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Abstract—Graph coloring is commonly used to schedule com-
putations on parallel systems. Given a good estimation of the
computational requirement for each task, one can refine the
model by adding a weight to each vertex. Instead of coloring
each vertex with a single color, the problem is to color each
vertex with an interval of colors.

In this paper, we are interested in studying this problem for
particular classes of graphs, namely stencil graphs. Stencil graphs
appear naturally in the parallelisation of applications where the
location of an object in a space affects the state of neighboring
objects. Rectilinear decompositions of a space generate conflict
graphs that are 9-pt stencils for 2D problems and 27-pt stencils
for 3D problems.

We show that the 5-pt stencil and 7-pt stencil relaxations
of the problem can be solved in polynomial time. We prove
that the decision problem on 27-pt stencil is NP-Complete. We
discuss approximation algorithms with a ratio of 2 for the 9-pt
stencil case, and 4 for the 27-pt stencil case. We identify two
lower bounds for the problem that are used to design heuristics.
We evaluate the effectiveness of several different algorithms
experimentally on a set of real instances. Furthermore, these
algorithms are integrated into a real application to demonstrate
the soundness of the approach.

Index Terms—interval vertex coloring, stencils, np complete-
ness, approximation algorithms, heuristics

I. INTRODUCTION

In parallel computing, a central question is to decide when
each task should be run. There are two fundamental models to
reason with this problem. The first is the Parallel Task Graph
model which encodes what the tasks are and the precedence
dependences between tasks. Though, in some applications, the
order in which the tasks are run can be changed, as long as
some sets of tasks do not run concurrently. To model this type
of application, the tasks and their conflicts are represented as
an undirected graph in which vertices are tasks, and edges
represent the non-concurrency between two tasks. The classic
optimization problem to make the execution more efficient is
a graph coloring problem, which is NP-Hard in the general
case [1].

In the classic graph coloring problem, each vertex of the
graph needs to be allocated one color (an integer) so that each
pair of neighboring vertices have different colors. This model
is appropriate when one does not have a good idea of the
runtime for each individual task, which happens frequently.
Though in some applications we have a precise idea of how

much work is required by a particular task. In these cases, the
problem of scheduling the tasks is better modeled by giving
each task not a single color, but an interval of colors with
length proportional to the length of the task. This problem is
to color the vertices of a graph with intervals. In the general
case, this problem is harder than the classic graph coloring
problem and is also NP-Hard even though it provides a more
accurate model.

While the problem is NP-Hard on general graphs, certain
types of applications are only concerned about particular
categories of graph. In this paper, we study the problem
of coloring with intervals the vertices of stencil graphs. In
particular, we are interested in 9-pt 2D stencils and in 27-pt
3D stencils.

These problems appear in applications where objects are
located in space and can impact the state of nearby objects.
Imagine an application in 2D space where the impact of
objects within a given radius follow the behavior of complex
equations. When making this application parallel, one may
want to partition the space and have each region of the space
be a particular task. See Figure 1 for reference. The figure
depicts a grid of 5× 4 tasks. The blue object will impact the
three objects within the radius of the blue circle. So when
processing the region that contain the blue object, one can not
process any other region that may impact the same objects.
If the partition of the region is made to be rectilinear [2] and
no partition is smaller than twice the radius of impact, then
a region can not be processed at the same time as any of its
8 neighbors. The underlying graph of conflict is a 9-pt 2D
stencil. The nodes can be weighted with an estimation of the
processing time of the region. In the figure, the nodes are
weighted by the number of objects in the region. This type
of structure can appear in various scientific codes, including
n-body solvers, bird flocking simulations [3], or visualization
of spatio-temporal data [4].

In this paper, we study the formal problem of coloring
with interval graphs which are 9-pt 2D stencils and 27-pt
3D stencils. We formally define the combinatorial problem
in Section II. We study special cases in Section III where
we show how to color important particular graphs such as
cliques, bipartite graphs, and odd cycles. This analysis gives us
lower bounds useful to analyse the stencil problem. We prove
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Fig. 1: Application leading to a 5× 4 9-pt stencil graph

in Section IV that the problem of interval coloring of 27-pt
3D stencil with a small number of colors is NP-Complete.
Section V provides various greedy heuristics based on the
analysis of the problem. It also provides an approximation
algorithm for the problem with a ratio of 2 for the 9-pt
stencil problem and of 4 for the 27-pt stencil problem; and
greedy post optimizations. All the methods are evaluated on
some instances from spatio-temporal analysis in Section VI.
In Section VII, we integrate our heuristics in a Space-Time
Kernel Density Estimation application [4] and show that the
number of colors derived by the heuristics correlates with the
runtime of the application.

II. INTERVAL COLORING PROBLEM OF STENCILS

A. Problem Definition

We define first the general problem of graph coloring
vertices with intervals.

Definition 1 (Interval Vertex Coloring (IVC)). Let G = (V,E)
be an undirected graph and w : V → Z+ be a weight
function that associates vertices of the graph to positive (or
null) weights.

An interval coloring of the vertices of G is a function
start : V → Z+. We say that vertex v is colored with the open
interval [start(v), start(v) + w(v)). For the coloring to be
valid, neighboring vertices must have disjoint color intervals
∀(a, b) ∈ E, [start(a), start(a)+w(a))∩[start(b), start(b)+
w(b)) = ∅. A particular coloring start of vertices is said to
use maxcolor = maxv∈V start(v) + w(v) colors.

