm is an Example of a Dataflow Algorithm

Luby's Algorithm for Maximal Independent Set

- Each vertex v picks unique random number r(v) uniformly in [0;1)
- v sends r(v) to each of its neighbors u
- v notes which neighbors u have the property r(u) > r(v)
- v marks its own state as unknown
- v awaits a message from each of its neighbors u if r(u) < r(v)
- If the state of *u* is marked, the state of *v* is changed to unmarked
- After receiving messages from all neighbors u, if the state of v is unknown, the state of v is changed to marked
- v sends its state to all neighbors u, such that r(u) > r(v)
- All vertices in the marked state are a maximal independent set

Luby's Algorithm is an Example of a Dataflow Algorithm

Example from Randomized Algorithms (the University of Utah)

Introduction to Dataflow Algorithms

Distributed Dataflow Algorithms

- Only use local information
- Processing order of vertices is generated randomly
- Once the order is picked the vertices are processed from low to high in each neighborhood
- Cost to determine other desirable properties is too high
- We are interested in these methods as a model for distributed graph algorithms

Examples

- Luby's Algorithm for Maximal Independent Set
- Jones-Plassmann Algorithm for Graph Coloring

Choice of Random Order Affects Algorithm Runtime

Figure 1: Lucky Draw

Figure 2: Unlucky Draw

Choice of Random Order Affects Algorithm Runtime

Figure 1: Lucky Draw

Figure 2: Unlucky Draw

This talk

How can we avoid unlucky draws?

Outline

Introduction

- 2 Method
- Second Example 1
 Second Example 2
- 4 Conclusion

Developing a Dataflow Model for Distributed Graph Algorithms

Model

- Let $G = \{V, E\}$ be an undirected graph and $w : V \to \mathbb{Z}^+$ be a weight function
- Assign r(v) to each vertex v with your algorithm of choice
- Construct directed graph \bar{G} by orienting the existing edges from low r(v) to high r(v)
- Calculate length of critical path of \bar{G}

Critical Path

Longest weighted path in \bar{G}

Objective

Minimizing the length of the critical path (which minimizes the algorithm execution time)

The Weight Function is Non-trivial

Special Case: w(v) = 1

- Execution time is dominated by latency.
- The critical path is the number of phases for the graph.
- Critical path is the same as longest path using euclidean distance

Special Case: $w(v) = \delta(v)$

- Bandwidth or the cost of algorithms on the vertices themselves dominates the total execution time of the algorithm.
- Each vertex sends and receives $\delta(v)$ messages
- ullet Most dataflow algorithms have each vertex do $O(\delta(
 u))$ computations
- Largest Degree First Order closely resembles that of Largest Processing Time First

The Centralized Problem is Coloring Vertices with Intervals

General Results on Arbitrary Graphs

- NP-Complete
- No Constant Approximation

On Stencil Graphs (IPDPS 2022)

- Studied the Interval Vertex Coloring Problem on 9-pt 2D stencils and 27-pt 3D stencils
- Proved the problem of interval coloring of the 27-pt 3D stencil is NP-Complete
- Developed and evaluated greedy heuristics based on analyses of special cases
- Showed number of colors correlates with real application runtime

Distributed Dataflow Graph Algorithms (PDCO 2023)

- Provide a model for dataflow algorithms as a distributed graph coloring problem
- Understand behavior of algorithms using different methods of generating partial orders

Deriving Better Partial Orders for Distributed Graph Algorithms

Uniform (aka draw in [0;1))

Existing method of random number generation in dataflow algorithms

Linear (aka draw in $[0; \delta(v))$)

- v is guaranteed to be after all vertices u, such that δ(u) = δ(v) 1 with probability 1/δ(v)
 Good approximation of Largest Degree First with vertices of dramatic difference in degrees
 - ullet Poor approximation when $\Delta(G)$ is large and G has many vertices of large degrees

Exponential (aka draw in $[0;2^{\delta(u)})$)

- v is guaranteed to be after all vertices u, such that δ(u) = δ(v) 1 with probability > ½
 Better approximation of Largest Degree First
- Communication and Computational cost is the same for each algorithm
- Sampling uniformly in those intervals despite naming conventions

