

Addressing Overgeneration Error: An Effective and Efficient Approach to Keyphrase Extraction from Scientific Papers

Keyphrase Extraction

Problem Definition: Given a set of scientific documents, extract those words and phrases that provide a brief and precise description for each document.

Challenge

Challenge: Overgeneration errors occur when a system erroneously outputs all candidates phrase as keyphrases because they contain a highly scored word. Current keyphrase extraction systems typically assign scores to words firstly, and rank candidate phrases according to the sum of weights of their component Therefore, this kind of mechanism tends to suffer from overgeneration words. errors.

Example: Overgeneration Error

Candidate word scoring	Top k	Keyphrase Formation
graph 0.00214	1	original k-partite graph
structures 0.00162	2	k-partite graph
learning 0.00095	3	hidden structures
network 0.00084	4	various structures
k-partite 0.00071	5	local cluster structures
model 0.00068	6	global cluster structures
hidden 0.00065	7	relation summary netw
		•••

References

- [1] Mihalcea, R., Tarau, P.: Textrank: Bringing order into texts. In: Proc. of EMNLP. (2004) [2] Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: Proc. of AAAI. (2008)
- [3] Hasan, K.S., Ng, V.: Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art In: Proc of COLING. (2010)
- [4] Hasan, K.S., Ng, V.: Automatic keyphrase extraction: A survey of the state of the art. In: Proc of ACL. (2014)
- [5] Florescu, C., Caragea, C.: Positionrank: An unsupervised approach to keyphrase extraction from scholarly documents. In: Proc of ACL. (2017)

Haofeng Jia and Erik Saule Dept. of Computer Science, UNC Charlotte hjia1@uncc.edu, esaule@uncc.edu

work

KeyPhraser

Idea: In order to alleviate this problem, we look for a way to allow us to directly operates on phrases instead of their component words.

- What kinds of properties make a group of words into a phrase?
- What kinds of properties make a phrase into a keyphrase?
- What is special for scientific documents?

- Concordance:
- Popularity:

1 if $s = [adj]^*[noun]^+$ Conc(s) =otherwise

Pop(s,d) = log(f(s,d) + 1)

where f(s, d) denotes the frequency of a phrase $s \in \mathcal{P}$ in the document d.

• Informativeness:

 $Info(s) = log \frac{|\mathcal{C}|}{|d \in \mathcal{D} : s \in d|}$

where \mathcal{C} means the whole corpus, and \mathcal{D} means the documents that contain candidate phrase s.

• Positional Preference:

Pos(s,d) = log(
$$\sum_{\text{each s in d}} \frac{|d|}{op(s,d)+1}$$
)

where op(v, d) denotes an occurrence position of phrase v in document d. An alternative way only takes the first occurrence position of a phrase into consideration.

$$Pos(s,d) = log \frac{1}{fop(d)}$$

where fop(v, d) denotes the first occurrence position of phrase v in document d.

Keyphraser(s, d) = Conc(s)Pop(s, d)Info(s)Pos(s, d)

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1652442.

$$\frac{|d|}{(s,d)+}$$

Data Sets

Statistic # of Pap average # of ground truth ke average # of words in each g

Experimental Results

Performance: on WWW data set:

Example: Predicted Keyphrases Comparison

k	SingleRank	PositionRank
1	original k-partite graph	original k-partite graph
2	k-partite graph	k-partite graph
3	hidden structures	various structures
4	various structures	hidden structures
5	local cluster structures	local cluster structures
6	global cluster structures	global cluster structures
7	relation summary network	unsupervised learning
8	general model	relation summary network
k	KeyPhraser-fp	KeyPhraser-full
1	unsupervised learning	k-partite graph
2	k-partite graph	hidden structures
3	hidden structures	unsupervised learning
4	data objects	relation summary network
5	multiple types	clustering approaches
6	relation summary network	data objects
7	general model	multiple types
8	local cluster structures	connections

Conclusion

- address overgeneration errors;
- which is essential for real systems;
- KeyPhraser is fast to compute.

CS	WWW	KDD
Ders	1331	755
eyphrases for each paper	4.6	3.8
ground truth keyphrase	1.9	1.8

• KeyPhraser takes phrases instead of component words as semantic unit to

• KeyPhraser achieves better results on precision, recall and F-score;

• KeyPhraser is particularly good at finding more keyphrases at small k,