The optimization problem is to find a coloring start that
minimizes maxcolor. We will denote the optimal value of
maxcolor as maxcolor∗.

We will slightly abuse the w notation to extend it to sets of
vertices: for instance, w(x, y, z) = w(x) + w(y) + w(z).

We are particularly interested in restrictions of the problems
where the graph is a 9-pt 2D stencil or a 27-pt 3D stencil.

Definition 2 (2DS-IVC). An IVC problem where graph G is
a 9-pt 2D stencil, that is to say it is composed of X × Y
vertices laid on a 2D grid such that two vertices (i, j) and
(i′, j′) are connected by an edge if and only if |i − i′| ≤ 1
and |j − j′| ≤ 1.

Definition 3 (3DS-IVC). An IVC problem where graph G is
a 27-pt 3D stencil, that is to say it is composed of X×Y ×Z
vertices laid on a 3D grid such that two vertices (i, j, k) and

(i′, j′, k′) are connected by an edge if and only if |i− i′| ≤ 1
and |j − j′| ≤ 1 and |k − k′| ≤ 1.

Without loss of generality, we will assume that X > 1,
Y > 1, and Z > 1 for both 2DS-IVC and 3DS-IVC instances.
If one of the dimensions was equal to 1 in 3DS-IVC, the
instance can be thought as an instance of 2DS-IVC. And if
one of the dimension was equal to 1 in 2DS-IVC, the graph
would be a chain which, as we will see, is a polynomial case.

In general, vertices are indexed from 1; so the first task of
2DS-IVC is (1, 1) and the last task is (X,Y ).

B. Related Works

The interval coloring problem has a long-established history
with multiple variants and classical applications. Bandwidth
problems [5], [6], scheduling problems [7], and timetabling
problems [8] are just a few applications.

Since the complexity of the interval coloring problem for
general graphs is known to be NP-Hard [1], several authors
have provided bounds on the generalized chromatic num-
ber [9]. However, these bounds are not useful in practical ap-
plications; therefore, polynomial algorithms for special classes
of graphs become desirable. Bipartite graphs, complete graphs,
chordal graphs, interval graphs, stars, and trees have already
been investigated. However, 9-pt 2D stencil graph and 27-pt
3D stencil were previously unexplored, as far as the authors
know.

Greedy algorithms are a staple of heuristics to provide
solutions to graph coloring problems since graph coloring is
NP-Complete [10]. For classic graph coloring problems greedy
algorithms pick vertices of the graph in an arbitrary order
and allocate the lowest color that does not conflict with the
neighbors that have already been colored. A classic guarantee
of greedy coloring is that they use at most ∆+1 colors where
∆ is the maximum degree in the graph.

Some classic greedy algorithms use a particular ordering of
the vertices which hopefully provide better colorings than arbi-
trary orders [11]. Popular orderings are Largest First [12], and
Smallest Last [13]. Some post optimization techniques have
proven to be particularly effective, such as recoloring [14].

III. SPECIAL CASE ANALYSIS

Since we are in particular interested in solving the 2DS-
IVC and 3DS-IVC problems, it is important to analyze graphs
structures that can be embedded in a 9-pt or a 27-pt stencil.
Indeed, for any instance of IVC (and therefore of 2DS-IVC
or 3DS-IVC), the optimal coloring of any subgraph contained
in the graph G (obtained for instance by removing vertices
or edges from G) is a lower bound of the optimal number of
color of G.

A. Cliques

Cliques are some of the easiest graphs to color. Because all
vertices are connected to all the other vertices, no vertices can
share any color with any other vertices in the graph. Therefore,
if G = Kn is a clique of size n, it is optimal to color the
graph with maxcolor∗ =

∑
v∈V w(v) colors. One can easily



build such a coloring by listing vertices in any order and
greedily allocating the color inteveral with the lowest available
start(v); with a complexity of Θ(V ).

Cliques are particularly important for our stencil problems
because 2DS-IVC contains many K4 and 3DS-IVC contains
many K8. So the sum of weight for each block of 4 neighbor-
ing vertices is a lower bound of 2DS-IVC (∀0 ≤ i < X, 0 ≤
j < Y,maxcolor∗ ≥ w(i, j) + w(i, j + 1) + w(i + 1, j) +
w(i + 1, j + 1)) and the sum of weight of each block of 8
neighboring vertices is a lower bound of 3DS-IVC (∀0 ≤ i <
X, 0 ≤ j < Y, 0 ≤ k < Z,maxcolor∗ ≥ w(i, j, k) + w(i, j +
1, k) + w(i + 1, j, k) + w(i + 1, j + 1, k) + w(i, j, k + 1) +
w(i, j+ 1, k+ 1) +w(i+ 1, j, k+ 1) +w(i+ 1, j+ 1, k+ 1)).

B. Bipartite Graph

If the graph G is bipartite, that is to say if vertices can
be partitioned in two sets A and B such that all edges have
one extremity in A and one extremity in B, then the graph is
easy to color with intervals. Each edge in the graph provides
a trivial lower bound for the number of colors maxcolor∗ ≥
w(i) + w(j),∀(i, j) ∈ E.

A simple algorithm achieves a coloring with maxcolor∗ =
max(i,j)∈E w(i) + w(j). If i ∈ A, color it with start(i) =
0 in the interval [0, w(i)). If j ∈ B, color it with
start(j) = maxcolor∗ − w(j) in the interval [maxcolor∗ −
w(j),maxcolor∗). This algorithm is correct because all edges
are between a vertex of A and a vertex of B: the color interval
of the vertices are disjoint by definition of maxcolor∗.

