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Abstract—Executing graph algorithms in a parallel or dis-
tributed context is a challenging problem. Solving race conditions
with locks is usually prohibitively expensive and some algorithms
opt for a strategy that ignores the race condition altogether and
corrects later the derived solution if it is invalid. Alternatively,
dataflow algorithms solve the synchronization problem by exe-
cuting the algorithm by following a partial order on the graph.
While removing the cost of locks or avoiding a checking phase
improves performance, it is possible that the algorithm picks a
partial order with long chains, which limit parallelism.

In this paper, we investigate how distributed dataflow graph
algorithm obtain a partial order and how one could favor orders
with shorter long chains. Most dataflow algorithms obtain their
order by having each vertex of the graph pick a uniformly
random number in [0; 1) and order the vertices based on that
number. We believe that this type of order could lead to long
chains in graphs with dense regions such as small world graph.
We design two alternative ways of generating the order to make
it similar to a largest degree first order.

We study the behavior of these different algorithms on a wide
range of randomly generated RMAT graphs and on a set of
real world graphs. And we show that our ordering methods can
significantly reduce the length of the longest chain.

Index Terms—graph analysis; distributed computing; partial
order; interval coloring; randomized algorithms

I. INTRODUCTION

Graphs are a key mathematical object of modern science
as they are used to model a variety of objects of studies in-
cluding physical objects, roads, computer networks, and social
interactions. With the increase in complexity of studies that
are performed, the size of graphs that are used has increased.
Consequently, computational costs of analyses have increased
and the machines we use to perform these calculations have
grown more parallel and more distributed.

Executing graphs on parallel and distributed machines is
complicated because of the irregularity of the memory access
patterns. Simple solutions involve using some form of a
locking mechanism. However, the locking overhead usually
dominates the calculations. Some problems admit optimistic
algorithms where race conditions are ignored at first and the
solution is later examined and fixed. It is possible that a
race condition happens in a way that leads to an incorrect
solution [1], [2]. These optimistic algorithms fundamentally
require a later reconciliation phase, which can be as costly as
the algorithm itself.

A third category of dataflow graph algorithms rely on a
partial order to the graph, where vertices are processed in an
order compatible with that partial order.

The most classic dataflow algorithms are Luby’s algorithm
for Maximum Independent Set [3] and the Jones-Plassmann
algorithm for graph coloring [4]. However, many problems
admit dataflow algorithms, such as maximum cardinality
matching [5]. These algorithms are particularly suitable for
the setting where each vertex is its own independent computa-
tional node. They are also easily written in think-like-a-vertex
programming models [6]. They have also been used on shared
memory systems, including the Cray XMT [1], [5].

A bottleneck to the execution of these algorithms is the
longest chain of vertices set by the partial order. Since the
precise partial order often does not matter for correctness,
dataflow algorithms often use a random order. Random orders
can be generated in a distributed way and have been shown to
yield desirable properties in several types of graphs [3], [5]. In
this paper, we investigate alternative ways to generate random
orders that minimize the length of the longest chain of vertices
in the algorithm, minimizing its runtime.

The paper is organized as follows. Section II explains
how dataflow algorithms work and provides a model of the
problem as a graph coloring problem. Section III discusses
related papers and results. Section IV presents new ways
to generate orderings for dataflow algorithms and gives a
theoretical argument for why they are sound. Section V studies
the behavior of the algorithms on random RMAT graphs and
shows that our methods perform usually better. Section VI
studies the behavior of these algorithms on real world graphs
and shows that our methods perform usually better. Section VII
provides some concluding remarks.

II. PROBLEM STATEMENT

A. Dataflow Algorithms

All dataflow graph algorithms share a similar structure.
We explain in detail how Luby’s algorithm computes an
Independent Set [3] as a distributed algorithm. Let G = (V,E)
be a graph. We denote the neighbors of vertex v by Γ(v), the
degree of v by δ(v) = |Γ(v)|, and the maximum degree in the
graph by ∆ = max δ(v).
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Fig. 1: The execution time of dataflow algorithm depends on
the random number generation. Black edges highlight the order
of the dataflow, while green edges show the critical path. On
a lucky draw, the critical path of the algorithm contains only
2 vertices; while an unlucky draw can have 16 vertices in its
critical path.

