Computing the Closeness Centrality of Evolving Networks on Clusters

Ahmet Erdem Sarıyüce, Erik Saule, Kamer Kaya, Ümit V. Çatalyürek The Ohio State University. University of North Carolina at Charlotte. Sabanci University.

Introduction	Level Filter
 Centrality metrics answer questions such as: Who controls the flow in a network? Who is more important? Who has more influence? Whose contribution is significant for connections? 	CASE 1 0s 1
They have various applications: Covert network (e.g., terrorist identification). Contingency analysis (e.g., weakness/robustness of	4 Case 1: No ch
networks). Viral marketing. Traffic analysis. Store locations.	Case 2. Only to Case 3: Some Identical Ve
How to maintain an accurate analysis upon graph evolutions? Closeness Centrality	
Let $G = (V, E)$ be an unweighted graph with the vertex set V and edge set E . The farness of a vertex is $far[u] = \sum_{v} d(u, v)$. The closeness of a vertex is $cc[u] = \frac{1}{far[u]}$. $d(u, v)$ is the length of the shortest path $u \rightsquigarrow v$.	Articulation
The best known algorithm computes the shortest path graph rooted in each vertex of the graph. The complexity is $O(E)$ per source, $O(VE)$ in	

total, which makes its computationally expensive.

Variation of Closeness Centrality

The redness of a vertex represents its Closeness.

Conclusion

Structural properties of Closeness Centrality lead to an efficient incremental algorithm. The algorithm scales on clusters and enables real-time Centrality analysis.

References

[1] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Hardware/software vectorization for closeness centrality on multi-/many-core architectures. In Workshop on Multithreaded Architectures and Applications (MTAAP), 2014.

[2] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Streamer: a distributed framework for incremental closeness centrality computation. In IEEE Cluster, 2013. [3] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Incremental algorithms for closeness

centrality. In IEEE BigData, 2013. [4] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek. Shattering and compressing networks for betweenness centrality. In SIAM International Conference on Data Mining, SDM, 2013.

Name	V	E	# updates
web-NotreDame	325,729	1,090,008	399,420
web-Google	916,428	4,321,958	2,527,088
soc-pokec	1,632,804	30,622,464	4,924,759