The algorithm requires two linear passes over the graph:
one to identify A and B and compute maxcolor∗; and one to
set the colors of all vertices. The algorithm has a complexity
of Θ(E).

Bipartite graphs are quite important to 2DS-IVC and 3DS-
IVC because each 9-pt stencil contains a 5-pt stencil which is
bipartite. Similarly, each 27-pt stencil contains a 7-pt stencil
which is also bipartite. We will see that this property enables
us to build approximation algorithms for these problems. Also
any chain and even cycles embedded in the stencil is bipartite.

C. Odd Cycles

Graphs that are not bipartite contain at least one cycle of odd
length. It turns out that odd cycles can have optimal interval
colorings that are strictly greater than the largest weight of the
any clique in the graph. Consider the odd cycle embedded in
a 2D stencil presented in Figure 2, the clique of largest weight
is 25, but the optimal coloring is 30. As such, understanding
how to color odd cycles with intervals will yield new lower
bounds on optimal interval coloring of any graph, including
9-pt stencils and 27-pt stencils.

Because in this case G a cycle, the neighbors of vertex x
are denoted as x − 1 and x + 1; in other words, indices are
understood modulo |V |.

Definition 4 (maxpair). Let maxpair be the maximum sum
of any 2 consecutive terms: maxpair = maxi w(i, i+ 1)


0 18 6 0
7 0 0 18
18 0 6 0
0 7 0 0



Fig. 2: Odd Cycle Instance and its Optimal Coloring

Definition 5 (minchain3). Let minchain3 be the minimum
sum of any 3 consecutive terms: minchain3 = mini w(i, i+
1, i+ 2)

Theorem 1. If G is an odd cycle, we have maxcolor∗ =
max(maxpair,minchain3)

We prove this theorem by proving that this value of
maxcolor∗ is feasible and is also a lower bound on the number
of colors in two seperate lemmas.

Lemma 2. If G is an odd cycle, there is an algorithm
that yields max(maxpair,minchain3) colors. In other words
maxcolor∗ ≤ max(maxpair,minchain3)

Proof. Without loss of generality, the three consecutive ver-
tices that give minchain3 are assumed to be 0, 1, and 2.

We color vertex 0 with start(0) = 0 (and therefore with
interval [0, w(0))); we color vertex 1 with start(1) = w(0)
(and therefore with interval [w(0), w(0, 1))); and we color
vertex 2 with start(2) = max(maxpair,minchain3)−w(2)
(and therefore with interval [max(maxpair,minchain3) −
w(2),max(maxpair,minchain3))).

For the remaining vertices x, if x is odd, we
color it with start(x) = 0 (and therefore with
interval [0, w(x))); if x is even, we color it with
start(x) = max(maxpair,minchain3) − w(x) (and
therefore with interval [max(maxpair,minchain3) −
w(x),max(maxpair,minchain3))).

Obviously, this coloring uses exactly
max(maxpair,minchain3) but we need to argue that
it is correct. By construction, vertices 0, 1, and 2 do not have
intersecting color intervals.

For all vertex x > 1, the color intervals of x and x+ 1 do
not intersect because one of the interval starts on 0 and the
other ends on max(maxpair,minchain3) and the length of
[0,max(maxpair,minchain3)) is larger than w(x, x+ 1) by
construction.

Lemma 3. If G is an odd cycle, maxcolor∗ ≥
max(maxpair,minchain3)

Proof. We can assume maxpair < minchain3. (If
minchain3 ≤ maxpair, then the lemma is obviously true
since maxpair is a lower bound of number of colors on
any graph.) Let K = minchain3. The proof is by contra-
diction: Suppose for that G can be colored in K − 1 colors
and assume we have a valid coloring start. Let i(x) =
[start(x), start(x+ w(x)).



We will once again assume without loss of generality that
w(0, 1, 2) = minchain3. So we have w(0, 1, 2) ≤ w(x, x +
1, x+ 2) for all x ∈ V .

We have i(0)∩ i(2) 6= ∅ because the Pidgeonhole Principle:
there are only w(0, 1, 2) − 1 = K − 1 colors available; and,
because i is valid, we have i(0)∩i(1) = ∅ and i(2)∩i(1) = ∅.

Since i(0) and i(2) intersect, but do not intersect with i(1),
i(0) and i(2) must be on the same side of i(1). Without loss
of generality, we can assume that i(1) is before i(0) and i(2).
If it is not true, we can transform the coloring so that color c
becomes color k− 1− c. And since 1 is only neighbor with 0
and 2, we can assume that i(1) = [0, w(1)). We say that 1’s
coloring is 0-aligned.
w(3) ≥ w(0) because w(1, 2, 3) ≥ w(0, 1, 2) since (0, 1, 2)

is the minimum chain of length 3. Hence, i(3)∩i(1) 6= ∅ since
i(3) ∩ i(2) = ∅ and i(1) ∩ i(2) = ∅. Therefore, i(1) and i(3)
are on the same side of i(2) since i(1) is 0-aligned, we can
assume WLOG that i(2) = [K − 1 − w(2),K − 1). we say
that 2’s coloring is K − 1-aligned.

This argument is true for any chain of three vertices:
∀x, i(x) ∩ i(x + 2) 6= ∅. The same argument holds by
induction. For all odd x, we have i(x) = [0, w(x)). And for
all even x we have i(x) = [K − 1− w(x),K − 1). We have
i(n− 1) = [K − 1−w(n− 1),K − 1) because n− 1 is even.
The Pidgeonhole Principle implies that n − 1, 0, 1 has their
interval intersect. But since i(n − 1) and 1 do not intersect,
and i(0) and i(1), then i(n−1) and i(0) must intersect. Hence,
the solution is not valid.

