
Postmortem Computation of Pagerank on Temporal Graphs
Md Maruf Hossain
mhossa10@uncc.edu

University of North Carolina at Charlotte
Charlotte, North Carolina, USA

Erik Saule
esaule@uncc.edu

University of North Carolina at Charlotte
Charlotte, North Carolina, USA

ABSTRACT
Temporal graphs capture changes in relational data over time and
have been of increasing interest to data analysts. Most research
focuses on streaming algorithms that incrementally update an anal-
ysis to account for the changes in the graph. However, one can also
be interested in understanding the nature of changes in the graph
over time. In such a case, they perform a postmortem analysis on
different points in time where all the data known in advance

We study in this paper a postmortem analysis of Pagerank over-
time on graphs that are defined by temporal relational event databases.
A relation between two entities at a particular point in time will
form an edge between these two entities and that will remain in
the graph for a fixed period of time.

While one can reuse a streaming algorithm for that purpose,
leveraging the availability of all the data from the beginning can
be beneficial. Postmortem analysis enables encoding the temporal
graph with a more efficient graph representation. Also, it provides
an additional level of parallelism since one can not only parallelize
within a particular timestamp but also across different timestamps.
We will show that depending on the properties of the temporal data,
either parallelization can be better, and in some cases, a combination
of both approaches is preferable.

We experimentally show across 7 databases and across different
temporal derivations of the graph that postmortem analysis can be
between 50 times and 880 times faster than streaming analysis.

KEYWORDS
Temporal Graph, Pagerank, SpMM, SpMV, Streaming Graph Analy-
sis
ACM Reference Format:
MdMaruf Hossain and Erik Saule. 2022. Postmortem Computation of Pager-
ank on Temporal Graphs. In 51st International Conference on Parallel Pro-
cessing (ICPP ’22), August 29-September 1, 2022, Bordeaux, France. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3545008.3545055

1 INTRODUCTION
Graphs have been used to model various natural, social, and con-
structed objects and phenomena such as the brain, friendship re-
lations, and the physical road infrastructures. Such models help
understanding more deeply the objects we study. They have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545055

used to identify terrorists [5, 7, 28], understand the link between
traffic and economic activity [1, 8, 15], or identify keywords in
text [12, 32]. There are numerous analyses conducted on these
graphs for a different type of usage, including Pagerank [30], be-
tweenness and closeness centrality [3, 16], modularity-optimizing
community detection [6, 24], k-core decomposition [14, 34].

These graphs are often analyzed as static graphs, but fundamen-
tally the objects they model evolve over time: Roads are constructed
and blocked off; Humans form new relations while others fade away.
A more accurate model would be to define a temporal graph [22]
that has vertices and edges that only exist for some periods of time.
A common type of analysis on these temporal graphs is streaming
analysis where an analysis is performed on the most up-to-date ver-
sion of the graph. Obviously recomputing the analysis from scratch
would be expensive and in many cases, it is possible to perform an
incremental update on the analysis by starting from the results of
recent analyses and accounting for only the latest changes in the
graph. This has been done on many analyses including streaming
Pagerank [11, 31], streaming Closeness Centrality and Betweenness
Centrality [20, 35], streaming k-core [14, 34], and many others.

We are interested in this paper in a different form of analysis that
sees the graph as a time series. In this analysis, we assume that we
know the entire temporal graph at the beginning of the analysis; we
refer to the analysis as being postmortem. (Some people may refer
to that sort of analysis as being offline; but we chose not to refer to
it this way to avoid confusions.) This is in contrast with a streaming
analysis which discovers the graph during the analysis. Various
problems on temporal graph have been investigated, including
diameter change [26], and rank of web pages change [38] on the
web.

We assume that the analysis is conducted at regular interval in
time. Also the temporal graphs are defined by edges that appear
at a particular point in time and remain in the graph for a con-
stant amount of time. As such, the temporal graph can model edge
addition and deletion, as well as vertex addition and deletion.

We will also restrict our analysis to computing Pagerank [30]. It
is a simple analysis that is well understood, with known streaming
algorithms [11, 31]. And it applies to a wide variety of applications.

In this paper, we show how to perform a postmortem temporal
analysis of a graph using Pagerank on a shared-memory parallel
system. We show that postmortem analysis is much faster than
an equivalent streaming analysis and static (offline) analysis. In
particular, we show that postmortem analysis provides benefits
over static and streaming execution model. The challenges and
contributions of this paper include:

Data Representation: Streaming and static have a fairly well
set representation that have their own pros and cons. But in a
postmortem analysis, representing the temporal data offers tradeoff
between volume of memory and performance of the analysis. We

https://doi.org/10.1145/3545008.3545055
https://doi.org/10.1145/3545008.3545055


ICPP ’22, August 29-September 1, 2022, Bordeaux, France Md Maruf Hossain and Erik Saule

present our data representation in Section 4.1. We investigate and
evaluate the tradeoffs.

Leveraging incremental methods: There are several meth-
ods to reduce the amount of work when computing Pagerank in
a streaming mode. Upon some update, the graph is still quite the
same as it was, the values of Pagerank are going to be related, and
incremental methods have been developed for Pagerank. Based
on existing methods (described in Section 3.3.2), we develop an
incremental method appropriate for this particular use case in Sec-
tion 4.2.

Different Level of Parallelization: In Postmortem analysis,
one can compute Pagerank on each graph simultaneously. Of course,
the calculation of Pagerank on a particular graph is also a funda-
mentally parallel computation. Questions of load balance, incom-
patibility with incremental optimization, and scheduling need to
address to benefit the most from modern platforms. We investigate
these questions in Section 4.3.

SpMV-style vs SpMM-inspiredPostmortemPagerank: Pager-
ank is fundamentally similar to a sparse matrix-vector multipli-
cation (SpMV) operation. However, we know that sparse matrix-
matrix multiplication (SpMM) can obtain higher performance. We
discuss how we take inspiration from SpMM and rephrase the cal-
culation of Pagerank on a temporal graph to obtain the benefits of
an SpMM formulation without compromising other optimizations
in Section 4.4.

Demonstrate the efficiency of Postmortemanalysis: It makes
intuitive sense that postmortem analysis offers more avenues for
optimization than both offline and streaming analysis. But to what
extent is postmortem preferable. We evaluate experimentally the
question in Section 6 and show that in our benchmark postmortem
analysis can be between 50 times to 400 times faster than streaming
analysis.

2 PROBLEM STATEMENT
2.1 Temporal Graph from Temporal Events

Temporal Edge Set: We assume our input is a set of edges of the
form Events = ⟨u,v, t⟩, where u,v are vertices from some vertex
set V (the elements of V known because of offline behavior), and t
is an integer timestamp. Without loss of generality, we can assume
that entries are listed in increasing timestamp order. We call the
entire sequence of such triples a temporal edge set, and each triple
is an event.

