
Peachy Parallel Assignments (EduHPC 2023)
H. Martin Bücker

Friedrich Schiller University Jena
Jena, Germany

martin.buecker@uni-jena.de

Jeremiah Corrado
Hewlett Packard Enterprise

Houston, USA
jeremiah.corrado@hpe.com

Daniel Fedorin
Hewlett Packard Enterprise

Houston, USA
daniel.fedorin@hpe.com

Diego García-Álvarez
Universidad de Valladolid

Valladolid, Spain
dieggar@infor.uva.es

Arturo Gonzalez-Escribano
Universidad de Valladolid

Valladolid, Spain
arturo@infor.uva.es

John Li
University of California San Diego

San Diego, USA
jzl011@ucsd.edu

Maria Pantoja
CalPoly

San Luis Obispo, USA
mpanto01@calpoly.edu

Erik Pautsch
Loyola University Chicago

Chicago, USA
epautsch@luc.edu

Marieke Plesske
Friedrich Schiller University Jena

Jena, Germany
marieke.plesske@uni-jena.de

Marcelo Ponce
University of Toronto Scarborough

Toronto, Canada
m.ponce@utoronto.ca

Silvio Rizzi
Argonne National Lab

Chicago, USA
srizzi@anl.gov

Erik Saule
University of North Carolina

Charlotte
Charlotte, USA
esaule@uncc.edu

Johannes Schoder
Friedrich Schiller University Jena

Jena, Germany
johannes.schoder@uni-jena.de

George K. Thiruvathukal
Loyola University Chicago

Chicago, USA
gthiruvathukal@luc.edu

Ramses van Zon
SciNet HPC Consortium
University of Toronto

Toronto, Canada
rzon@scinet.utoronto.ca

Wolf Weber
Friedrich Schiller University Jena

Jena, Germany
wolf.wilhelm.stephan.klaus.weber@uni-

jena.de

David P. Bunde
Knox College
Galesburg, USA

dbunde@knox.edu

ABSTRACT
Peachy Parallel Assignments are model assignments for teaching
parallel computing concepts. They are competitively selected for
being adoptable by other instructors and “cool and inspirational”
for students. Thus, they allow instructors to easily add high-quality
assignments that will engage students to their classes.

This group of Peachy assignments features six new assignments.
Students completing them will use 𝑘-Nearest Neighbor for classifi-
cation, cluster using 𝑘-means, implement a data science pipeline of
their choice, model traffic jams, apply parallel language features to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3625541

solve the heat equation, and speed up a machine learning classifi-
cation system.

CCS CONCEPTS
• Applied computing→ Education.

KEYWORDS
Peachy Parallel Assignment, Parallel computing education, Paral-
lel programming, Distributed processing, k-Nearest Neighbor, k-
means clustering, Data sciende pipeline, Nagel-Schreckenberg traf-
fic model, reproducibility, random numbers, Chapel programming
language, heat equation, ensemble classification, Spark, MapReduce,
MapReduce MPI

ACM Reference Format:
H. Martin Bücker, Jeremiah Corrado, Daniel Fedorin, Diego García-Álvarez,
Arturo Gonzalez-Escribano, John Li, Maria Pantoja, Erik Pautsch, Marieke
Plesske, Marcelo Ponce, Silvio Rizzi, Erik Saule, Johannes Schoder, George
K. Thiruvathukal, Ramses van Zon, Wolf Weber, and David P. Bunde. 2023.

https://orcid.org/0000-0002-5210-0789
https://orcid.org/0000-0003-2688-0600
https://orcid.org/0009-0009-5709-2982
https://orcid.org/0000-0001-7176-8058
https://orcid.org/0000-0003-1309-9321
https://orcid.org/0000-0002-3730-3713
https://orcid.org/0000-0002-1942-9769
https://orcid.org/0000-0003-0028-5598
https://orcid.org/0009-0002-2209-4637
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-3804-2471
https://orcid.org/0000-0003-1634-9234
https://orcid.org/0000-0002-0771-3738
https://orcid.org/0000-0002-0452-5571
https://orcid.org/0000-0003-4529-9109
https://orcid.org/0009-0002-2192-4037
https://orcid.org/0000-0001-6334-356X
https://doi.org/10.1145/3624062.3625541

SC-W 2023, November 12–17, 2023, Denver, CO, USA Bücker et al

Peachy Parallel Assignments (EduHPC 2023). InWorkshops of The Interna-
tional Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3624062.3625541

1 INTRODUCTION
Peachy Parallel Assignments are a series of high-quality assign-
ments in Parallel and Distributed Computing (PDC). The goal is to
provide instructors with pre-tested assignments that will motivate
their students while reinforcing important concepts. Publicizing
and spreading these assignments recognizes for the effort instruc-
tors devote to creating them and saves time for those adopting
them.