Odd cycles provide a new lower bound on the optimal color-
ing of the 2DS-IVC and 3DS-IVC: the maximum minchain3
of any odd cycle embedded in the stencil. However, it does
not appear to be easy to identify the odd cycle of maximum
minchain3 in an instance of 2DS-IVC. There are an expo-
nential number of odd cycles; so one would need something
of lower complexity than simply listing them.

D. Lower bounds are not tight

We now have two separate lower bounds applicable to our
stencil graphs. Cliques provide one lower bound and odd
cycles provide the other one. We exhibit now (in Figure 3)
an instance whose optimal coloring uses stricly more color
than either lower bounds.

The instance features two odd cycles that have two of their
respective vertices neighbor each other. The maximum clique
is 14 while the minchain3 of either of the cycle is 14. Yet,
the optimal coloring is 17. (We confirmed the optimal coloring
with an integer linear program.)

IV. NP-COMPLETENESS

We will prove in this section that the decision version of the
3DS-IVC problem is NP-Complete. The core of the proof is
to show that the problem is harder than Not-All-Equal 3-SAT.

An instance of Not-All-Equal 3-SAT (NAE-3SAT) is qual-
ified by n binary variables used in m groups of 3 variables.
The instance is positive if there is an assignment of true or
false to each variable so that in each of the m groups at least

Fig. 3: Optimal Coloring of 2 Neighboring Cycles

one variable is true and at least one is false. This variant of
3SAT is known to be NP-Complete [15]. NAE-3SAT has two
of properties which makes it easier to use in many reductions:
1) there is no need for negation of a variable in the instance
of NAE-3SAT like we have in 3SAT; and 2) if an assignment
solves the instance, then the negation of that assignment also
solves the instance.

Lemma 4. 3DS-IVC ∈ NP

Proof. A solution for 3DS-IVC is an interval of colors for
each vertex. This can be encoded as 2 integers, and they are
easily bounded between 0 and

∑n
i=0 w(i), where w(i) is the

weight of the vertex i in 3DS-IVC. This sum can be encoded
in a polynomial number of bits. This is a trivial bound, but it
does show the solution is in polynomial space.

Given a solution for 3DS-IVC we can check to see if it
is correct in polynomial time. We just need to verify that
no adjacent edges have overlapping scheduled intervals. More
precisely, we are checking, ∀(u, v) ∈ E, [start(u), start(u)+

w(u))∩ [start(v), start(v) +w(v)) = ∅. Since |E| ≤ n(n−1)
2

is polynomial for arbitrary graphs. Checking if two intervals
intersect is in O(1). Hence, any solution for 3DS-IVC can be
verified in O(n2).

Therefore, 3DS-IVC ∈ NP.

Lemma 5. NAE-3SAT ∝ 3DS-IVC

Proof. Constructing an instance 3DS-IVC from an instance
of NAE-3SAT in polynomial time. Let v1, v2, ..., vn be vari-
ables that appear in the m clauses of the NAE-3SAT problem,
so that for each clause uj = (vj1 , vj2 , vj3), 1 ≤ j ≤ m at least
one variable is true and at least one variable is false. Without
loss of generality, assume the variables are ordered within the
clauses 1 ≤ j1 < j2 < j3 ≤ n.

We construct now the corresponding instance of the 3DS-
IVC problem to color with maxcolor = 14 colors.

We generate a 3D cube of width 2n + 10, height 9, and
depth 2m. We use (x, y, z) to denote our coordinate system



in Z3. The weight of each vertex in the 3D cube is either
a 0, 3, or 7. In other words, ∀(x, y, z), w(x, y, z) ∈ {0, 3, 7}.
Any value not specified in our construction is set to 0.

We call the following construction a tube generated by
variable vi: ∀(x ≤ n, z ≤ 2m),

w(2i− 1, 1, z) =

{
0, if z ≡ 1 (mod 2)

7, if z ≡ 0 (mod 2)

}

w(2i− 1, 2, z) =

{
7, if z ≡ 1 (mod 2)

0, if z ≡ 0 (mod 2)

}
We call layer 2j+ 1 “the layer of clause j”. For each layer

of clause j, we construct the wire generated by variable xj1 .

w(2j1 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 7)

w(x, 8, 2j + 1) = 7(∀x, j1 + 1 ≤ x ≤ 2n+ 1)

Similarly, we construct the wire generated by variable xj2 .

w(2j2 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 5)

w(x, 6, 2j + 1) = 7(∀x, j2 + 1 ≤ x ≤ 2n+ 1)

Lastly, we construct the wire generated by variable xj2 .

w(2j3 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 3)

w(x, 4, 2j + 1) = 7(∀x, j3 + 1 ≤ x ≤ 2n+ 1)

Furthermore, in each odd layer, we explicity describe right
hand side of the xy-plane (that is to say for 2n + 1 ≤ x ≤
2n+ 10, for 1 ≤ y ≤ 9, and for z = 2j + 1):

W2j+1 =



0 7 7 0 0 0 0 0 0 0
7 0 0 7 0 0 0 7 7 0
0 0 0 7 0 0 3 0 0 7
7 7 0 0 7 3 3 0 0 7
0 0 7 0 0 0 0 7 0 7
7 0 0 7 0 0 7 0 0 7
0 7 0 0 7 7 0 0 0 7
0 0 7 0 0 0 0 0 7 0
0 0 0 7 7 7 7 7 0 0


(1)

Several desirable properties come from the careful construc-
tion of these tubes, wires, and clauses.