In Luby’s algorithm, each vertex v starts by picking a
random number r(v) uniformly in [0; 1), which is assumed to
be unique, and sends it to each of its neighbors. Vertex v notes
which of its neighbors u have the property that r(u) < r(v).

Vertex v marks its own state as unknown. It awaits a
message from each of its neighbors u if r(u) < r(v) which
contains the state of neighbor u. If u’s state is marked, v
changes its state to unmarked.

After receiving messages from all neighbors u, if vertex v
state is unknown, it changes its state to marked. And finally
v sends its state to all its neighbors u such that r(u) > r(v).
At the end of this process, all vertices in the marked state
are a maximal independent set (by inclusion).

Other dataflow algorithms are similar in structure. A random
number is assigned to each vertex. And each vertex executes
an algorithm only after all of its neighbors with a lower value
have been executed.

In Luby’s algorithm, each vertex v executes an algorithm
of complexity Θ(δ(v)), linear in its number of neighbors.
However, since each vertex has to wait for some of its
neighbors to complete, the entire process might not unfold
in Θ(∆), proportionally to the maximum degree of the graph.
The time it takes for the algorithm to unfold depends on the
longest chain of communication induced by the algorithm,
which depends on the random numbers generated.

A grid graph is used as an example in Figure 1. In a lucky
draw (Figure 1a), random numbers are generated in a way
that leads to lots of parallelism. The black arrows show the
direction of the communication in the graph. The green arrows
show the longest chain in the oriented graph. In this case, all
chains are of two vertices and an arbitrary one was highlighted.

In an unlucky draw (Figure 1b), the random numbers are
generated in a way that leads to no parallelism as the longest
chain in the oriented graph visits every vertex in the graph. Of
course, both of these draws are extremely unlikely to happen.

B. Combinatorial Optimization Model

Ultimately, dataflow algorithms rely on the underlying col-
oring of a graph with intervals. Let G = (V,E) be the graph
that gets processed by the dataflow algorithm. Let w be a
weight function on vertices such that w(v) is the processing
time of an algorithm for vertex v. The dataflow algorithm
is dependent upon two neighboring vertices (x, y) ∈ E to
not be executed simultaneously. It assumes they run at times
[start(x); start(x) + w(x)) and [start(y); start(y) + w(y))
such that these two intervals are disjoint. This is the definition
of a coloring of the graph with intervals of length given by the
weights of the vertices. The objective is to minimize the total
number of used colors, which is equivalent to minimizing the
total runtime of the application.

How good the model is will largely be determined by how
the weight function w is set. On a computing machine with
substantially larger latency than execution time at each node, a
good model will be achieved by setting all w to 1 and solving
the standard coloring problem. If the processing at each vertex
is the primary cost of the dataflow algorithm, then setting w(v)
to the complexity of the vertex algorithm for each vertex is
the right call. For most algorithms, vertices will need to gather
partial information from their neighbors, do some processing,
which is usually proportional to the number of neighbors, and
finally, communicate the partial information to the neighbors.
All operational costs will be proportional to the number of
neighbors of a vertex. Setting the weight to the degree of the
vertex w(v) = δ(v) often makes the most sense. We will make
this assumption going forward even though the analysis can
be adapted to other weight functions.

The distributed dataflow algorithm solves that problem
using a particular ordering algorithm. But fundamentally, any
coloring of the graph with intervals would be sufficient to de-
rive a correct execution of the dataflow algorithm. And better
colorings would lead to better runtimes for the execution.

In the context of a distributed graph, it makes sense to run
a distributed coloring algorithm: aggregating the graph to a
single computing node to execute a one-node algorithm would
likely be prohibitively expensive compared to the rest of the
dataflow algorithm execution time.

III. RELATED WORKS

Scheduling, edge orientation, and coloring problems are
fundamentally related. In a typical task graph scheduling
problem [7], the order of tasks is known in advance and
the problem is to decide when and where the tasks will run
given a list of dependency constraints. An interesting result
is that list scheduling [8] always guarantees to get an appli-
cation executed on P processors quicker than

∑
v∈V w(v)

P +
maxc∈allchains(G)

∑
v∈c w(v). The second term is the length

of the longest chain in the graph, which is optimized by
minimizing the number of colors.