Assignments are solicited via a public call for submissions and
presented at the EduHPC and EduPar workshops. Selection is com-
petitive based on the following criteria:

• Tested: They have been successfully used with real students
• Adoptable: They are useful to other instructors, with clear
descriptions and the resources needed for adoption.

• Cool and Inspirational: They motivate students through the
artifacts created (e.g., images) or the concepts taught.

The selected assignments are archived on the Peachy Parallel As-
signmentswebpage (https://tcpp.cs.gsu.edu/curriculum/?q=peachy).

This paper describes 6 assignments selected as Peachy Parallel
Assignments. Due to space limitations, the assignment descriptions
have been abbreviated, but full versions are available online [4, 20].

2 K-NEAREST NEIGHBOR
We begin with an assignment to classify objects based on a database
of preclassified objects using the 𝑘-Nearest Neighbors method. It
takes advantage of the increased popularity of data science and
machine learning. For a large database, the algorithm runs slowly,
making it natural to consider parallel computing. This assignment
uses Map Reduce MPI. It was assigned in an upper-division parallel
computing class, but can be adapted for CS1/CS2 or Data Structures.

Problem Description. Students are asked to implement a classifier
on a parallel system. The problem assumes that 𝑛 objects in a
database are represented as 𝑑-dimensional points and that each has
been assigned a class. The goal is to classify each of 𝑞 query points.

The 𝑘-Nearest Neighbor (kNN) method assumes that nearby
points in 𝑑-dimensional space likely belong to the same class. For
each query point, the algorithm finds the 𝑘 database points closest
to it and guesses that it belongs to the class most often represented
in those points.

The direct implementation of that algorithm computes Θ(𝑛𝑞)
Euclidean distances in 𝑑 dimensions for a cost of Θ(𝑛𝑞𝑑). For
each query, identifying the 𝑘 nearest neighbors by sorting costs
Θ(𝑛 log𝑛), but a heap-based implementation [8] reduces this to
Θ(𝑛 log𝑘), making the overall complexity Θ(𝑞𝑛(𝑑 + log𝑘)).

This algorithm takes significant time even on relatively small
instances; a 40-dimensional test case with 5,000 database points
and 5,000 queries takes about 5 seconds sequentially. This easily
motivates the use of parallelism.

Datasets suitable for this assignment are online; https://datahub.
io/machine-learning has 91 instances for classification problems,

from leaf identification to detecting forged bank notes. The variety
of applications helps show the problem’s relevance.

Usage. This assignment was deployed in an undergraduate Par-
allel and Distributed Computing course at UNC Charlotte (ITCS
3145, described in [17]) and in a similar course for Masters students
(ITCS 5145). 𝑘-Nearest Neighbor was used to highlight the features
of MapReduce, a programming paradigm for BigData contexts [9].

The classes are taught in C++ so we do not use Hadoop’s MapRe-
duce framework. Instead, we use MapReduce MPI [15], a C++ li-
brary that sits atop MPI and provides MapReduce functionality.
This assignment came late in the term: it was the last assignment
for undergraduates and the last distributed memory assignment for
graduate students. For both, it followed multiple MPI assignments.

Assignment materials are at https://webpages.uncc.edu/esaule/
classes/2019_08_ITCS3145/assignment-mrmpi.tgz. These include a
classic problem, Word Counting, to familiarize the students with
programming using MapReduce MPI. Students are given a sequen-
tial implementation of k-NN. Their task is to adapt the code using
MapReduce MPI and obtain speedup. Solutions available by request.

In a typical implementation, all processes load the query set
since it is assumed not to be large. Then the database file is parsed
in parallel by multiple map tasks which compute distances and
generate (key:query, value:(distance, class)) pairs. Then a reduction
phase takes the pairs for each query, extracts the nearest neighbors’
classes, and generates (key:query, value:predicted_class) pairs.

This assignment uses many concepts. It highlights MapReduce
and its use to solve BigData problems. It also demonstrates parallel
IO since multiple MPI ranks perform IO in MapReduce MPI. MapRe-
duce is a case of load balancing through hashing. It also shows how
architectural knowledge can help design faster code since adding
local reductions at each rank and again at each multicore node
noticeably improves the communication cost.

