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Keyphrase Extraction KeyPhraser Data Sets
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Current keyphrase extraction systems typically assign scores to words firstly,
and rank candidate phrases according to the sum of weights of their component

e What is special for scientific documents?
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an slc Oari,i;;mr P Fgmat?glel b Y Pop(s,d) = log(f(s,d) + 1) 4 various structures hidden structures
oraph 0.00214 1 original k-partite graph where f(s,d) denotes the frequency of a phrase s € P in the document d. 3 local cluster structures local cluster structures
6 global cluster structures global cluster structures
structures 0.00162 2 k-partite graph e Informativeness: Info(s) = log C]| 7 | relation summary network unsupervised learning
deD:sed 8 general model relation summary network
learning 0.00095 3 hidden structures
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network 0.00084 4 various structures . 1 unsupervised learning k-partite graph
candidate phrase s. ) ,
2 k-partite graph hidden structures
k-partite 0.00071 5 local cluster structures : . .
' e Positional Preference: 3 hidden structures unsupervised learning
model 0.00068 6  global cluster structures Pos(s, d) = log( Z d ) 4 data objects relation summary network
’ — op(s,d) + 1 5 multiple types clustering approaches
: : each s in . ,
hidden 0.00065 7 relation summary network 6 | relation summary network data objects
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