Another problem is the edge orientation problem. The
Gallai-Hasse-Roy-Vitaver theorem proved that the maximum
path length in an oriented graph is always greater than
one plus the chromatic number of its unoriented counterpart



(and equal for the optimal orientation) [9]. On weighted
graphs, most edge-orientation problems attempt to minimize
maximum weighted outdegree [10] as opposed to maximum
path length of an acyclic orientation. There are distributed
algorithms to minimize the number of colors for graphs with
particular structures. For instance, if the edges can be oriented
so that every vertex has an outdegree less than or equal to 1,
then the Cole-Vishkin algorithm can be applied [11].

Even though the classic problem of coloring graph is
polynomial for particular categories for graphs [12], it is
NP-Complete for arbitrary graphs [13]. On arbitrary graphs,
the problem is even not polynomially approximable [14] and
often the best guarantee that can be made is that greedy
algorithms can always achieve a coloring using fewer than
∆+1 colors [15]. In practice, it has been reported that selecting
orderings of vertices can generate better colorings [16]–[18].
We leverage that intuition in this particular work where we
generate orderings using some graph property to reduce the
total number of colors.

Coloring graphs with intervals has received little considera-
tion in the past. The general NP-Completeness result holds on
arbitrary graphs and the problem is often studied from a radio
spectrum allocation perspective [19]. Recently, we studied the
problem of coloring stencil graphs with interval and provided
NP-completeness and approximation results [20].

The complexity of dataflow algorithms for maximal inde-
pendent set and matching was shown to be polylogarithmic
with high probability when processing random graphs on
PRAM machines [5]. However, they did not attempt to reduce
the critical path length by adjusting the randomized algorithm.

IV. DERIVING BETTER PARTIAL ORDERS

A. Methods

Luby’s algorithm and most dataflow algorithms generate
random numbers uniformly in [0; 1) to derive the order of
vertices. This yields a partial order in a distributed setting
so each vertex v performs only Θ(δ(v)) calculations and
Θ(δ(v)) communications. The communication term is required
for a vertex to know its place in the order relative to its
neighbors. At the level of the system, there are only Θ(E)
calculations and communications. We call Uniform this
particular ordering algorithm.

While that algorithm has optimal cost to derive a partial
order, it may not derive the best order. In particular, this
ordering does not leverage any properties of the graph and its
vertices. We know from literature that coloring heuristics can
benefit from considering vertex properties and local structure.
In particular the Smallest Last [16] and Largest First [18]
orderings are know to be good for the classic coloring prob-
lem [21]. Since Smallest Last is a dynamic ordering, it is
costly to replicate in a distributed setting. Instead, we focus
on emulating Largest First.

Instead of generating random numbers uniformly in [0; 1),
we propose adjusting random number generation based on the
property of the vertex drawing the number. In particular, we
call Linear the algorithm where vertex v draws a number

uniformly in [0; δ(v)). This algorithm has the same complexity
as Uniform but it generates an ordering that will tend to put
vertices with high degree towards the end of the ordering.

However, a vertex v is guaranteed to be after all vertices
u such that δ(u) = δ(v) − 1 only with probability 1

δ(v)
(for an infinite number of such vertices u). Linear is a
good approximation of Largest First for vertices with dramatic
difference in degrees. But it is a poor approximation of that
ordering for graph with very large maximum degrees and many
vertices of large degrees.

We suggest a third generation algorithm called
Exponential where vertex v draws a random number in
[0; 2δ(v)). This algorithm still has the same communication
and computational cost with an additional benefit: the
probability that a vertex v has a random number r(v) greater
than all vertices u such that δ(u) = δ(v) − 1 is greater than
1
2 . Therefore, it is a better approximation of the Largest First
ordering.

B. Basic analysis

Regular graphs have the property that all vertices have
the same degree. This category of graphs encompasses many
typical structures. Cliques, cycles, torus (2d, 3d, or arbitrary
dimension) are all regular graphs. Because all vertices have the
same degree, all three algorithms behave in exactly the same
way. Although each method generates random numbers in
different intervals, all vertices in that method generate numbers
in the same interval. Consequently, all three algorithms behave
in the same way.