Assessment. In two semesters of ITCS 3145 and one semester
of ITCS 5145, students who submitted this assignment performed
reasonably well, but the assignment came at the end of the semester
and many students skipped it, knowing they would pass anyway.

One challenge for students was that they needed time to under-
stand how the problem works since they didn’t write the sequen-
tial code, They also found the API for MapReduce MPI confusing,
mostly because it relies on C-like interfaces, but also because the
map functions have many complex parameters.

Most graduate students were excited to work on a classic data
mining kernel, but some undergraduates did not fully embrace the
application because the vector space mapping is already done and
they only work with the data mining kernel. To address this, we
suggest modifying the assignment so they see a full application.

Adapting the Assignment. The assignment could be adapted
to shared memory programming models like OpenMP, other dis-
tributed memory programming models like MPI, or accelerator
programming models like CUDA.

It could also be adapted to an early programming course. The
new assignment would be to write the whole application: parsing
the database and queries from a CSV file, implement the distance
function with a loop and use the language’s built-in sorting function

https://doi.org/10.1145/3624062.3625541
https://tcpp.cs.gsu.edu/curriculum/?q=peachy
https://datahub.io/machine-learning
https://datahub.io/machine-learning
https://webpages.uncc.edu/esaule/classes/2019_08_ITCS3145/assignment-mrmpi.tgz
https://webpages.uncc.edu/esaule/classes/2019_08_ITCS3145/assignment-mrmpi.tgz

Peachy Parallel Assignments (EduHPC 2023) SC-W 2023, November 12–17, 2023, Denver, CO, USA

to find a query point’s nearest neighbors. To add parallel computing,
have the program find neighbors for each query independently.

For Data Structures, the assignment could focus on space parti-
tioning trees like quad-trees. These can accelerate spatial search [19];
for a “box” of the search space, compute a lower bound on the
distance from its points to a query point and decide whether to
examine any point in the box. More challenging would be to build
the tree in parallel.

3 K-MEANS CLUSTERING
Our second assignment is based on the well-known K-means clus-
tering algorithm. It is notable as the 6th assignment in a series
of Peachy Parallel Assignments [2, 3, 5–7] that ask students to
solve one problem on shared-memory using OpenMP, distributed-
memory with MPI, and also GPUs using CUDA (or OpenCL). The
supporting material for all assignments in this series is available at
https://trasgo.infor.uva.es/peachy-assignments/.

The idea behind this series is that different programming models
use different approaches to parallelize applications and that stu-
dents must understand these variations to effectively tackle parallel
programming on modern heterogeneous platforms. The assign-
ments have been used in an elective Parallel Programming course
for third-year Computer Engineering students at the University of
Valladolid. Implementing each assignment in different program-
ming models not only teaches each model, but also helps students
focus on their similarities and differences.

This assignment is simpler than the others in this series, focusing
mainly on key base concepts: race conditions, reductions, and col-
lective operations. The assignments for each programming model
can be completed in one week each. The students familiarity with
operating systems, concurrency concepts, and C is assumed.

𝐾-means. The 𝐾-means algorithm is an unsupervised clustering
method that groups data into 𝐾 clusters by minimizing the dis-
tance between each data point and the centroid of its cluster. It is a
powerful and popular data mining algorithm used by the research
community [10, 13], with applications such as data segmentation,
pattern analysis, image compression, and fault detection.

Students begin with a sequential program that is intentionally
designed to be understandable. It reads a cloud of points into an
array. Initially, centroid positions are chosen randomly. The main
clustering loop has two phases. First, each point is re-assigned to
the cluster with the closest centroid. The code tracks the centroid
assigned to each point and the number of cluster changes, i.e. points
switching clusters. These operations can cause race conditions
when they are parallelized. Second, each cluster’s new centroid
location is calculated as the arithmetic mean of its points. This
requires counting the number of points classified in each cluster and
summing their coordinate values. As the number of points assigned
to each centroid can be different and they are not contiguous, this
stage presents issues of load-balance and cache management. In
our implementation, the program ends if thresholds on the number
of iterations, number of cluster changes, or centroid displacement
are reached. Figure 1 illustrates the point assignment to centroids.

ce1

ce3

ce2

x1 d = sqrt((x12 - ce12)2 + (x12 - ce12)2)

Figure 1: K-means clustering based on Euclidean distance for
a 2D dataset with three centroids (𝐾 = 3)

Concepts covered. Previous approaches to parallelize theK-means
algorithm (e.g. [11]) skip introducing parallelism to the centroid po-
sition calculations, as it leads to load balancing problems. However,
this leads to a loss of potential parallelism and costly communica-
tions and synchronizations. Other educational proposals (e.g. [1])
use dynamic buffers to store the points in each cluster. This achieves
better locality when traversing buffers in the second step, but adds
complexity.