Note that a streaming model assumes that the elements of the
set are disclosed, monotonously in time, over the execution of the
application. But in a postmortem model, all the temporal edges are
known at the beginning of the application.

Sliding Window Model: We define G(Ts ,Te ) as the graph in-
duced by the events that occured between Ts and Te . That is to say,
G(Ts ,Te ) = (V , E) where {e = (u,v) ∈ E |∃(u,v, t) ∈ Event,Ts ≤
t ≤ Te }.

In this paper, we are interested in analyzing the sequence of
graph (G0 = G(T0, T0 + δ ),G1 = G(T1, T1 + δ ),G2 = G(T2, T2 +
δ ), . . . ,Gm = G(Tm, Tm + δ )) withTi = Ti−1 + sw} andT0 is set by
the beginning of the dataset. In other words, the temporal graph is
defined by a sequence of graphs generated by sliding a window over

T0 T0+sw T0+2*sw

?

G1

Time

G0

G2

Figure 1: Sliding Window Model

Edges Edge Arrival Time Time Interval
v1 v2 T1 T2 T3
1 2 06/21/2021 ✓ × ×

3 5 06/25/2021 ✓ × ×

4 6 07/11/2021 ✓ ✓ ×

2 3 08/01/2021 ✓ ✓ ✓

2 4 08/11/2021 ✓ ✓ ✓

5 6 09/13/2021 ✓ ✓ ✓

2 7 10/02/2021 × ✓ ✓

4 7 10/05/2021 × ✓ ✓

5 7 10/06/2021 × ✓ ✓

6 7 10/09/2021 × ✓ ✓

1 2 11/05/2021 × × ✓

1 3 11/06/2021 × × ✓

2 5 11/09/2021 × × ✓

3 5 11/12/2021 × × ✓

(a) Temporal edge list[Time interval T1 = (6/1/2021-9/15/2021), T2 =
(7/1/2021-10/15/2021) and T3 = (8/1/2021-1/15/2022)]

2
4

3 5

76

1

Active at Interval T1

Active at Interval T2

Active at Interval T3

(b) Temporal Graph

Figure 2: Edgelist and temporal graph.

the time period. The window is of fixed size δ and each window
slide by a sliding offset of sw time-units compared to the previous
one. This sliding window model is illustrated in Figure 1.

Figure 2a presents an example of a list of temporal edges for a
graph. The edges arrive between 06/21/2021 and 11/12/2021. Maybe
the analyst is interested in analyzing phenomena that take some
time to unfold and select a window of size δ = 3 12 months. The first
graphG0 includes edges arriving after 6/1/2021 and until 9/15/2021.
After that it will move forward the starting time of the second
graph G1 by sw = 1 month and the time interval for G1 will be
7/1/2021-10/15/2021). Figure 2b shows the active edges for the first
3 graphs of the sequence of the temporal graph.



Postmortem Computation of Pagerank on Temporal Graphs ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Algorithm 1 Pagerank on Temporal Graph
Input: Events , sw , δ ,T0,m
1: i ← 0
2: while i ≤ m do
3: PAGERANKi ← PagerankAlgorithm(G(Ti , Ti + δ ))
4: i ← i + 1
5: Ti ← Ti−1 + sw
6: end while

2.2 Postmortem Graph Analysis for Pagerank
Pagerank is a metric of the importance of vertices in a graph, origi-
nally used on webpages modeled as a directed graph [30]. Let v be
a vertex, Γ+(v) be the set of vertices v points to, and Γ−(v) be the
set of vertices that point to v . For a teleportation probability α , the
Pagerank(PR) [30] equation for v is recursively defined as:

PR(v) =
α

|V |
+ (1 − α)

∑
u ∈Γ−(v)

PR(u)

|Γ+(u)|
(1)

While Pagerank values for each node of the graph could be ob-
tained by solving the system of equations, it is more common to
compute Pagerank iteratively. The Pagerank equation is evaluated
from previous values of Pagerank. This involves performing one
Sparse Matrix-Vector multiplication (SpMV). After some iterations,
the values converge to the solution of the equation. Implementa-
tions usually numerically check for convergence after each iteration
and execute a fixed number of iterations at most. Beamer and Scott
et al. [4] presented how to reduce Pagerank communication via
propagation blocking; and although this paper does not leverage
that particular technique, we believe it is compatible.

The problem we are trying to solve is to compute Pagerank
on all graphs in the sequence. Sequentially one could solve the
problem with the simple method given in Algorithm 1. But one
does not have to compute the different Pagerank vectors in-order.
They could compute in different orders. Of course, applications will
have a downstream analysis that will depend on these vectors.

3 BACKGROUND AND RELATEDWORKS
3.1 Applications of the Sliding Window Model
The formulation of the temporal graph based on sliding windows
from an event database is appropriate for many applications. Pa-
rameters delta and sw are application parameter. They enable the
analyst to explore a dataset at different time scales and resolutions.

For instance, consider the analysis of academic collaboration
networks. One can define events based on papers, if authors a1
and a2 co-wrote a paper on day d , you insert a tuple (a1,a2,d) in
Events .

Setting a larger value of δ = 10 years will enable the analyst to
think of the important of authors in a scientific era. Meanwhile,
setting a smaller value of δ = 1 year will enable to study current
collaborator dynamic. Neither value for the parameter is inherently
better, but they enable to study different social phenomenon. The
sw parameter is essentially a resolution parameter. It enables to
provide fewer or more points in the generated time series.

The temporal graph constructed this way could be analyzed
in various way. While we focus on Pagerank in this paper, differ-
ent analysis could be done using other kernels like closeness and
betweenness centrality, connecting component, k-core, etc.

3.2 Temporal Graph Analysis
We are not the first to analyze graphs temporally from event data.
Hossain, Murshed et al. analyzed communication network dynam-
ics during organizational crisis [23]. They showed that some actors
of an organization that are prominent or more active will become
central during the organizational crisis. Now, analyzing this kind of
problem requires insight into periodic changes in the dynamic com-
munication graph. Time interval-wise analyses show the impact of
actor’s changes on the organization and one can find how the role
of an actor evolves during a crisis and understand the underlying
cause.

Stolman and Matulef [37] proposed a HyperHeadTail streaming
algorithm which can estimate the degree distribution of a dynamic
graphs. The dynamicity is represented as a multigraphs where two
identical vertices can hold multiple edges for different times. In
their work, the divided the multigraph into multiple window and
perform degree distribution on different window graph. The work
is formulated under the streaming paradigm where a batch of edges
will arrive the system and gradually perform algorithm. Han and
Sethu [21] have proposed an edge sampling algorithm for triangle
counting of dynamic graphs.