Star graphs show why the methods work differently. Con-
sider a star graph of V vertices. The center vertex (hub) has
a degree of V − 1, while all other vertices (spokes) have a
degree of 1. There are only two possible solutions (excluding
symmetries) that can be generated by the distributed algorithm.
Either the hub vertex is in between two of the spokes, or it is
not. It does not matter if the hub is before all spokes or after
all spokes. If the hub vertex is between the two spokes, the
longest chain has 3 vertices; otherwise, it has 2 vertices.
Uniform will put the spoke vertex first with probability

1
V , and will put it last will probability 1

V . As V → ∞, the
algorithm will generate a path of 2 vertices with probability
2
V and a path of 3 vertices with probability V−2

V .
On the other hand, Exponential will force all spoke

vertices have random numbers in [0; 2), while the hub vertex
will be a random number in [0; 2V−1). The hub will have a
random number greater than 2 with probability 2V−1−2

2V−1 . In all
cases, the longest chain will be of 2 vertices with a probability
greater than 2V−1−2

2V−1 , which goes to 1 as V goes to infinity.
In the case of the Linear algorithm, the spokes have

random numbers in [0; 1), while the hub has a number taken
in [0;V − 1). The hub has a random number greater than 1
with probability V−2

V−1 . And so, the probability of having a path
of 2 vertices tends to 1 as V approaches infinity.

Although star graph are not commonly found in real world
applications, many graphs, such as social networks, are similar
to star graphs: they are structured like onions with dense center
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(b) ef = 8
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(c) ef = 12

1000 1500 2000 2500 3000 3500 4000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e 

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(d) ef = 16
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(e) ef = 20
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(f) ef = 24
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(g) ef = 28
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Fig. 2: Cumulative Density Function of the longest chain induced by Uniform, Expnential and Linear on RMAT Graph
with a = 0.10, b = 0.20, c = 0.50, d = 0.20 for different values of edge factor ef . The different values of edge factor show
almost identical patterns for the length of the critical path.
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(a) ef = 4
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(b) ef = 8
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(c) ef = 12
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(d) ef = 16
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(e) ef = 20
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(f) ef = 24
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(g) ef = 28
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Fig. 3: Cumulative Density Function of the longest chain induced by Uniform, Expnential and Linear on RMAT Graph
with a = 0.42, b = 0.19, c = 0.19, d = 0.02 for different values of edge factor ef . The different values of edge factor show
almost identical patterns for the length of the critical path.

regions and layers of ever lesser dense regions. We believe
that an algorithm like Exponential favors shorter paths in
social networks because once a path enters a denser region is
entered it tends not to exit it.

V. STUDY ON RECURSIVE GRAPH MODEL (RMAT)

A. Methodology

RMAT graphs have 2n nodes. They are constructed by
recursively splitting a square matrix into 4 quadrants: a, b, c, d.
Each quadrant has an associated probability that a given edge
will fall into that quadrant, so a + b + c + d = 1. Edges are
generated one at a time and placed in a quadrant following the
given probabilities, and recursively until the edge is placed in
a 1×1 sub matrix. The number of edges in a graph is usually
controlled by setting an edge factor ef which will generate
ef ∗ 2n edges.

RMAT graphs have several desired properties of many
real graphs. They have a power-law degree distribution that
resembles real graphs in several applications. They also exhibit
a community structure and have a small diameter [22]. RMAT
graphs are the 2 × 2 special case of Kronecker graph [23].
Note that RMAT is a directed graph model, however we
need an undirected graph, so the matrix is symmetrized after
generation.

All the studies that we conduct on RMAT graphs make
the same assumption. We assume that our graph is derived
from an underlying RMAT distribution, and we try to ascer-
tain whether Uniform, Linear, or Exponential would
obtain a shorter longest chain. Since RMAT is a probabilistic
model and these methods themselves are randomized, statis-
tical evidence is required. For an RMAT parameter set and
an algorithm, we estimate the probability density function by
sampling 1000 RMAT graphs generated by these parameters,
and for each graph that was generated, by sampling 100
executions of each ordering algorithm. This gives us 100k

values of longest path length for each ordering for a particular
set of parameters.