The wires connect the tubes to the appropriate “3s” on the
right hand side of the clause’s layers. All wires have the same
parity of length. Meaning, for every variable, the path from
the variable to the terminating 3 is congruent to 0 mod 2. All
wires have even length in our construction.

Because we are trying to solve the decision problem with
maxcolor = 14 and each 7 is connected to another 7, each
7 must be scheduled from either [0, 7) or [7, 14). In a chain
of 7s, every other 7 must be scheduled to the same [0, 7)
or [7, 14) because adjacent 7s cannot overlap in scheduled
intervals. In other words, all even 7s in a chain must share the
same “polarity” by construction. We call the color of (2i −
1, 2, 1) the polarity of variable vi. (If vi is true, (2i−1, 2, 1) is
colored with interval [0, 7), and the 7s in the tube and wires of

vi have positive polarity. If vi is false, (2i−1, 2, 1) is colored
with interval [7, 14), and the 7s in the tube and wires of vi
have negative polarity.)

In the triangle of 3s from the W2j+1, the 7s connected to the
3s cannot all share the same polarity and be colorable in 14.
Suppose without loss of generality that all of the 7s directly
adjacent to the 3s share the same polarity on the low-end of
the interval, namely [0, 7). All 7s are blocking [0, 7) and there
are 9 different colors required for all 3s, but we only have 7
colors left in the interval from [7, 14).

A positive instance of NAE-3SAT results in a positive
instance of 3DS-IVC.

If the instance of NAE-3SAT is positive, then there is a
variable assignment that is valid. We construct a solution of the
created instance of 3DS-IVC out of the variable assignments
of a solution of NAE-3SAT.

If v1 is true, color the wire of v1 to give it positive polarity.
If v1 is false, give the wire of v1 negative polarity. This forces
the coloring of all 7s in instance.

The only question left is “can we color the 3s?”. That
answer has to be true because we know the instance of NAE-
3SAT is positive instance. Hence, for any clause that clause is
valid and the 3 variables in that clause are not all equal. So at
least one is true and at least one is false. Therefore all 7s in
the clause object cannot have the same polarity. Two of the 7s
share same polarity, and one has opposite polarity. Assume 2
positive and 1 negative (without loss of generality). The 3 that
is connected to the negative we will color [0, 2). And the other
two 3s we color with [7, 9) and [10, 12). That coloring is valid
for that clause. we can color all 3s with a similar process.

If the created instance of 3DS-IVC is positive, then the
instance of NAE3-SAT is also positive.

Since the instance of 3DS-IVC is positive, there is a valid
coloring of the vertices of the 27-pt stencil. We infer the values
for NAE-3SAT by looking at the polarity of the wire. If (2i−
1, 2, 1) is colored with interval [7, 14) then we set vi to false.
If it is colored with interval [0, 7) then we set vi to true.

If we were able to color the graph, then the triangle of 3s
were colorable in 14 colors. And therefore for each clause, one
of the three variables has a different value than the other two.
This makes the NAE-3SAT instance a positive instance.

Since the 3DS-IVC problem is in NP and is harder than
NAE-3SAT which is an NP-Complete problem, we have the
following result.

Theorem 6. Deciding whether a 27-pt stencil can be colored
with less than K colors is NP-Complete.

Note that at this point, we do not know whether coloring a
9-pt stencil is an NP-Complete problem or not. Fundamentally,
the reduction for 3DS-IVC works because the tube, wire, and
triangle graph can be embedded in a 27-pt stencil. But that
tube, wire, and triangle graph is not planar, so it can not be
embedded in a 9-pt stencil. As such, the complexity of coloring
the vertices of 9-pt stencil graphs with intervals remains open.



V. HEURISTICS

A. Greedy Algorithms

For the problem of coloring with intervals, we design greedy
algorithms. We pick vertices one by one; When we pick vertex
v, we give it the lowest color interval of width w(v) that does
not intersect with the color interval of one of the neighbors.
To find such an interval, we first sort the color interval of
neighbors by the lower end of the intervals. This enables to
find the lowest color interval of length w(v) that is available in
a single pass over the neighbor colors intervals. This process
has a complexity of O(Γ(v) log Γ(v)) for vertex v. For the
whole graph, the complexity of greedy coloring is O(E logE).

This greedy coloring has some upper bound on the number
of colors used, even though it is higher than one would hope.

Lemma 7. Any greedy coloring will color vertex v with an
interval that ends at most with color

∑
j∈Γ(v) w(j) + (Γ(v) +

1)w(v)− Γ(v)

Proof. In the worst case, each neighbor uses different color
intervals from one another, preventing

∑
j∈Γ(v) w(j) colors

from being used. When sorted, each of these color interval
could be separated from the previous one (or from color 0) by
exactly w(v) − 1 colors. This forces the greedy algorithm to
color v with an interval which starts after the one of all the
neighbors at color

∑
j∈Γ(v)(w(j) + w(v)− 1).

By this analysis, we know that the worst case is achieved
when the algorithm colors the vertex of high weight after
its neighbors have been colored with unfortunately spaced
intervals. This leads us to design two broad categories of
order in which to color vertices. Either you color early
vertices/structures with high weights, or you color vertices in
an order where vertices are not colored after all its neighbors
(usually).