Chen and Lui proposed a unified framework [9] to estimate the
graphlet (small connected subgraph pattern) counts of the whole
graph as well as the graphlet counts of individual nodes under
the streaming graph model. To understand the structure of graph,
Gabert et al. provided postmortem analysis to dense region in a dy-
namic graph using k-cores decomposition [18]. Previous streaming
algorithms for k-core were designed [34].

Many centrality metrics can be used to find the important ver-
tices in the graph, and multiple have been considered on dynamic
graphs. Nathan and Bader [29] proposed a dynamic algorithm for
updating Katz centrality in graphs under the streaming model.
Under a streaming model, incrementally updating closeness cen-
trality [36] and betweeness centrality [20] have also been studied.

3.3 Execution Model
There are three main ways to compute the many Pagerank values
in the temporal model.

3.3.1 Offline PagerankModel. One can build independently a graph
for each window and perform Pagerank. It requires reconstructing
a correct graph from the Event data many times. The cost of the
application will be driven by the cost of building the graphs, but the
application becomes massively parallel since each time window can
be computed independently. As such, this is an execution model
that is appropriate for a massively distributed system such as a
cloud platform.

3.3.2 Streaming Pagerank Model. In the streaming model, the ap-
plication maintain only a single copy of the graph. The version of
the graph that is stored is meant to represent the graph as it is “now”.
Updates to the graph come as an edge stream. The streaming system



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Md Maruf Hossain and Erik Saule

needs to adjust the representation of the graph to account for the
new edges and recompute the analysis accordingly. Middlewares
have been built to support streaming graphs like STINGER [31] and
ElGA [17]. These middlewares spend significant effort in maintain-
ing a valid representation of the graph upon updates made to the
graph by using advanced datastructures that minimize modification
cost.

One of the benefit of streaming analysis is that when the calcu-
lation on the updated graph is made, the system has access to the
result of the analysis on the previous version of the graph. This
can lead to incremental algorithms which require less computation
than recomputing the analysis from scratch [9, 20, 29, 34, 36].

We present now one way to incrementally update Pagerank
values. A directed graph G(V , E) with vertex and edge set V and E
can be represented by a sparse matrix A where an edge(i → j) is
represented by ai j = 1. If we represent the out degree of the graph
by a diagonal matrix D then, Pagerank can be defined by the linear
system [10, 19],

(I − αATD−1)x = (1 − α)v (2)

Where α is the “teleportation" constant, v is the initial Pagerank
vector usually filled by 1/|v | and x is the Pagerank vector. Jason pre-
sented [31] an approximation version of Pagerank for the streaming
graph,

∆xk+1 = αAT∆D
−1
∆ ∆Xk + α(AT∆D

−1
∆ −A

TD−1)x + r (3)

where modifications of the streaming graph by edge addition or
deletion are represented by ∆ and k is represent the previous itera-
tion. Here r is the residual error, r = (1 − α)v − (I − αATD−1)x .

The streaming execution model reduces the graph building time
from offline execution. But they introduce more complex data
structures to efficiently support insert and remove operations. The
streaming model also enables to leverage incremental algorithms
to decrease the total amount of computation. But it suffers from an
inherent lack of parallelism. Since only one version of the graph
is stored, the only available parallelism comes from the Pagerank
computation itself and the graph updating procedure.

3.3.3 Postmortem Pagerank Model. We argue in this paper that in
a postmortem model, we can produce analysis much faster than
both the offline and streaming execution model.

Both offline and streaming models have significant graph con-
struction cost, even though they are structured differently. In a
postmortem model, we can build the graph representation in a sin-
gle operation in a way that enable to access all the time windows.

The offline model benefits from high parallelism as it supports
parallelism across different time-window and inside the kernel. The
streaming model does not enable parallelism across time-window.
But the postmortem model can support both levels of parallelism.

The streaming model leverages incremental updates to the Pager-
ank computation. Even if a postmortem execution leverages paral-
lelism over different time-window, it can still arrange its calculation
to leverage knowledge from the previous time-window if that in-
formation is known.

rowA = [ 0, 3, 9, 12, 16, 21, 24, 28]
colA = [ 2, 2, 3, 1, 1, 3, 4, 5, 7, 1, 2, 5, 5, 2, 6, 7, 2, 3, 3, 6, 7, 4, 5, 7, 2, 4, 5, 6 ]
timeA = [ 06/21/2021, 11/05/2021, 11/06/2021, 06/21/2021, 11/05/2021,
08/01/2021, 08/11/2021, 11/09/2021, 10/02/2021, 11/06/2021, 08/01/2021,
06/25/2021, 11/12/2021, 08/11/2021, 07/11/2021, 10/05/2021, 11/09/2021,
06/25/2021, 11/12/2021, 09/13/2021, 10/06/2021, 07/11/2021, 09/13/2021,

10/09/2021, 10/02/2021, 10/05/2021, 10/06/2021, 10/09/2021 ]

Figure 3: Temporal CSR Representation

4 POSTMORTEM GRAPH ANALYSIS
4.1 Data Representation
The performance of graph analyses vastly depends on the graph
storage system. The offline and streaming model of computing
Pagerank on a temporal graph suffer from data representation
problem that can be addressed in a postmortem case. The CSR
storage format is widely popular for the sparse matrices which
is a fundamental attribute for Pagerank calculation using sparse-
matrix vector multiplication (SpMV). We use a format that is similar
derived from the CSR format.

Figure 3 shows a temporal CSR format for the graph presented
in Figure 2b. Usually CSR requires two vectors, rowA and colA, to
represent a graph. The colA vector is a concatenation of the adja-
cency list of the graph, while rowA indicates where the adjacency
of each vertex starts. In other words, the first vertex neighbors are
listed in colA between indices rowA[0] and rowA[1]. There are
V + 1 entries in rowA and E entries in colA.

But for postmortem analysis we keep an additional vector which
tracks timestamps for each edge, timeA, which will have the same
size as the colA vector. There are duplicate entries in colA, because
two vertices may appear multiple times in Events for different times.
We store the neighbors of a vertex sorted by neighbors, and then
by timestamp.

In this representation, we can iterate through the neighbors of
vertices of a particular graph. For a particular vertex v of G0 (for
instance), the edges are all stored between rowA[v] and rowA[v+1],
but some of them do not exist for graphG0. For a possible neighbor,
the different times at which an event occured are stored consecu-
tively in the temporal CSR representation. So as long as one of the
edges has a timestamp between T0 and T0 + δ , then it exists in G0.

This basic representation requires one vector of size V + 1, and
two vectors of size |Events |. One iteration of a Pagerank calcula-
tion requires performing one SpMV. This involves traversing the
neighbors of every vertex and has a complexity of Θ(|Events |).

When the span of time increases or when δ decreases, the total
number of events is not related to the total number of edges in
one particular graph. Since |Events | could be arbitrarily larger than
the number of edges in any particular graph, the complexity of
calculating a single SpMV can be arbitrarily larger than it should
be.