Outline

- Introduction
- Method
- 3 Evaluation
- 4 Conclusion

Introduction to RMAT Graphs

Construction of RMAT Graphs

- 2^n nodes
- Recursively split square matrix into 4 quadrants: a, b, c, d
- Each quadrant has an associated probability that a given edge will fall into that quadrant: a + b + c + d = 1
- Edges are generated one at a time and placed in a quadrant recursively following those probabilities until the edge is placed in a 1×1 submatrix.
- $ef * 2^n$ edges

RMAT Graphs Study

Methodology

- Sampled RMAT parameter space with constant ef
- Computed critical path length for each algorithm
- Calculated 95% confidence intervals
- Computed pairwise ratios of critical paths
- Conducted Z-Test to validate statistical significance

Results

- Exponential path | Linear path | Uniform path
- Exponential was never worse than Uniform
- At best, Exponential was 50% better
- On average, Exponential was about 10% better

Understanding the Results of the RMAT Graphs Study

Why is Exponential better on RMAT Graphs

- RMAT Graphs have the same properties of a social network
- Social networks are "Onion-like" dense core, but outer layers become less dense
- Exponential is similar to Largest First

Figure 3: Hierarchy of Dense Subgraphs by Sariyuce et al. (2015)

Building a Real World Application from the RMAT Graphs Study

Real World Application

- Conducted similar experiment on real world graphs from SNAP
- All graphs have small world properties, except roads of Pennsylvania
- Exponential was better except on ca-HepPh and roadNet-PA

			Max	Clustering							
Name	Vertices	Edges	Degree	Coefficient	Diameter	Uniform CI	Exponential CI	Linear CI	U/E	U/L	L/E
CA-HepPh	89,209	118,521	491	0.6115	13	[1030; 1036]	[1040; 1045]	[1032; 1037]	0.991	0.999	0.992
Email-Enron	36,692	183,831	1,383	0.4970	11	[43437; 43720]	[38836; 38982]	[40688; 41002]	1.120	1.067	1.050
p2p-Gnutella04	10,879	39,994	103	0.0062	9	[911; 925]	[568; 575]	[728; 740]	1.606	1.251	1.284
roadNet-PA	1,090,920	1,541,898	9	0.0465	786	[49; 49]	[49; 50]	[48; 49]	0.990	1.010	0.980
soc-Epinions1	75,888	405,740	3,044	0.1378	14	[94793; 95270]	[88297; 88593]	[89488; 90034]	1.074	1.059	1.015
soc-pokec-relationships	1,632,804	22,301,964	14,854	0.1094	11	[118924; 119528]	[96958; 97239]	[100836; 101775]	1.228	1.177	1.043
web-Google	916,428	4,322,051	6,332	0.5143	21	[80466; 81618]	[18166; 18192]	[20577; 21084]	4.458	3.891	1.146
WikiTalk	2,394,385	4,659,565	100,029	0.0526	9	[1352414; 1357165]	[1101248; 1103043]	[1145942; 1151894]	1.229	1.179	1.042

Results of the Real World Application

Outline

- Introduction
- Method
- Second Evaluation
- 4 Conclusion

Summary

Conclusion

- We provided a model for dataflow algorithms as a distributed graph coloring problem.
- We presented new ways to generate partial orderings and provided a theoretical argument for why they are sound.
- We studied the behavior of algorithms using different partial orders on both randomly generated RMAT graphs and graphs from real world applications.
- We showed that Exponential algorithm yields a shorter critical path than other partial orderings in the study of RMAT graphs and real world applications.

Future Works

- Develop a stronger theoretical argument for why Exponential performs better than Uniform
- Consider other graph models

Thank you!

Papers

Dante Durrman and Erik Saule. Optimizing the critical path of distributed dataflow graph algorithms. In Proceedings of IPDPS Workshops (IPDPSW); PDCO, 2023.

Dante Durrman and Erik Saule. Coloring the vertices of 9-pt and 27-pt stencils with intervals. In Proc. of IPDPS, May 2022.

Contact

ddurrman@uncc.edu

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No CCF-1652442.