In general, we present the sampled Cumulative Density
Function (CDF) of the longest chain and the confidence
intervals for the expected length of the longest chain. We
validated the significance of the difference in the expected
length of longest chains between two orderings with a pairwise
two-population z-test. The p-value was always substantially
lower than 0.05 which indicates that all results presented on
RMAT graphs are statistically significant.

B. Initial Investigation

As there seem to be no real consensus on what RMAT
parameters to use to benchmark algorithms, we started our
exploration by considering two sets of RMAT parameters
that appear frequently in the literature. We have four initial
questions. Does the ordering method make a difference? Does
one of the methods lead to shorter path? How does edge factor
impact the results? Do the parameters a, b, c, and d make a
difference?

We used parameters (0.10, 0.20, 0.50, 0.20) and
(0.42, 0.19, 0.19, 0.02). We varied the edge factor between 4
and 32. We present the Cumulative Density Function of the
length of the longest path in Figures 2 and 3.

The statistic tests showed that the distribution are statis-
tically significantly different. The difference on the RMAT
parameters (0.1, 0.2, 0.5, 0.2) was fairly important. It seems
that for all edge factors, Linear leads to shorter longest
paths than Uniform and Exponential leads to shorter
longest paths than both of them. However, the difference on
the RMAT parameters (0.42, 0.19, 0.19, 0.02) was very small.
(Even though it was statistically significant.)

The edge factor seems to have little impact on the relative
performance of each method. The difference between order-
ings appears to be more pronounced for larger edge factor;
however, the trends remained the same.