To remedy this, we partition the representation in many multi-
window graphs. Each multi-window graph represents a contiguous
number of graphs and only stores the edges that are relevant to these
graphs. We distribute the graphs uniformly to the multi-window
graphs. So if the analysis involve X graphs and we represent the



Postmortem Computation of Pagerank on Temporal Graphs ICPP ’22, August 29-September 1, 2022, Bordeaux, France

data with Y multi-window graph, each multi-window graph will
contain Y

X graphs.
A multi-window graph w has a vertex set Vw and an edge set

Ew . Note that for a particular multi-window graph, Vw is typically
smaller than the set of all vertices V since a vertex may not appear
in that multi-window. Also, note that some edges may appear in
two (or more) multi-window graph since an edge can appear in
different consecutive graphs which could be in different multi-
window graphs. In other words, this representation consumes more
memory since

∑
w |Ew | ≥ |Events |.

In this representation, performing SpMV for a graph only re-
quires traversing the edges in the multi-window graph that con-
tain the graph. And therefore computing SpMV for a graph in
multi-windoww has a complexity of Θ(|Ew |) which is closer to the
number of edges in that graph than Θ(|Events |) is.

The question of how many multi-window graph remains to be
investigated. We propose that a window graph should be accomo-
date by the system memory when computing Pagerank. The total
memory cost of the representation is encodinд∗(

∑
w |Vw |+2∗ |Ew |)

where encodinд accounts for the size of the number encoding (we
use 64-bit for all data). And we need to retain memory available to
store the intermediate data of Pagerank.

4.2 Partial Initialization
To calculate Pagerank, one needs to initialize the Pagerank values
and the most common initialization value is 1

|V | where |V | is the
number of vertices in the graph. For us, the default would be 1

|V | .
Now, the postmortem analysis is a sliding window process and

two consecutive graphs share most of their vertices and in many
case they share most of their edges. So the Pagerank values should
be similar. And since Pagerank is a converging iterative process,
having a better initial guess for the values should decrease the
number of iterations to converge.

We build on out previous work [25] and propose a partial initial-
ization for graphGi that is a successor of window intervalGi−1. We
denote byVi all the vertices in graphGi . We initialize the Pagerank
of a vertex Gi simply based on the Pagerank of its neighbors that
were present in Gi−1 normalized to account for missing vertices.
More specifically,:

PRi [u] =
|Vi ∩Vi−1 |

|Vi |
∗

PRi−1[u]∑
v ∈Vi∩Vi−1 PRi−1[v]

(4)

Because the set of vertices encoded in a multi-window graph can
be very different from the set encoded in the next multi-window
graph, computing the indexing can be tedious. So we do not perform
partial initialization across different multi-window graph. But since
there are likely only few multi-window graph, the loss will be small.

We will experimentally validate the impact of partial initializa-
tion on convergence time.

4.3 Different Level Parallelization on Pagerank
We can utilize parallel computing at two different levels. We can
parallelize over different time-window since they are all available
in the postmortem representation, we call this window-level paral-
lelization. We can also use parallelism inside the application kernel,

here Pagerank, and we call this application-level parallelization.
We can also leverage both at the same time which we call nested
parallelization.

4.3.1 Window-Level Parallelization. Window-level parallelization
is good for a well balanced graph and large number of time-window.
If some graph are much larger than other ones, then window-level
parallelization could lead to load imbalance. Also, if we have a
limited number of time-window graph then we will only have a
small amount of parallelism available.

Partial initialization may also be difficult to leverage in window-
level parallelization. When starting to process graph Gi , one can
only perform partial initialization if the Pagerank values ofGi−1 are
known by the thread. In practice, we implement the algorithm so if
the same thread processes Gi−1 and Gi , then partial initialization
occurs.

Because of these two effects, a classic work scheduler is unlikely
to be satisfactory. Think of OpenMP’s classic dynamic scheduler.
With a granularity of 1, it would likely allocateGi andGi−1 always
to different threads. This would result in the benefits of partial
initialization being negated. A larger granularity would reduce the
amount of parallelism available and takes the chance of having a
single chunk of work contain graphs that are significantly larger
than the rest of the chunks. And this would lead to load imbalance.

To remedy this problem, we opt for the workstealing scheduler
of Intel TBB. With a workstealig scheduler, the threads will be
originally allocated a chunk of contiguous work. That contiguous
chunk will only be broken when the other threads are running out
of work.

4.3.2 Application-Level Parallelization. In this model graphs are
processed one at a time, in order from the first graph to the last
graph. And all the parallelism happens inside the call to Pagerank
for that particular graph. In this case, the parallelization is over the
vertices of the graph.

In this model, we can use partial parallelization for every graph
except first one of each multi-window graph.

This model will perform well if the workload in each graph sig-
nificant compared to the total amount of work. In other words, we
recommend using application-level parallelization for an instance
with low number of graphs or where a few graphs carry most of
the load of the analysis.

4.3.3 Nested Parallelization. Nested parallelismmixes bothwindow-
level and application-level parallelism. In other words, different
graphs are performed in parallel and each Pagerank calculation
is also performed in parallel. This mode of operation offers the
most parallelism and is likely to provide benefits of both modes of
operations.

This nested form of parallelism can be challenging for some
parallel computing middleware. We use TBB and its workstealing
scheduler to orchestrate the execution. This model will perform
better in a large temporal graph with moderate number of graphs
or well balanced window-application workload.

4.4 SpMM-inspired Postmortem Pagerank
When dealing with sparse matrices vector multiplication the pri-
mary bottleneck of executing the algorithm tend to come from



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Md Maruf Hossain and Erik Saule

moving the matrix from DRAM to the core, and from accessing
the input vector in a random pattern. If the application supports it,
it can be beneficial to execute multiple SpMVs simultaneously on
different vectors and on the same matrix. One can perform multiple
multiplication by reading the matrix only once. And interleaving
the input vectors can transform the access patterns from mostly
random to mostly regular. This is a common optimization in linear
algebra: for instance LOBPCG tend to achieve higher performance
than Lanczos to extract eigenvectors [39], and computing simulta-
neously multiple derivatives of radial basis functions [13].

Here, we have a similar structure. We compute Pagerank on
multiple graphs but if the graphs are in the same multi-window
graph, then the representation of the two graphs in memory is
actually the same multi-window graph. By keeping in memory
the intermediate value of multiple graphs’ Pagerank calculation,
we can perform one iteration of many Pageranks by accessing the
multi-window graph only once. Also, since the graphs are likely
sharing many common edges, the access pattern to the Pagerank
vectors become also more regular.

We will abuse the name and refer to this method as an SpMM
method. Even though technically, a different matrix is being used for
the different Pageranks. We will also refer to the numbers of Pager-
ank being computed simultaneously as vector length by analogy to
vector processing which plays a major role in SpMM implementa-
tion. Even though, the code may not actually use vectorization in
practice.