For this assignment, we provide code with static data structures
and identify a parallelization strategy to help students apply the
theory systematically. They must detect and solve both write and
update race conditions as well as use other collective operations.

The parallelization strategy for this code in OpenMP has four
stages: (1) Detect potential race conditions and their type; (2) Solve
them with critical regions; (3) Improve efficiency by substituting
them with atomic operations; and (4) Detect situations where a
reduction can eliminate a race condition. The code presents oppor-
tunities for further optimizations based on cache effects, etc.

Later, students adapt this strategy to MPI and CUDA/OpenCL.
In MPI, the data structures should be distributed. The initial data
and results can be communicated with collective communication
operations. Students who reach the fourth step in OpenMP, solv-
ing the race conditions with reductions, find MPI easier since a
distributed reduction is needed in any case. For CUDA/OpenCL,
students should use thread-blocks and coalesced memory accesses.
They then determine the situations when atomic operations or re-
ductions aremore profitable. The second phase of themain loop also
introduces load balancing issues that can be tackled by advanced
students.

Using the Assignment. To introduce the assignment, we present
practical applications of K-means. We also give an initial sequential
implementation and summarize it. The parts and functions of the
program to be modified are clearly marked. Example files with
input point clouds of different sizes and dimensions are provided
for training. The only required software is a modern C compiler
with OpenMP support, any MPI library, and a CUDA or OpenCL
toolkit. Although the OpenMP or MPI assignments can run on any
multicore computer, the best experience requires a cluster so the
students can compare performance. In our course for OpenMP, the
target platform is an AMD server with 64 cores that shows inter-
esting effects related to its 4 NUMA nodes. For MPI, we leverage
two interconnected servers, one with 12 physical threads and the
other with 32. During the CUDA/OpenCL evaluation, we use the

https://trasgo.infor.uva.es/peachy-assignments/

SC-W 2023, November 12–17, 2023, Denver, CO, USA Bücker et al

same servers as in the MPI contest, which are equipped with several
NVIDIA GPUs with CUDA 3.5 architecture.

Evaluation. The course enrolled a total of 48 students, who
worked in pairs. A one-week time period is given for each program-
ming model. The students submit their best version for evaluation.
They are also scheduled for an interview with the teacher, during
which they are questioned about their strategies, the results, and
their level of satisfaction with the assignment. All students said the
project significantly enhanced their understanding of the concepts
covered. They were impressed by the reduction in the program’s
run time.

An interesting observation is that approximately 60% of the
students showed a preference for the MPI model over OpenMP.
In all the previous assignments in this series, the trend was the
opposite. We conclude that this assignment is easier in MPI than
our previous assignments because it requires simpler collective
communications and static data structures management.

4 DATA SCIENCE PIPELINE
Our third assignment is an open-ended three-week programming
project where students learn to design, construct, and improve data
analysis and machine learning pipelines using Hadoop, MapReduce,
and Spark on the university’s central compute cluster.

Wider Context. In October 2014, Friedrich Schiller University
Jena began offering a two-year master’s degree program in “Compu-
tational and Data Science” to bring together computational science
and data science. This program is open to students with a bachelor’s
degree in various scientific disciplines, including computer science,
mathematics, the natural sciences, and engineering. It is intended to
train students not only to apply existing techniques for simulation
and data analysis, but also to understand the underlying principles
needed to create techniques of their own.

From its beginning, parallel and distributed computing was an
integral part of this degree program. It includes a mandatory course
on the design and analysis of scalable MapReduce algorithms as
well as hands-on experiences with Hadoop, MapReduce, and Spark.
This course is also attended by Computer Science, Mathematics, and
Business Information Systems students enrolled in other master’s
degree programs. Thus, the course’s target audience is a group of
students with diverse backgrounds and some previous experiences
in serial programming.

Programming Project. For practical training during the course,
students solve a large number of small programming assignments.
Additionally, there is a single three-week programming project
toward the end of the course where students implement a more
comprehensive project, typically in Spark. This project is our Peachy
assignment. It is completed in teams of up to three students. Each
team implements their favorite data science workflow, drawing
on multiple datasets. Moderate programming skills in Python and
prior knowledge of Spark are required. The instructor gives stu-
dents access to a Spark framework running on a compute cluster.
The assignment is not graded, but its successful completion is the
prerequisite for gaining admission to the exam.