a b c d Uniform CI Exponential CI Linear CI U/E U/L L/E
0.30 0.28 0.28 0.14 [2944; 2947] [2623; 2625] [2850; 2853] 1.123 1.033 1.087
0.40 0.24 0.24 0.12 [4950; 4953] [4680; 4683] [4859; 4862] 1.058 1.019 1.038
0.50 0.20 0.20 0.10 [6968; 6971] [6643; 6647] [6845; 6848] 1.049 1.018 1.030
0.60 0.16 0.16 0.08 [8353; 8357] [7949; 7952] [8175; 8178] 1.051 1.022 1.028
0.70 0.12 0.12 0.06 [9211; 9214] [8738; 8740] [8987; 8990] 1.054 1.025 1.029
0.30 0.28 0.17 0.25 [2111; 2113] [2064; 2066] [2103; 2105] 1.023 1.004 1.019
0.30 0.28 0.25 0.17 [2633; 2635] [2437; 2439] [2583; 2585] 1.080 1.019 1.060
0.30 0.28 0.34 0.08 [3782; 3785] [3112; 3115] [3510; 3513] 1.215 1.077 1.128
0.30 0.35 0.14 0.21 [2625; 2627] [2047; 2049] [2402; 2404] 1.282 1.093 1.173
0.30 0.35 0.21 0.14 [3064; 3067] [2464; 2467] [2825; 2827] 1.243 1.085 1.146
0.30 0.35 0.28 0.07 [3959; 3962] [3221; 3225] [3644; 3647] 1.229 1.086 1.131
0.30 0.42 0.11 0.17 [3632; 3635] [2181; 2183] [2880; 2883] 1.665 1.261 1.321
0.30 0.42 0.17 0.11 [3821; 3824] [2433; 2436] [3061; 3064] 1.570 1.248 1.258
0.30 0.42 0.22 0.06 [4343; 4346] [3110; 3113] [3685; 3688] 1.396 1.178 1.185
0.30 0.49 0.08 0.13 [4852; 4855] [2245; 2249] [3437; 3441] 2.160 1.411 1.530
0.30 0.49 0.13 0.08 [4775; 4778] [2505; 2508] [3325; 3330] 1.906 1.435 1.328
0.30 0.49 0.17 0.04 [5052; 5056] [3151; 3155] [3883; 3887] 1.603 1.301 1.232
0.40 0.24 0.14 0.22 [3246; 3249] [3185; 3188] [3242; 3245] 1.019 1.001 1.018
0.40 0.24 0.22 0.14 [4571; 4574] [4377; 4380] [4509; 4512] 1.044 1.014 1.030
0.40 0.24 0.29 0.07 [5946; 5950] [5500; 5504] [5759; 5763] 1.081 1.032 1.047
0.40 0.30 0.12 0.18 [4026; 4029] [3457; 3460] [3811; 3814] 1.165 1.056 1.102
0.40 0.30 0.18 0.12 [5003; 5006] [4551; 4555] [4821; 4825] 1.099 1.038 1.059
0.40 0.30 0.24 0.06 [6141; 6144] [5652; 5656] [5932; 5935] 1.086 1.035 1.049
0.40 0.36 0.10 0.14 [4903; 4906] [3767; 3771] [4333; 4336] 1.301 1.132 1.150
0.40 0.36 0.14 0.10 [5506; 5509] [4637; 4641] [5071; 5075] 1.187 1.086 1.094
0.40 0.36 0.19 0.05 [6383; 6387] [5684; 5688] [6045; 6049] 1.123 1.056 1.063
0.40 0.42 0.07 0.11 [5667; 5670] [3901; 3906] [4639; 4643] 1.452 1.221 1.189
0.40 0.42 0.11 0.07 [6196; 6199] [4927; 4932] [5478; 5483] 1.257 1.131 1.112
0.40 0.42 0.14 0.04 [6670; 6674] [5681; 5685] [6132; 6136] 1.174 1.088 1.079
0.50 0.20 0.12 0.18 [5009; 5012] [4881; 4884] [4981; 4984] 1.026 1.006 1.020
0.50 0.20 0.18 0.12 [6489; 6492] [6213; 6216] [6399; 6402] 1.044 1.014 1.030
0.50 0.20 0.24 0.06 [7813; 7816] [7365; 7368] [7616; 7620] 1.061 1.026 1.034
0.50 0.25 0.10 0.15 [5687; 5690] [5230; 5234] [5515; 5519] 1.087 1.031 1.054
0.50 0.25 0.15 0.10 [6920; 6924] [6500; 6504] [6748; 6751] 1.065 1.026 1.038
0.50 0.25 0.20 0.05 [7984; 7987] [7503; 7507] [7766; 7770] 1.064 1.028 1.035
0.50 0.30 0.08 0.12 [6294; 6297] [5524; 5528] [5943; 5946] 1.139 1.059 1.076
0.50 0.30 0.12 0.08 [7263; 7267] [6644; 6648] [6969; 6972] 1.093 1.042 1.049
0.50 0.30 0.16 0.04 [8073; 8076] [7495; 7499] [7786; 7789] 1.077 1.037 1.039
0.50 0.35 0.06 0.09 [6812; 6815] [5778; 5781] [6278; 6281] 1.179 1.085 1.087
0.50 0.35 0.09 0.06 [7537; 7540] [6729; 6732] [7108; 7111] 1.120 1.060 1.056
0.50 0.35 0.12 0.03 [8135; 8138] [7420; 7423] [7754; 7757] 1.096 1.049 1.045
0.60 0.16 0.10 0.14 [6491; 6495] [6204; 6208] [6406; 6409] 1.046 1.013 1.032
0.60 0.16 0.14 0.10 [7774; 7777] [7418; 7422] [7631; 7635] 1.048 1.019 1.029
0.60 0.16 0.19 0.05 [9077; 9080] [8613; 8616] [8843; 8846] 1.054 1.026 1.027
0.60 0.20 0.08 0.12 [6942; 6945] [6427; 6431] [6741; 6745] 1.080 1.030 1.049
0.60 0.20 0.12 0.08 [8257; 8260] [7803; 7806] [8044; 8048] 1.058 1.026 1.031
0.60 0.20 0.16 0.04 [9253; 9256] [8754; 8757] [8997; 9000] 1.057 1.028 1.028
0.60 0.24 0.06 0.10 [7261; 7264] [6516; 6519] [6926; 6929] 1.114 1.048 1.063
0.60 0.24 0.10 0.06 [8597; 8600] [8041; 8044] [8308; 8311] 1.069 1.035 1.033
0.60 0.24 0.13 0.03 [9283; 9286] [8731; 8734] [8987; 8990] 1.063 1.033 1.029
0.60 0.28 0.05 0.07 [7829; 7832] [6958; 6962] [7380; 7383] 1.125 1.061 1.061
0.60 0.28 0.07 0.05 [8537; 8540] [7838; 7841] [8157; 8160] 1.089 1.047 1.041
0.60 0.28 0.10 0.02 [9249; 9252] [8631; 8634] [8900; 8903] 1.072 1.039 1.031
0.70 0.12 0.07 0.11 [7229; 7232] [6852; 6856] [7101; 7105] 1.055 1.018 1.036
0.70 0.12 0.11 0.07 [8854; 8857] [8424; 8427] [8659; 8662] 1.051 1.023 1.028
0.70 0.12 0.14 0.04 [9813; 9816] [9197; 9200] [9514; 9517] 1.067 1.031 1.034
0.70 0.15 0.06 0.09 [7797; 7800] [7252; 7255] [7573; 7576] 1.075 1.030 1.044
0.70 0.15 0.09 0.06 [9093; 9096] [8589; 8592] [8850; 8853] 1.059 1.027 1.030
0.70 0.15 0.12 0.03 [10032; 10035] [9347; 9350] [9694; 9696] 1.073 1.035 1.037
0.70 0.18 0.05 0.07 [8267; 8270] [7587; 7591] [7941; 7945] 1.090 1.041 1.047
0.70 0.18 0.07 0.05 [9183; 9186] [8599; 8602] [8876; 8879] 1.068 1.035 1.032
0.70 0.18 0.10 0.02 [10074; 10076] [9370; 9372] [9700; 9702] 1.075 1.039 1.035
0.70 0.21 0.04 0.05 [8667; 8669] [7899; 7902] [8263; 8266] 1.097 1.049 1.046
0.70 0.21 0.05 0.04 [9168; 9171] [8503; 8506] [8798; 8800] 1.078 1.042 1.035
0.70 0.21 0.07 0.02 [9844; 9846] [9198; 9200] [9470; 9472] 1.070 1.039 1.030