Now, if we process consecutive graphs, say G0,G1, . . . ,G7, then
we are going to lose partial initialization. Indeed, the result ofG0 is
needed to perform partial initialization on G1. So we divided the
multi-window graph into vector-length (e.g., 8) regions and picked
first the graph from each region. This will perform first for instance
G0,G10,G20, ...G70. These 8 Pageranks will not benefit from partial
initialization. However, the next batch of graph processed will be
G1,G11,G21, ...G71 which will all benefit from partial initialization.

We will investigate experimentally the impact of this SpMM-
inspired optimization.

5 EXPERIMENTAL SETTINGS
5.1 Execution environment
All the experiments are performed on a node which is equipped
with two Intel Xeon Gold model 6248R (Cascade Lake architecture,
24 cores per processor, no hyperthreading, 36MB L3 Cache) and
384GB GB of DDR4 memory. The operating system used in the
machine is Linux 3.10.0.

All the codes are writen in C++ and compiled by the Intel C++
compiler icpc version 19.1.3.304. Codes are compiled with opti-
mization flag -O3 and xCORE-AVX512 flags, so the compiler gener-
ates a binary optimized for the architecture.

All the streaming version of Pagerank are performed on the
STINGER [31] framework. STINGER is a package designed to support
streaming graph analytics by using in-memory parallel computa-
tion to accelerate the computation. STINGER supports Pagerank
with an incremental algorithm. The only modifications to STINGER
that we performed are to the edge event injection logic so as to
updates in batches equivalent to the postmortem code. This makes

Table 1: Graphs and Parameters

Name(Events) Sliding Offset Window Size
ca-cit-HepTh (2,673,133) 12 hours, 1, 2 days 10, 15, 90, 180, 730,

1460 days
stackoverflow
(47,903,266) 12 hours, 1 day

10, 15, 90, 180, 730
days

askubuntu (726,661) 90, 180 days
Youtube-Growth
(12,223,774) 60, 90 days

epinions-user-ratings
(13,668,281)
ia-enron-email
(1,134,990)

12 hours, 2 days 2, 4 days

wiki-talk (6,100,538) 12 hours, 1, 2, 4 days 10, 15, 90, 180
days

the code bases produce the same results and makes the comparison
fair.

5.2 Graphs
We perform our experiments on real-world data sets to avoid the
bias introduced by random graph generator. We select graphs from
the Stanford Large Network Dataset Collection (SNAP) [27], network
repository, and DIMACS [2, 33] data sets that are frequently used
in graph algorithm research.

Table 1 presents the temporal graphs and provide details of the
application parameters (window size, and window offset) that we
set. We picked parameters that would look at the data at different
scale and resolution. Still we choose to have the time-windows
overlap (all the graph share some edges from its previous graph)
since it seems likely analysis would always want that property. We
assume all the edges of the graphs are sorted in non-decreasing
order of their arrival time.

6 RESULTS
6.1 Edge Distribution of Temporal Graph
Figure 4 presents the edge distribution for all the graphs over time.
We can see the patterns of temporal edges are different for different
graphs. This provides a diversity of instances to test our methods.

Figure 4a shows the the email communication of the Enron Cor-
pus where we can see some big spike around 2001. These spikes
represents the period of time when Enron scandal happened which
is the period of time mostly captured by the dataset. Figure 4b
shows the user review ratings collected by Epinions. Epinions was
established in 1999 and peaked around 2001 and later they acquired
by eBay. It is a bipartite graph, an edge represents a user reviewing
a product. We can see around 2001 user reviews shows a huge
spikes which is the reason the company was acquired. Citation
graph ca-cit-HepTh4c also shows an irregular distribution pat-
tern of temporal edges. On these networks, the Pagerank calculation
bottleneck will be on a few graphs since few time-window cover
most the edges in the dataset. We will see that this distribution of
work will make application-level parallelism more efficient than
window-level parallelization.



Postmortem Computation of Pagerank on Temporal Graphs ICPP ’22, August 29-September 1, 2022, Bordeaux, France

19
80

-03
-31

19
85

-03
-31

19
90

-03
-31

19
95

-03
-31

20
00

-03
-31

20
05

-03
-31

20
10

-03
-31

20
15

-03
-31

20
20

-03
-31

Time

0

50000

100000

150000

200000

Ed
ge

 C
ou

nt

(a) ia-enron-email

20
01

-01
-14

20
01

-04
-29

20
01

-08
-12

20
01

-11
-25

20
02

-03
-10

Time

0

2000000

4000000

6000000

8000000

Ed
ge

 C
ou

nt
(b) epinions-user

19
93

-09
-30

19
94

-12
-31

19
96

-03
-31

19
97

-06
-30

19
98

-09
-30

19
99

-12
-31

20
01

-03
-31

Time

0

500000

1000000

1500000

2000000

2500000

Ed
ge

 C
ou

nt

(c) ca-cit-HepTh

20
06

-12
-10

20
07

-02
-18

20
07

-04
-29

20
07

-07
-08

Time

0

500000

1000000

1500000

2000000

2500000

Ed
ge

 C
ou

nt

(d) youtube-growth

20
01

-10
-31

20
03

-06
-30

20
05

-02
-28

20
06

-10
-31

Time

0
50000

100000
150000
200000
250000
300000

Ed
ge

 C
ou

nt

(e) wigki-talk

20
08

-08
-31

20
10

-04
-30

20
11

-12
-31

20
13

-08
-31

20
15

-04
-30

Time

0

200000

400000

600000

800000

Ed
ge

 C
ou

nt

(f) stackoverflow

20
09

-01
-31

20
09

-11
-30

20
10

-09
-30

20
11

-07
-31

20
12

-05
-31

20
13

-03
-31

20
14

-01
-31

20
14

-11
-30

20
15

-09
-30

Time

0
2000
4000
6000
8000

10000
12000
14000
16000

Ed
ge

 C
ou

nt

(g) askubuntu

Figure 4: Temporal graph edge distribution over the time period.

The temporal edge distribution for wiki-talk (Figure 4e), askubuntu
(Figure 4g), and stackoverflow (Figure 4f) show increasing amount
of streaming edges over time. But the number of edges that come in
is relatively smooth. Graphs with balanced high-volume edges with
large number of windows are well suited for nested parallelism.

youtube-growth 4d shows a pattern that is both bursty by mo-
ment but steady in general.

6.2 Postmortem is usually faster than Offline
and Streaming

We compare the performance of the three execution models: Offline,
Streaming and Postmortem. Postmortem here uses partial initializa-
tion and each temporal graph is partitioning into 6 multi-window
graphs. Postmortem uses only an application-level parallelism with
a static scheduler. In other words, this is a bare-bone postmortem
computation where the execution parameters have not been tuned.