The project is designed to deepen the students’ understanding
of managing data-intensive and computationally-intensive appli-
cations. It addresses not only data parallelism, data replication,
and storage management in distributed file systems, but also job
scheduling, and resource management. However, the project’s main
goal is to gain practical experiences in designing, constructing, and
improving true data analysis pipelines. Analogous to the “Compu-
tational and Data Science” program, the project aims to encourage
critical and independent thinking. Thus, teams are given a com-
pletely free choice of topic. The only prerequisites are to (i) use
at least two real-world datasets, (ii) formulate at least three differ-
ent data analysis problems to be solved using these datasets, (iii)
implement the solution in Spark or MapReduce, (iv) go through
multiple steps of a typical data analysis workflow (data aggregation,
cleaning, analysis, communication of findings using visualization),
(v) present the difficulties and findings in class, and (vi) submit the
code and a final project report.

To demonstrate the kind of work students do, we now discuss a
submission from a pair of students who took the course in winter
2021/22. Their project considers aspects of crime in New York City.
One of their data analysis problems asks for the number of arrests
in distinct neighborhoods of New York City. To do this, the students
used four datasets published by https://data.cityofnewyork.us, on
arrests (historic and current year) and Neighborhood Tabulation
Areas (boundaries and population). This pipeline identifies the
spatial positions of all arrests, accumulates the number of arrests
in each neighborhood, and plots a heat map. A conceptual view
of the resulting pipeline is displayed in Figure 2. More detailed
information is available from a public repository [18].

Classroom Experiences. Starting in winter 2015/2016, the pro-
gramming project was assigned annually. Each year, the course is
taken by 20–30 students. This course has a standardized survey
to collect anonymous student feedback, but the response rate is
around half and none of the questions directly focus on the project.
Thus, we focus on some open-ended questions that students often
use to refer to the programming project.

The results of these questions are aggregated in Table 1 for the
four years associated with the winter terms 2019/2020 to 2022/2023.
This table shows the number of students who took an exam and
who completed the final survey. On the one hand, students were
explicitly asked about positive feedback “What did you particularly
like about this course?” On the other hand, they were asked to
suggest further improvements to the course. These two categories
of questions are referred to as positive and negative items (by
subcategories total number of items related to the whole course and
number of items explicitly addressing the programming project).

Forty-three students contributed 33 positive items about the
course, 13 of them specifically about the project. Students appreci-
ated (paraphrased) practical experiences with Spark, gaining practical
experiences using a cluster, and high relevance for future data scien-
tists. One student also appreciates the improvement in my scientific
writing skills. The majority of positive items are related to the flexi-
bility to formulate the research problem and design the solution. The
five negative items raised in the last two years are concerned with
increasing or decreasing the size of the programming project and
the suggestion to grade the project and let that grade constitute a

https://data.cityofnewyork.us

Peachy Parallel Assignments (EduHPC 2023) SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 2: An analysis pipeline that combines datasets from different sources to produce a spatial heat map displaying the
number of arrests per 100,000 citizens in Neighborhood Tabulation Areas (NTAs) of New York City in 2021.

Table 1: Summary of Evaluation Results

Students # Pos. Items # Neg. Items

Winter Exam Survey Total Proj. Total Proj.

2022/23 22 11 14 8 8 4
2021/22 11 12 12 3 8 1
2020/21 18 9 5 2 4 0
2019/20 21 11 2 0 4 0

percentage of the final grade. We observe that students regularly
exceed the project’s requirements.

Finally, it is also noteworthy that, given multiple separate teams
with different topics, instructors must spend substantial effort in
providing useful advice and specific guidance on this project.

5 TRAFFIC MODEL
Our fourth assignment is based on the Nagel-Schreckenberg model,
a stochastic one-dimensional traffic model [14]. In this assignment,
we guide students through creating a shared-memory parallel and
reproducible version of a serial code implementing this model.

Rationale. One of the key elements in the Nagel-Schreckenberg
traffic model is the presence of randomness, without which it would
lack realistic phenomena such as traffic jams. Simulating this model
thus requires using pseudo-random number generators [16] in
parallel, a tricky and often-overlooked scientific computing topic.

Several variations of this assignment have been used in the
graduate course PHY1610 Scientific Computing for Physicists at the
University of Toronto. This course aims to teach students the skills
needed to develop scientific applications: C/C++, best practices in
software engineering, use of established libraries, and experience
with OpenMP andMPI. The course consistently gets positive course
evaluations, is highly practical and applied, and requires students
to develop code on our teaching cluster. It originated in the training
program of the SciNet HPC Consortium (https://scinet.courses).
Because of this, it is also suitable for other scientific disciplines and
many of its topics also fit in an undergraduate curriculum.