TABLE I: Critical path length (95% confidence intervals)
and ratios of average critical path lengths across methods
for different RMAT parameters. (Bolded numbers highlight
critical path length ratios greater than 1.15.)

C. Exploring the RMAT Parameter Space

Our initial investigation revealed that the a, b, c, and d
parameters are important, while edge factor did not appear to
be important. Exponential seems to lead to shorter path
than Linear; and Uniform seems leads to longer path. The
question is whether the parameters we used were odd cases
or whether the trends hold for any RMAT graph.

In this section, we explore the RMAT parameter space
in a systematic fashion. We generated a set of 65 different
parameters on graphs of with 29 vertices and fixed the edge
factor to 16. We selected values of a in the range [.3, .8]
regularly. Subsequently, other parameters were selected as a
fraction of the remaining number of edges. The remaining
cases were seperated into b > c and b = c. The precise values
of a, b, c, d that we used are included in Table I.

Table I also provides the confidence interval of the av-

erage length of the longest chain for all three orderings. It
also provides the ratio of the average longest chain path
between Uniform and Exponential, between Uniform
and Linear, and between Linear and Exponential. We
highlighted in bold the ratios that are greater than 1.15.

Since none of the ratios were smaller than 1 and all results
were statistically significant, it does seem that on RMAT
graphs, Exponential is better than Linear, which is itself
better than Uniform. Exponential leads to path less than
half the length of Uniform path on average with RMAT
parameters (0.30, 0.49, 0.08, 0.13). Overall, Exponential
obtained a path at least 15% better than Uniform on 17
different RMAT parameters.

While it is unclear how the different parameters control for
the difference in path length, it appears that smaller values of
the a parameter seem to favor the Exponential ordering.