Figure 5 shows the comparison among Naive, Streaming and
Postmortem Pagerank for some of the temporal graphs from four
of our temporal datasets. The performance on enron-email is re-
ported in Figure 5a. The Streaming version is faster than the offline
version. But Postmortem outperforms both of them. Figure 5b shows
the performance for the youtube dataset. On this graph as well,
streaming is faster than offline; and postmortem is faster than both.
The postmortem version outperforms Streaming by more than 3
times on that dataset.

Figure 5c shows the performance for the epinions dataset. On that
dataset, streaming is much slower than both offline and postmortem.
Postmortem is faster than both and about more than 40 times faster
than streaming. Figure 5d shows results on the wikitalk dataset.
Here streaming is also slower than both other methods. Postmortem
is slightly slower than offline on small window size and better on
larger ones.

2.0 4.0
Window Size(years)

0

25

50

75

100

125

Ti
m

e 
in

 s

Sliding Offset: 172,800
Offline
Streaming
Postmortem

(a) Enron

60.0 90.0
Window Size(days)

0

100

200

300

Ti
m

e 
in

 s

Sliding Offset: 86,400
Offline
Streaming
Postmortem

(b) YouTube

60.0 90.0
Window Size(days)

0

200

400

600

800

Ti
m

e 
in

 s

Sliding Offset: 86,400
Offline
Streaming
Postmortem

(c) Epinion

10.0 15.0 90.0 180.0
Window Size(days)

0

50

100

150

200

Ti
m

e 
in

 s
Sliding Offset: 259,200

Offline
Streaming
Postmortem

(d) Wikitalk

Figure 5: Performance of Naive, Streaming and Postmortem
Pagerank

6.3 Postmortem Detailed Results
6.3.1 Impact of Partial initialization. Figure 6 presents the impact
of partial initialization on stackoverflow and wiki-talk temporal
graph. It shows a performance gain that correlates with the size of
the window and ranging from being 1.5 times faster to 3.5 times
faster. It makes intuitive sense that the smart initialization improves
the performance more on larger windows since the successive
graphs become more similar.

We found similar speedup for other experimental graphs also
(not shown). And from now, we will show results with partial
initalization only rather than full initialization.



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Md Maruf Hossain and Erik Saule

10.0 15.0 90.0 180.0
Window Size(days)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

Sliding Offset: 43,200

Full/Partial Initialization

(a) Stackoverflow

10.0 15.0 90.0 180.0
Window Size(days)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Sp
ee

du
p

Sliding Offset: 43,200

Full/Partial Initialization

(b) Wiki-talk

Figure 6: Impact of partial initialization on postmortem
graph analysis.

6.3.2 Partitioner and Granularity. We saw that there is imbalance
in the distribution of edges over time. But we also know that social
graphs have power law edge distribution which makes the degree
of the graph very unbalanced. As a result the bottleneck of the
application is often the time-window graph that has many more
edges than the other ones, and the block of vertices in the graph
with extremely high degree.

In our experiment, we choose Intel’s Thread Building Block(TBB)
mechanism to parallelize the postmortem Pagerank to benefit from
its scheduler. Now, TBB provide multiple partitioners and sup-
port different granularity. The auto_partitioner is the default
workstealing scheduler while simple_partitioner is a variant
of it. TBB also provides a static_partitioner which does not
benefit from workstealing.

Choosing granularity requires experimental analysis. It depends
on the partitioners, system cache memory, problem size, etc. We
perform our experiments using a variety of granularity sizes to
figure out the behavior of the results for certain attributes.

Figure 7 presents the performance of Pagerank on wiki-talk
for different partitioner and granularity size for a certain sliding
window and window size. The window size of the graph is 256 that
means we can split the window-level parallelization at maximum
by 256 where each worker thread will receive a single window. And
we can see a performance drop after 128 for window-level paral-
lelization because it lacks of parallelism. Nested and Pagerank-level
parallelization show better result than window-level but they also
lost some performance gain. The main reason also high granularity
size assign large number of windows to each worker thread and
make it imbalanced.

Overall, the performance of the static_partitioner seems
worse than that of the other two partitioners. And the auto and
simple partitioner are fairly comparable in performance.

6.3.3 Impact of the number of Multi-Window Graphs. The number
of multi-window is an important parameter. If the number is too
low, there runtime overhead due to traversing edges out of the
graph the algorithm is considering will be high. If the number is
too high, the system wastes memory and the impact of partial
initialization will be lower.

The results presented in Figure 8 show that one the number of
multi-window is “large enough”, the performance no longer varies.

6.3.4 Comparing SpMV to SpMM. The main difference between
the SpMV and SpMM versions of postmortem Pagerank is that
the SpMM version computes multiple Pagerank vector at once in
a multi-window graph and treat them as a matrix. We choose a

number of vector of either 8 or 16. Choosing a high number of vector
in SpMM will reduce benefit of the partial initalization because all
the initial Pagerank vectors will do full initialization.

Figure 7 shows postmortemPagerank performance on wiki-talk,
where we can see the number of windows is 256. Our experimental
results show that SpMM is usually much faster than SpMV.

6.3.5 Which level of parallelization? Figure 9 shows better perfor-
mance for Pagerank-level and nested but shows lack performance
of the window-level parallelism. The main reason is the number of
windows is only 6 where we have 48 available processors which
stiffles the performance of window-level parallelism.

Figure 10 shows godd performance for window-level paralleiza-
tion because of large number of windows. On the other hand at
Figure 7 show better performance for nested parallelization.

Application-level parallelization is well suited for the well bal-
anced windows with large window size graph. On the other hand
window-level parallelization can out-perform other on the occasion
where number of windows is large but the number of window size
is smaller. That means less work in application level. Nested always
show optimal or near optimal performance because it can adapt to
both form of available parallelism.

6.3.6 Best Mechanism and suggest parameters. Figure 11 shows the
overall best performance by the postmortem Pagerank relatively
to the streaming model over the different configurations we tested.
The Postmortem model proved to be between 50 and 800 times fater
than the streaming model.

However, a user may not know how to set parameters. We pro-
vide a simple rules to set them that should lead to decent perfor-
mance. Our experiments show that SpMM is never a bad choice.
For partitioner, auto_partitioner with granularity size under 4
usually provides good results. To chose the type of parallelism, one
need to look at the load balance in edges of different time windows.
Unless the workload is dominated by couple of windows or very
small number of multi-window, nested parallelization is the good
fit for almost every graph.

We generated the performance of following this guidelines on
wiki-talk across different sliding offset and window size and re-
ported the results in Figure 12. The configuration does not report
the best performance but reports very honorable performance at
little tuning cost.

7 CONCLUSION
The study of performance of temporal graph analysis is often con-
sidered mostly in the streaming model where one wants to maintain
the analysis current with the most recent data. However an other
common use case is to analyse a temporal data postmortem once
all the data is known. We showed in this paper how to perform
Pagerank efficiently on modern parallel systems by leveraging data
representation, incremental algorithms, and different types of par-
allelism. When using these techniques, a postmortem analysis can
be conducted from 50 to 800 times faster than a streaming analysis.