We describe first coloring in geometric patterns. The first
one is to color vertices line by line (and then plane by plane in
3DS-IVC): we call this algorithm Greedy Line-by-Line (GLL).
The second one does not favor a particular dimension and
orders the vertices using the recursive order Z-Order: we call
this algorithm Greedy Z-Order (GZO).

To color vertices based on the weight, the simplest ordering
is simply to sort vertices in the order of non-increasing
weights. We call this algorithm Greedy Largest First (GLF).

From the analysis of the problem, we know that some
structure of the instances are important, namely cliques and
odd cycles. Since the clique of largest weight will be the
structure which is likely to set the total number of colors, we
designed an algorithm to color cliques first in non-increasing
order of weight. Of course, there are multiple vertices in a
clique and they are colored in an arbitrary order. It is also
possible that some vertices of a clique have already been
colored as part of a different clique; in this case, we follow
the greedy principle and leave them untouched. We call this
algorithm Greedy Largest Clique First (GKF).

Note that we could pick the vertices in the clique in a
particular, smarter, order. Since all the cliques in 2DS-IVC

and 3DS-IVC are of constant size, we opt to try all the
permutations of the vertices in the clique and only retains the
permutation that leads to the best number of colors for that
clique. This adds a 4! = 24 overhead in the case of 2DS-IVC
and a 8! = 40320 overhead for 3DS-IVC. Since checking
all 8! permutations per clique was too time consuming in
our experiments, the algorithm implemented in the 3D cases
was slightly modified from its 2D counterpart. Instead of
examining all possible orders of a clique, we sorted the vertices
inside the clique by non-increasing weights. We call these
algorithms Smart Greedy Largest Clique First (SGK).

B. Bipartite Decomposition
The 9-pt 2D Stencil and 27-pt 3D Stencil graphs we are

interested in are very similar to bipartite graphs. We can use
that property to design approximation algorithms for the 2DS-
IVC and 3DS-IVC problem. We will explain the construction
on 2DS-IVC and explain how the construction extends to other
graph, including 3DS-IVC.

Here is how Bipartite Decomposition works. Consider in-
dividually each of the Y rows the 2DS-IVC instance. Each
row is a chain of vertices, which is a bipartite graph and
can be colored optimally using the algorithm presented in
Section III-B in Θ(XY ). Let c(x, y) be the lower end of the
color interval associated with vertex (x, y) in that coloring.
And let RC = max c(x, y) + w(x, y) be the maximum color
used by any of the rows. RC ≤ maxcolor∗ is a lower bound
of the optimal number of colors of the instance since it is the
optimal coloring of a subgraph of the original instance.

Note that if we were to color vertex (x, y) with
start(x, y) = c(x, y) then the coloring would possibly be
invalid since a vertex could share a color with one of its
neighbors in the row above or the row below. Bipartite
Decomposition colors vertex (x, y) with

start(x, y) = c(x, y),∀x, y, y ≡ 0[mod2]

start(x, y) = RC + c(x, y),∀x, y, y ≡ 1[mod2]

This can be done in Θ(XY ) which makes Bipartite Decom-
position an algorithm in Θ(XY ).

That coloring is feasible since even rows are being colored
using colors from [0, RC) and odd rows are being colored
using colors from [RC, 2RC). Furthermore, the coloring uses
at most 2RC colors. So, we have maxcolor ≤ 2RC ≤
2maxcolor∗. In other words, we obtain the following theorem.

Theorem 8. Bipartite Decomposition is a 2-approximation
algorithm for 2DS-IVC.

The construction of Bipartite Decomposition works because
once each row r has been colored, the row can be contracted
into a single vertex of r of weight w(r) = max c(x, r) +
w(x, r), and the resulting graph of the rows is a chain, which
is bipartite itself. If one can decompose a graph G into p
parts so that the contraction of G into p vertices is bipartite,
and if the each part can be colored using a ρ-approximation
algorithm, then Bipartite Decomposition can color G using at
most (2ρ)(maxcolor∗) colors.



In particular for 3DS-IVC, each layer of the graph can
be colored with the 2-approximation algorithm for 2DS-IVC.
Then the graph of the layer is a chain, which is bipartite.

Theorem 9. Bipartite Decomposition is a 4-approximation
algorithm for 3DS-IVC.

Bipartite Decomposition by how it colors the vertices is
really designed to be an approximation algorithm. It can lead
to vertices using a high color interval without having neighbors
using the most of the lower colors. We introduce a post
optimization that recolors each vertex one at a time using
a greedy principle. First, the vertices are listed as members
of a K4 (in 2D) or K8 (in 3D). Next, all K4 are sorted in
non-increasing order by the sum total of their weights. Lastly,
the vertices are sorted within their K4 by increasing order of
the lowest value in their scheduled interval. This produces an
ordering of vertices that can be rescheduled one at a time. We
call this algorithm Bipartite Decomposition + Post (BDP).

VI. EXPERIMENTS

A. Experimental Setting

The algorithms are written in Python and are interpreted
using CPython 3.9.4. The machine that runs the code is
equipped with an Intel i9-9900K and runs Windows 10. When
the experiments are run, no other workload runs on the
machine at the same time.

We obtained 4 datasets from the authors of [4]. Each
dataset represents events located in space and time giving
us a point in a (lat, long, time) 3D space and is used to
compute a voxelized kernel density of events. Each dataset can
be analyzed under the light of different “bandwidth” which are
distances within which an event can impact a voxel. For 2DS-
IVC we project the dataset on each of the 2D plane: xy, xt,
yt.