Figure 3: One-dimensional simulation of the Nagel-
Schreckenberg traffic model (200 cars, length 1000,
probability 𝑝 = 0.13 and maximum velocity 5) that shows
irregularities (“traffic jams”) in the flow of vehicles and how
they propagate. Without randomness, these do not occur.

Concepts Covered. Implementing of the Nagel-Schreckenberg
traffic model requires a pseudo-random number generator (PRNG).
We use this model as an excellent and easily-relatable example of a
stochastic simulation. The starter code for the assignment is in C++
and can be accessed from https://github.com/Practical-Scientific-
and-HPC-Computing/Traffic_EduHPC-23. Students will develop
their own parallel version using OpenMP for shared-memory multi-
core computers.

One nice feature of this simulation is that it can be solved using
either a grid representation or an agent-based one. The grid repre-
sentation assigns a value to every point on the circular road, while
the agent-based implementation stores the positions and velocities
of the 𝑁 cars as (two) vectors of length 𝑁 . Each implementation has
its advantages, but the agent-based approach significantly simplifies
the parallelization of PRNG.

Pseudo-random numbers are generated by sequentially deriving
a number from an internal state that gets updated with every next
number. Before drawing the first number, the state is initialized with
a seed value, often a single integer. The state update algorithm is
deterministic, and therefore the sequence is reproducible if the same

https://scinet.courses
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23

SC-W 2023, November 12–17, 2023, Denver, CO, USA Bücker et al

seed is used. The resulting sequence of numbers should nonetheless
be nearly indistinguishable from being uniformly distributed.

In the course, students are made familiar with programming
in C++, best practices in software development such as modular-
ity, version control, unit testing, documentation, use of external
libraries, make, file formats such as ASCII, binary, self-describing
formats, etc. For this assignment, students should already have good
working knowledge of C++ and how to use the C++11 standard ran-
dom library. The starting code is fairly modular, so familiarity with
the concepts of C++ headers and implementation files is helpful.
Knowledge of OpenMP is required to do the assignment, including
the parallel, for, and threadprivate compiler directives. The
code does not require external libraries.

One of the trickiest parts in the parallel implementation of this
model, and the one highlighted in this assignment, is managing the
PRNG in parallel so that the output of the parallel code is exactly the
same as the serial code. Scientific reproducibility is a critical topic
nowadays. Without this requirement, one could parallelize the code
by giving each thread its own PRNG, starting from different seeds.
However, this gives different results when the number of threads
changes. Although this may be allowed sometimes, this assignment
requires identical behavior on different numbers of threads.

Reproducibility requires using a shared sequence of random
numbers. While generating a random number sequence is generally
a serial process, several random number generators have algorithms
for quickly “moving ahead”. Because these are not implemented
in the C++ standard random library, the assignment starter code
implements a fast-forward algorithm for one of the C++ linearly
congruent generators.

Limitations. The scaling that students achieve depends highly
on how well they reduced the cost of fast-forwarding the random
number generators and other serial parts of the code. Scaling beyond
a single socket is not ideal due to NUMA effects. Finally, one should
not use more virtual cores than physical ones; even if there is a
small benefit, the timing results are hard to interpret.

Variations. In this assignment, we focused on the parallelization
of the algorithm, particularly the PRNG implementation using a
shared-memory approach. In other variations we have used in the
past, we have asked students to create their own serial implementa-
tion from scratch, or to adapt the output to use the NetCDF library.
This problem offers many other opportunities for variation that
address other HPC aspects. Students could implement a distributed-
memory parallel code using MPI, port the code to use GPUs, run
a series of parameter study cases and take advantage of embar-
rassingly parallel jobs, perform scaling analysis, do a performance
analysis by profiling the code, change boundary conditions, etc.

6 1D HEAT EQUATION IN CHAPEL
Our fifth assignment uses the Chapel programming language to
create a 1D heat equation solver. This is done in two ways, exposing
various parallel programming concepts. The first part of the assign-
ment uses high-level parallel constructs, namely Chapel’s forall
loop and Block distribution, to create a simple distributed-memory
solver. Here, students are asked to think about what it means for
an array to be split across the memory in multiple compute nodes

while relying on the language to handle the details of communica-
tion and synchronization. The second part of the assignment uses
low-level parallel constructs such as Chapel’s coforall loop (used
to manually spawn threads), barriers, and explicit communica-
tion. Here, the goal is to create a more efficient solver by reducing
overhead, while also introducing students to explicit communica-
tion and synchronization. For each part, students are provided with
a non-distributed version of the solver and asked to create version
that runs across multiple compute nodes. The assignment materials
are at https://github.com/jeremiah-corrado/Chapel-Heat1D-PPA.