Themethods we presented can still be refined: multiple questions
remain. We partitioned the temporal data in multi-windows with
equal number of graphs, but this may not be the decomposition
that minimize memory and work overheads. We only considered



Postmortem Computation of Pagerank on Temporal Graphs ICPP ’22, August 29-September 1, 2022, Bordeaux, France

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

20

40

60

80

100

120

140

160
Sp

ee
du

p

TBB::auto_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

20

40

60

80

100

120

140

160
TBB::simple_partitioner

Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

20

40

60

80

100

120

140

160
TBB::static_partitioner

Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

Sliding Offset: 43,200, Window Size: 90 days, Windows: 256

Figure 7: Postmortem Pagerank comparison over streaming on wiki-talk graph (SpMM load 16 Pagerank vectors).

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

100

200

300

Sp
ee

du
p

PR Level Parallelization
Multi-Windows = 6
Multi-Windows = 32
Multi-Windows = 256
Multi-Windows = 512
Multi-Windows = 1,024

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

100

200

300

Window Level Parallelization
Multi-Windows = 6
Multi-Windows = 32
Multi-Windows = 256
Multi-Windows = 512
Multi-Windows = 1,024

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

100

200

300

Nested Parallelization
Multi-Windows = 6
Multi-Windows = 32
Multi-Windows = 256
Multi-Windows = 512
Multi-Windows = 1,024

Figure 8: Postmortem Pagerank performance using TBB auto_partitioner for wiki-talk network for different number of
multi-window.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

5

10

15

20

25

30

Sp
ee

du
p

TBB::auto_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

5

10

15

20

25

30
TBB::simple_partitioner

Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

5

10

15

20

25

30
TBB::static_partitioner

Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

Sliding Offset: 43,200, Window Size: 10 days, Windows: 6

Figure 9: Postmortem Pagerank comparison over streaming on wiki-talk graph (SpMM load 16 Pagerank vectors).

Pagerank, but other analysis, like centralities for instance, behave in
less regular way when small changes impact the graph. Nowadays,
much graph analysis is performed on GPU-enabled system or on
distributed memory systems; and extending our techniques to such
systems would make temporal analysis more practical.

ACKNOWLEDGMENTS
This work is supported by grant from the National Science Founda-
tion CCF-1652442 and was made possible by a computing allocation
given by TACC through XSEDE.

REFERENCES
[1] Zainab Abbas, Paolo Sottovia, Mohamad Al Hajj Hassan, Daniele Foroni, and

Stefano Bortoli. 2020. Real-time Traffic Jam Detection and Congestion Reduction
Using Streaming Graph Analytics. In 2020 IEEE International Conference on Big
Data (Big Data). IEEE, 3109–3118.



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Md Maruf Hossain and Erik Saule

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

10

20

30

40

50

60

70
Sp

ee
du

p

TBB::auto_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

10

20

30

40

50

60

70

TBB::simple_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

WS Granularity Size

0

10

20

30

40

50

60

70

TBB::static_partitioner
Nested Parallelization(SpMM)
Nested Parallelization(SpMV)
PR Level Parallelization(SpMM)
PR Level Parallelization(SpMV)
Window Level Parallelization(SpMM)
Window Level Parallelization(SpMV)

Sliding Offset: 86,400, Window Size: 90 days, Windows: 1,024

Figure 10: Postmortem Pagerank comparison over streaming on wiki-talk graph (SpMM load 16 Pagerank vectors).

43200 86400 172800
Sliding Offset in s

10
15

90
18

0
73

0
14

60
W

in
do

w 
Si

ze
 in

 d
ay

s

140 150 146

124 132 138

106 79 92

82 61 54

82 72 57

82 73 58 60

80

100

120

140

(a) ca-cit-HepTh

86400 172800
Sliding Offset in s

2
4

W
in

do
w 

Si
ze

 in
 y

ea
rs

51 76

50 53

50

55

60

65

70

75

(b) enron corpus

43200 86400
Sliding Offset in s

60
90W
in

do
w 

Si
ze

 in
 d

ay
s

708 886

823 753

720

750

780

810

840

870

(c) Epinions User Ratings

43200 86400
Sliding Offset in s

60
90W
in

do
w 

Si
ze

 in
 d

ay
s

93 102

88 84

84

87

90

93

96

99

102

(d) Youtube-Growth

86400 172800
Sliding Offset in s

90
18

0
W

in
do

w 
Si

ze
 in

 d
ay

s

236 193

187 181
190

200

210

220

230

(e) Askubuntu

43200 86400
Sliding Offset in s

10
15

90
18

0
73

0
W

in
do

w 
Si

ze
 in

 d
ay

s

409 391

454 396

400 391

332 328

332 167 200

250

300

350

400

450

(f) Stackoverflow

43200 86400 172800 259200
Sliding Offset in s

10
15

90
18

0
W

in
do

w 
Si

ze
 in

 d
ay

s 371 224 176 192

294 204 189 177

164 132 115 119

171 140 129 117 150

200

250

300

350

(g) wiki-talk

Figure 11: Best performance gain by postmortem Pagerank over streaming version.

43200 86400 172800 259200
Sliding Offset in s

10
15

90
18

0
W

in
do

w 
Si

ze
 in

 d
ay

s 147 113 171 191

266 133 166 136

164 132 110 94

171 140 129 103 120

150

180

210

240

Figure 12: Postmortem performance with suggested param-
eter on wikitalk.

[2] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. 2013.
Graph partitioning and graph clustering. Vol. 588. American Mathematical Society
Providence, RI.

[3] Alex Bavelas. 1950. Communication patterns in task-oriented groups. The journal
of the acoustical society of America 22, 6 (1950), 725–730.

[4] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing pagerank
communication via propagation blocking. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 820–831.

[5] Ala Berzinji, Lisa Kaati, and Ahmed Rezine. 2012. Detecting key players in ter-
rorist networks. In 2012 European Intelligence and Security Informatics Conference.
IEEE, 297–302.

[6] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[7] Tami Carpenter, George Karakostas, and David Shallcross. 2002. Practical issues
and algorithms for analyzing terrorist networks. In Proceedings of the western
simulation multiconference.

[8] Rohan Chandra, Tianrui Guan, Srujan Panuganti, Trisha Mittal, Uttaran Bhat-
tacharya, Aniket Bera, and Dinesh Manocha. 2020. Forecasting trajectory and
behavior of road-agents using spectral clustering in graph-lstms. IEEE Robotics
and Automation Letters 5, 3 (2020), 4882–4890.

[9] Xiaowei Chen and John CS Lui. 2017. A unified framework to estimate global
and local graphlet counts for streaming graphs. In Proc. ASONAM. 131–138.