Each dataset is decomposed in a uniform 2D (or 3D for
3DS-IVC) grid composed of X columns and Y rows (and Z
layers for 3DS-IVC). The possible values of X and Y are
constrained by the bandwidth as the size of the region needs
to be at least twice larger than the bandwidth. We list all
powers of 2 for X, and Y (and Z for 3DS-IVC) as well as the
largest value that can accomodate the bandwidth.

The first dataset is Dengue and comes from cases of
the Dengue fever that occured in Cali, Colombia in 2010
and 2011. FluAnimal comes from the Animal Surveilllance
database of the Influenza Research Database and contains
an entry for each confirmed case of avian flu worldwide
from 2001 to 2016. Pollen comes from geolocalized tweets
mentioning keywords such as Pollen and Allergy between
February 2016 and April 2016 by US users. PollenUS is a
restriction of the Pollen dataset to the contiguous continental
United States. Figure 4 presents a projection of each dataset on
the xy plane for the largest partitioning that makes sense for
the bandwidth. In total, there are 1587 instances of 3DS-IVC
and 852 instances of 2DS-IVC.

(a) Dengue (b) FluAnimal

(c) Pollen (d) PollenUS

Fig. 4: Instance Samples

B. 2D Results

We used performance profiles to visualize the quality of
heuristics. In these performance profiles, tau is the ratio
between the value of maxcolor produced by an algorithm
to the number of colors obtained by the best algorithm
for that instance. If the line for an algorithm goes through
(tau, Proportion), then that algorithm is no worse than tau
times the best known solution on Proportion percent of the
instances. The runtime comparison and performance profile for
2D instances can be found in Figures 5a and 5b, respectively.
Performance profiles broken down by 2D dataset are shown
in Figure 6.

In general, BDP performed substantially better than all other
algorithms. On average, BDP obtained a solution within 1.03
times the lower bound of maximum K4. BDP was 182% faster
than SGK and required 1.69% less colors. BDP and SGK
yielded the highest percentage of solutions that can be proven
optimal with 58.7% and 63.3%, respectively. Although SGK
obtained quality solutions, SGK was the slowest algorithm by
a significant margin. SGK was anywhere between 160% and
182% slower than all other heuristics.

BDP obtained the best average maxcolor in all instances
except FluAnimal. On these instances, SGK performed 8%
better than BDP in terms of maxcolor, whereas BDP obtained
a value for maxcolor similar to the other greedy algorithms.
Overall the algorithms performed vastly different when com-
pared with the other instances. This could be due to the
fact that the instances of FluAnimal are very sparse. The
performance profile for this particular instance can be found
in Figure 6b.

The post processing associated with BDP improved the per-
formance of the Bipartite Decomposition by 2.49%. Although
this number may seem low, it was enough to establish BDP
as the dominant heuristic in almost all 2D cases, whereas the
original BD was merely average in performance. The post
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Fig. 5: 2D Results (All Instances)

processing was 136% slower on average; however, this number
may be skewed. In many cases, BD obtained a solution faster
than it could be measured. Thus, the wallclock used to measure
time returned a value of 0.

C. 3D Results

The runtime comparison and performance profile for 3D
instances can be found in Figures 7a and 7b, respectively.
Performance profiles broken down by 3D dataset are shown
in Figure 8.

GLF and SGK were the clear winners on 3D instances.
SGK was marginally better than GLF, yielding less than a
0.57% improvement in average maxcolor and finding opti-
mal solutions in 11.8% more instances. However, GLF was
significantly faster. GLF had a runtime 142% faster than SGK,
128% faster than BDP, and 120% faster than GKF. SGK was
the slowest algorithm by a sizeable factor. SGK was 25.3%
slower than BDP, 38.9% slower than GKF, and 154% slower
than GLL.

BDP had a mediocre performance on 3D instances, whereas
it was the clear favorite on the 2D instances. In 3D, BDP
obtained an average maxcolor with a higher than average
runtime. Furthermore, the different 3D instances seemed to
have a greater impact on algorithm performance than in the
2D cases.
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Fig. 6: Performance Profile for 2DS-IVC: maxcolor broken
down per dataset



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
nodes 1e6

0

5

10

15

20

25

tim
e 

(s
)

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(a) Runtime

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(b) Performance Profile: maxcolor

Fig. 7: 3D Results (All Instances)

Considering the addition of the z-axis, it is likely that
vertices, which are consecutive in the sequence of largest
weights, will be located on different planes. If this is the case,
then the planes that separate them effectively function as layers
of insulation. This allows the set of colors initially assigned
to the large weighted vertices to remain 0-aligned throughout
the greedy algorithm. Consequently, a lower maxcolor can
be achieved because the remaining intervals can be tightly
packed.

We would also expect to see the 2D results upheld in
instances where consecutive vertices in the sequence of largest
weights appear on the same plane. The results seem to reflect
this argument: 18.1% of 3D instances BDP performs strictly
better than SGK in terms of maxcolor. We conclude that spe-
cific distributions of weights will be advantageous to different
algorithms. Hence, the construction of different instances can
explain the disparity between the 2D and 3D results.

D. Optimal coloring based analysis

In order to further analyze the performance of the heuristics,
we designed a Mixed Integer Linear Program (MILP) and
solved optimally as many instanes as we could. We solved
the MILP using Gurobi and let the solver run for one day
per instance on a node of a computing cluster. Most of the
instances were solved with a provably optimal solution within
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Fig. 8: Performance Profile on 3DS-IVC: maxcolor broken
down by dataset
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Fig. 9: Performance Profiles with ILP

a day: Only 21 (2.46%) 2D instances and 269 (16.9%) 3D
instances were not solved.