Motivation. The heat equation is a simple partial differential
equation (PDE) that can be solved using the finite difference method.
It is highly amenable to parallelization and distribution while ex-
posing enough complexity to motivate interesting discussion of
parallel programming concepts.

Here, we will solve the PDE using the Chapel Programming
Language. Chapel is a modern general-purpose language designed
to make parallel and distributed programming highly productive
while achieving performance similar to other HPC stacks such as
C++/MPI/OpenMP. As such, it allows us to introduce some PDC
concepts to new HPC programmers. Specifically, this assignment is
aimed at students with some solid programming experience who
are interested in scientific computing, have a need for HPC, and
are familiar with at least one high-level language like Python or
Matlab. Students will learn about parallelizing order-independent
loops, writing distributed memory patterns, and reasoning about
synchronization and communication in a multi-node setting.

Assignment. This assignment uses this form of the 1D heat equa-
tion:

𝜕𝑢

𝜕𝑡
= 𝛼 ∗ Δ𝑢 = 𝛼 ∗ 𝜕

2𝑢

𝜕𝑥2

which can be converted into the following discretized form:

𝑢𝑛+1 [𝑥] = 𝑢𝑛 [𝑥] + 𝛼 ∗ (𝑢𝑛 [𝑥 − 1] − 2 ∗ 𝑢𝑛 [𝑥] + 𝑢𝑛 [𝑥 + 1])
Here, 𝑢 is an array of values defined at discrete points in space

(𝑥 ∈ Ω) and time (𝑛, 𝑛 + 1, . . .). Given initial conditions and forc-
ing values on the edges (Dirichlet boundary conditions), we will
approximate 𝑢 using the following algorithm:

1. define Ω to be a set of discrete points on the x-axis, and
Ω̂ ⊂ Ω to not include boundary points (𝜕Ω ⊄ Ω̂)

2. define an array: u over Ω with some initial conditions
3. create a temporary copy of u named un
4. for nt time steps do the following:
1. swap u and un
2. compute un in terms of u over Ω̂

The given file Example1.chpl has an implementation of this
algorithm. An important aspect of this computation is that un can
be computed in parallel, as each of its values depends strictly on
the previous time step’s values. The given code uses a forall
loop to automatically split step 4.2 across multiple tasks. Chapel’s
runtime will execute tasks on all the available cores concurrently. In
a distributed setting, the forall loop can also be used to parallelize
computations across multiple compute nodes and across the cores
of each node with a single loop.

The first part of the assignment is to convert Example1.chpl
into distributed code, i.e., a version that splits the problem across

https://github.com/jeremiah-corrado/Chapel-Heat1D-PPA
https://chapel-lang.org/
https://chapel-lang.org/

Peachy Parallel Assignments (EduHPC 2023) SC-W 2023, November 12–17, 2023, Denver, CO, USA

multiple compute nodes, taking advantage of the collective memory
and processing capacity of a cluster. To do this, students will use
Chapel’s concept of a distribution. A distribution maps the entries
in a domain (a set of indices, like Ω) to a memory layout across a
group of nodes (called locales in Chapel). See the following snippet
that uses the Block distribution to create a distributed 1D domain:

use BlockDist;
config const n = 1000;
const D = Block.createDomain({0..<n});
var a = [i in D] i;
forall i in D do a[i] *= i;

It initializes an array a over that domain, setting the value of each
element to its index, then squares each value in parallel using a
forall loop. Running this program across multiple compute-nodes
(or locales) will split a into evenly-sized contiguous blocks in the
memory across the nodes. The computation on each block will be
executed on their respective locales.

Second part: One drawback of the above approach is that new
tasks are created and destroyed by the forall loop at each time
step, which incurs overhead. To avoid this, we introduce a modified
version of the code that re-uses the same set of tasks throughout.

The associated file, Example2.chpl, makes use of several new
constructs. A barrier is used to manage synchronization among
tasks, something the forall loop did for us automatically. The
coforall loop spawns exactly one task per iteration (unlike the
forall loop that evenly splits work across available cores). A pro-
cedure (taskSimulate) is used to abstract away the computation
for a single task. Array and range slices are used to copy the initial
conditions into each task’s local array. The foreach loop is used to
express order-independent parallelism without creating new tasks.