[10] Gianna M Del Corso, Antonio Gulli, and Francesco Romani. 2005. Fast PageRank
computation via a sparse linear system. Internet Mathematics 2, 3 (2005), 251–273.

[11] Prasanna Desikan, Nishith Pathak, Jaideep Srivastava, and Vipin Kumar. 2005.
Incremental Page Rank Computation on Evolving Graphs. In Special Interest
Tracks and Posters of WWW. 1094–1095.

[12] R Devika and V Subramaniyaswamy. 2021. A semantic graph-based keyword
extraction model using ranking method on big social data. Wireless Networks 27,
8 (2021), 5447–5459.



Postmortem Computation of Pagerank on Temporal Graphs ICPP ’22, August 29-September 1, 2022, Bordeaux, France

[13] Gordon Erlebacher, Erik Saule, Natasha Flyer, and Evan Bollig. 2014. Acceleration
of Derivative Calculations with Application to Radial Basis Function - Finite-
Differences on the Intel MIC Architecture. In Proc. of International Conference on
Supercomputing (ICS).

[14] Hossein Esfandiari, Silvio Lattanzi, and Vahab Mirrokni. 2018. Parallel and
streaming algorithms for k-core decomposition. In International Conference on
Machine Learning. PMLR, 1397–1406.

[15] Leila Eskandari, Jason Mair, Zhiyi Huang, and David Eyers. 2018. T3-Scheduler: A
topology and traffic aware two-level scheduler for stream processing systems in
a heterogeneous cluster. Future Generation Computer Systems 89 (2018), 617–632.

[16] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry (1977), 35–41.

[17] Kasimir Gabert, Kaan Sancak, M. Yusuf Özkaya, Ali Pinar, and Ümit V. Çatalyürek.
2021. ElGA: Elastic and Scalable Dynamic Graph Analysis. In Proc. SC (SC ’21).
Article 50, 15 pages.

[18] Kasimir Georg Gabert, Ali Pinar, and Umit Catalyurek. 2020. Finding Dense Areas
of Massive Changing Graphs. Technical Report. Sandia National Lab.(SNL-NM).

[19] David Gleich, Leonid Zhukov, and Pavel Berkhin. 2004. Fast parallel PageRank: A
linear system approach. Yahoo! Research Technical Report YRL-2004-038, available
via http://research. yahoo. com/publication/YRL-2004-038. pdf 13 (2004), 22.

[20] Oded Green, Robert McColl, and David A. Bader. 2012. A Fast Algorithm for
Streaming Betweenness Centrality. In International Conference on Privacy, Security,
Risk and Trust and International Conference on Social Computing. 11–20.

[21] Guyue Han and Harish Sethu. 2017. Edge sample and discard: A new algorithm
for counting triangles in large dynamic graphs. In Proc. ASONAM. IEEE, 44–49.

[22] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3
(2012), 97–125.

[23] Liaquat Hossain, Shahriar Tanvir Murshed, and Shahadat Uddin. 2013. Commu-
nication network dynamics during organizational crisis. Journal of Informetrics
7, 1 (2013), 16–35.

[24] Md.Maruf Hossain and Erik Saule. 2021. Impact of AVX-512 Instructions onGraph
Partitioning Problems. In ICPP Workshops 2021: 50th International Conference on
Parallel Processing, Virtual Event / Lemont (near Chicago), IL, USA, August 9-12,
2021, Federico Silla and Osni Marques (Eds.). ACM, 33:1–33:9. https://doi.org/10.
1145/3458744.3473362

[25] Md Maruf Hossain and Erik Saule. 2021. Postmortem Graph Analysis on the
Temporal Graph. In ICPP poster 2021: 50th International Conference on Parallel
Processing.

[26] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proc. of
SIGKDD. 177–187.

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[28] Muhammad Ali Masood and Rabeeh Ayaz Abbasi. 2021. Using graph embedding
and machine learning to identify rebels on twitter. Journal of Informetrics 15, 1
(2021), 101121.

[29] Eisha Nathan and David A Bader. 2017. A dynamic algorithm for updating katz
centrality in graphs. In Proc. ASONAM. 149–154.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[31] Jason Riedy. 2016. Updating pagerank for streaming graphs. In Proc. IPDPSW.
IEEE, 877–884.

[32] Zafar Saeed, Rabeeh Ayaz Abbasi, Abida Sadaf, Muhammad Imran Razzak, and
Guandong Xu. 2018. Text stream to temporal network-a dynamic heartbeat graph
to detect emerging events on twitter. In Proc. PAKDD. 534–545.

[33] Peter Sanders, Christian Schulz, and Dorothea Wagner. 2014. Benchmarking for
graph clustering and partitioning. In Encyclopedia of Social Network Analysis and
Mining, R. Alhajj and J. Rokne (Eds.). Springer.

[34] Ahmet Erdem Sariyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,
and Ümit V Çatalyürek. 2013. Streaming algorithms for k-core decomposition.
Proceedings of the VLDB Endowment 6, 6 (2013), 433–444.

[35] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V Çatalyiirek. 2013.
Incremental algorithms for closeness centrality. In IEEE Big Data. 487–492.

[36] Ahmet Erdem Sarıyüce, Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. 2015.
Incremental closeness centrality in distributed memory. Parallel Comput. 47
(2015), 3–18.

[37] Andrew Stolman and Kevin Matulef. 2017. HyperHeadTail: a streaming algorithm
for estimating the degree distribution of dynamic multigraphs. In Proc. ASONAM.
31–39.

[38] Lei Yang, Lei Qi, Yan-Ping Zhao, Bin Gao, and Tie-Yan Liu. 2007. Link analysis
using time series of web graphs. In Proc. of CIKM. 1011–1014.

[39] Zheng Zhou, Erik Saule, Hasan Metin Aktulga, Chao Yang, Esmond G. Ng, Pieter
Maris, James P. Vary, and Ümit V. Çatalyürek. 2012. An Out-of-core Eigensolver
on SSD-equipped Clusters. In Proc. of IEEE Cluster.

https://doi.org/10.1145/3458744.3473362
https://doi.org/10.1145/3458744.3473362
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Temporal Graph from Temporal Events
	2.2 Postmortem Graph Analysis for Pagerank

	3 Background and Related Works
	3.1 Applications of the Sliding Window Model
	3.2 Temporal Graph Analysis
	3.3 Execution Model

	4 Postmortem Graph Analysis
	4.1 Data Representation
	4.2 Partial Initialization
	4.3 Different Level Parallelization on Pagerank
	4.4 SpMM-inspired Postmortem Pagerank

	5 Experimental Settings
	5.1 Execution environment
	5.2 Graphs

	6 Results
	6.1 Edge Distribution of Temporal Graph
	6.2 Postmortem is usually faster than Offline and Streaming
	6.3 Postmortem Detailed Results

	7 Conclusion
	Acknowledgments
	References