We replotted performance profiles for both 2D and 3D
instances that were solved by the MILP in Figures 9a and 9b,
respectively. These new figures are virtually the same as the
original performance profiles. This indicates that for most
instances, one of the heuristics had found an optimal solution
or a near optimal solution.

Having optimal solutions also enable us to study the quality
of the max clique lower bound. The max clique lower bound
was different than the optimal solution value in only 57
(4.33%) of the 2D instances and 22 (2.65%) of the 3D
instances. Furthermore, in the instances where they differed,
the difference was less than 0.01%.

It is important to remember that not all instances were
solved optimally by the MILP solver. Therefore, it is pos-
sible that these unsolved instances are more complex. These
unsolved instances may exhibit a greater difference between
the max clique lower bound and the optimal solution.

VII. COLORING FOR SPACE TIME KERNEL DENSITY
ESTIMATION

To validate the model and approach on a real application,
we obtained the STKDE code used by the authors of [4]. In
this application, some events (points) are located in a 3D space

and the space is discretized in voxels. The computational load
is carried by the points which provide contribution to the voxel
it is in and nearby voxels within a particular radius called the
bandwidth. A more precise description of the application is
given in [4].

The application has many modes of parallelisation but we
focus on the strategy that partitions the points spatially in
boxes no smaller than twice the bandwidth. The points in a box
are processed in a single (sequential) task and two neighboring
boxes can not be processed simultaneously.

The problem of finding the best ordering of the tasks boils
down to the 3D 27-pt stencil coloring problem that we consider
in this manuscript where the weight of a task is given by
the number of points contained in that box. We modified
the application to call our coloring algorithm and then used
OpenMP’s tasking construct to create the parallel execution.
The OpenMP tasks are created in order of increasing start
of their color interval with dependencies to the neighboring
boxes. So this creates a DAG of tasks managed by the OpenMP
runtime which is a 27-pt stencil with edge oriented in a fashion
compatible with the coloring.

We took 6 of the instances and parameters that were
reported to take more than 1 second of total runtime in
sequential execution in [4]. We executed the application on
a machine equipped with an Intel Core i5-11600K which is
a 6 core (12 hyperthreads) processor and 32GB of memory.
The machine runs Debian 11 with a Linux kernel in version
5.10 and the code is compiled with GCC 10.2.1. Each code is
run 5 times and the reported times are averaged across the 5
run. We only report the computation time and not the time to
perform input/output, data preparation, and coloring.

Figure 10 shows the relation between the number of colors
in the coloring and the time the application took to compute.
Every case shows a linear correlation between colors and
runtime, although that correlation is weak in two of the cases.
This confirms that modeling the application as a coloring
problem on a stencil makes sense.

Although on PollenUS-veryhighres-lowbw, the
difference between the best and the worst color is 38%, the
difference in runtime is only 4%. This is because the maximum
color in the schedule does not directly relate to runtime. In
fact, the maximum number of colors indicate the length of the
critical path in the graph of tasks scheduled by the OpenMP
runtime. And in that case despite the length of the critical path
decreased by 38%, that critical path represents only 5% of the
total work of the application.

The highest decrease in time happened on
FluAnimal-highres-highbw-3d-16-16-32 where
the best time is 27% lower than the worst time. The worst
time is achieved by the worst coloring which induces a
critical path of 10% of the work.

It is also worth noting that we quantify the weight of the
tasks in term of number of points. But the runtime bottleneck
of the application in the architecture is the memory subsystem
which is shared among the cores. So as long as enough



Fig. 10: Scatter plot of number of colors and execution time of the STKDE application. Each scatter plot presents different
coloring algorithm. A linear regression line shows positive corelation between number of colors and runtime in all 6 cases.

cores are working to saturate the memory subsystem, the
performance may not suffer even if a few cores are idle.

The BD and BDP coloring algorithms induce the same
Parallel Task Graph in the OpenMP runtime since the BDP
coloring is just a compaction of the BD coloring. But, in
practice, the BD and BDP algorithms can yield different
performance. We believe that the root cause is that despite
the underlying task graph is the same, the tasks are given to
the runtime in a different order. And that could impact the
scheduling decisions made by the OpenMP runtime.

VIII. CONCLUSION

We investigated the problem of interval vertex coloring of
9-pt and 27-pt stencil graphs. We showed that the 5-pt stencil
and 7-pt stencil relaxations of the problem can be solved in
polynomial time. We also proved that the decision problem on
27-pt stencil is NP-Complete.

Furthermore, we proposed heuristics with very good per-
formance in both the 2D and 3D variants of the problem.
The Bipartite Decomposition + Post (BDP) heuristic is an
approximation algorithm which performs exceptionally well in
nearly all 2D cases. In the 3D cases, the Smart Greedy Largest
Clique First (SGK) algorithm obtained the highest quality
solution overall, but the Greedy Largest First (GLF) algorithm
achieved a similar quality of solution in a significantly shorter
runtime.

Using an ILP, we were able to show that the heuristics
with good performance are optimal or near-optimal in many
cases. We also integrated our heuristics in a real stencil
application showing that better coloring will improve runtime
performance.

Some open problems remain. Is the problem of interval
coloring 9-pt stencil graph NP-Complete or polynomial? Can
we design approximation algorithms for coloring 27-pt stencil
with an approximation ratio better than 4?
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