VI. REAL GRAPH STUDY

While it is encouraging that the Exponential ordering
leads to shorter longest path on RMAT graphs, it does not
necessarily hold that the result will be the same given graph
extracted from real world applications. We tested several real
world graphs from the Stanford Network Analysis Project
(SNAP): CA-HepPh, Email-Enron, p2p-Gnutella04, roadNet-
PA, soc-Epinions1, soc-pokec-relationships, web-Google, and
WikiTalk. A summary of the properties of these graphs are
given in Table II. All these graphs have small world properties,
except the graph of the roads of Pennsylvania, which is almost
a regular graph. We included that graph as a control.

We present the summary statistics of the orderings in
Table II and the Cumulative Density Function of the length of
the longest path in Figure 4.

All the results are statistically significant. On two graphs,
Exponential does not lead to the smallest longest chain in
average: ca-HepTh and roadNet-PA. Alhough the difference in
distribution is fairly small and the average length only differs
by less than 2%.

On the other graphs, Exponential leads to longest chains
shorter than Uniform by more than 7% in average, and
by more than 15% on 4 of the graphs. Surprisingly, the
average longest chain generated by Uniform is almost 4.5
times longer than the average longest chain generated by
Exponential. Linear overall, sits in between Uniform
and Exponential.

While we expected to see Exponential lead to much
shorter longest chains than Uniform, it is not clear yet to
why ca-HepPh does not follow the same trend. We hypothesize
that ca-HepPh has one large cluster of vertices which is
mostly completely connected. And as such, behaves in practice
similarly to a clique.

VII. CONCLUSION

In this paper we investigated the performance of distributed
dataflow graph algorithms. We modeled the problem of op-
timizing the critical path of the partial order used by the
algorithm using a formulation as a coloring problem with



Max Clustering
Name Vertices Edges Degree Coefficient Diameter Uniform CI Exponential CI Linear CI U/E U/L L/E
CA-HepPh 89,209 118,521 491 0.6115 13 [1030; 1036] [1040; 1045] [1032; 1037] 0.991 0.999 0.992
Email-Enron 36,692 183,831 1,383 0.4970 11 [43437; 43720] [38836; 38982] [40688; 41002] 1.120 1.067 1.050
p2p-Gnutella04 10,879 39,994 103 0.0062 9 [911; 925] [568; 575] [728; 740] 1.606 1.251 1.284
roadNet-PA 1,090,920 1,541,898 9 0.0465 786 [49; 49] [49; 50] [48; 49] 0.990 1.010 0.980
soc-Epinions1 75,888 405,740 3,044 0.1378 14 [94793; 95270] [88297; 88593] [89488; 90034] 1.074 1.059 1.015
soc-pokec-relationships 1,632,804 22,301,964 14,854 0.1094 11 [118924; 119528] [96958; 97239] [100836; 101775] 1.228 1.177 1.043
web-Google 916,428 4,322,051 6,332 0.5143 21 [80466; 81618] [18166; 18192] [20577; 21084] 4.458 3.891 1.146
WikiTalk 2,394,385 4,659,565 100,029 0.0526 9 [1352414; 1357165] [1101248; 1103043] [1145942; 1151894] 1.229 1.179 1.042

TABLE II: Graph basic statistics, critical path length (95% confidence intervals), and ratios of average critical path lengths
across methods for several real world graphs. (Bolded numbers highlight critical path length ratios greater than 1.15.)
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Fig. 4: Cumulative Density Functions of longest chain on Real World Graphs. All graphs (except ca-HepTh and roadNet-PA)
show a major difference in critical path length across methods: Exponential and Linear have much shorter critical paths
than Uniform.

intervals of colors. We proposed two alternative ways to derive
a partial order, Exponential and Linear. These methods
rely on local properties of the vertices, which enable these
orderings to run with no additional cost.

We investigated the efficacy of these algorithms on a large
number of RMAT graphs. We showed that Exponential
outperforms the state of the art on all tested RMAT parameters.
We also tested the Exponential algorithm on 8 real world
graphs and showed it never loses more than 2% to state of the
art and reduce the longest chain by more than 20% on 4 of
these graphs.

Two important questions remain. The first is to understand
more precisely why Exponential is better than state of the
art; We believe that investigating the behavior of the algorithm
relatively to the k-core decomposition of the graph might yield
more. insight. Finally, we also want to experimentally measure
how the reduction in longest chain decrease the practical
runtime of these dataflow algorithms.
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