In addition synchronizing via the barrier, we also need to manage
the sharing of edge-values between tasks that own neighboring
regions of the global array. The code does this by creating a global
array of “halo” cells. At each time step, tasks store the values along
their edges in their neighbors’ halo cells. They then copy the neigh-
bors’ values into their own local array.

The assignment’s second part is to convert Example2.chpl into
a distributed code. To do this, we need to understand how to specify
where a computation (taskSimulate in our case) should be exe-
cuted and where memory should be allocated. In part 1, locality was
specified behind the scenes by the Block distribution’s implemen-
tation. For this part, we need to use an on-statement to explicitly
designate which locale each task should run on, and by extension,
where its variables should be stored in memory.

The following code snippet executes 10 tasks on each locale in
the global Locales array (an array of available locales):

coforall loc in Locales do on loc {
coforall tid in 0..<10 {
var a: [1..5] int = loc.id * tid;
writeln("Task ", tid,

" of 10 on Locale", here.id,
". 'a' is on locale: ", a.locale.id);

}
}

The outer coforall loop, creates one task per locale and uses an
on-statement to specify the locale on which it should run. The inner
loop spawns 10 more tasks, declares an array, and prints a message.
This code prints one line for each task in arbitrary order.

The second part of the assignment is to use these concepts to
complete the explicit task-parallel solver.

7 HYPER-PARAMETER OPTIMIZATION
Our final assignment involves Deep Learning (DL), part of Machine
Learning (ML). Most DL models assume that the input data dis-
tribution is identical between testing and validation, though they
often are not. For example, if we train a traffic sign classifier, the
model might incorrectly classify a graffitied stop sign as a speed
limit sign. Often ML provides high-confidence (softmax) output
for out-of-distribution input that should have been classified as “I
don’t know”. By adding the capability of propagating uncertainty
to its result, the model can provide not just a single prediction, but
a distribution over predictions that will help the user determine
the model’s reliability. Uncertainty estimation is computationally
expensive; in this assignment, we accelerate the calculations using
divide-and-conquer techniques.

An example of the desired behavior is given in Figure 4, which
shows a handwriting recognition system with uncertainty estima-
tion. The handwritten digit can be confusing even for humans.
Our model outputs a value of 4, but also provides a relatively high
uncertainty of 0.4. Meanwhile, a clear image produces very low
uncertainty, as seen in Figure 4b. Depending on the application, the
user can decide what to do with outputs of high uncertainty.

This assignment is from an undergraduate Distributed Comput-
ing (DC) class where most students have no experience in ML. We
explain the ML concepts necessary to understand the problem and
then explain where in the code the independent tasks are generated
and how they can be distributed among nodes using MPI4Py. Nec-
essary prerequisites include introductory python programming and
an understanding of threads. The students are given slides explain-
ing the problem and starter code. These can be found at https://drive.
google.com/drive/folders/1KrxWlMZpoJzph0Y7VbZj_yYyACK-Jusl?
usp=sharing)

The PDC concept covered is how to distribute independent tasks
to different nodes in MPI when the number of nodes is not evenly
divisible by the number of tasks. By using an assignment related to
distributed ML, this concept is made more appealing to students.

How it works. To quantify uncertainty we use an ensemble, in
which several models (an ensemble) are trained independently with
the same data.When an ensemble is run, the result is an aggregation
of the individual model results. Ensembles perform model combi-
nations, combining weak models to obtain a more powerful one.
For our project, each model is a neural network (NN). We generate
these intermediate models while performing Hyper-parameter Op-
timization (HPO) so uncertainty evaluation is essentially free (in
execution time).We use the best-performingmodels to identify both
the uncertainty and optimal hyperparameters. For classification
problems with input 𝑥 and label 𝑦, the NN models the probabilistic
predictive distribution of 𝑝𝜃 {𝑦 | 𝑥}, where 𝜃 is the parameters
of the NN. Let 𝑀 be the number of NNs in the ensemble, with
{𝜃𝑚}𝑀

𝑚=1 being the corresponding hyperparameters. Each NN is

https://chapel-lang.org/docs/language/spec/locales.html#the-on-statement
https://drive.google.com/drive/folders/1KrxWlMZpoJzph0Y7VbZj_yYyACK-Jusl?usp=sharing
https://drive.google.com/drive/folders/1KrxWlMZpoJzph0Y7VbZj_yYyACK-Jusl?usp=sharing
https://drive.google.com/drive/folders/1KrxWlMZpoJzph0Y7VbZj_yYyACK-Jusl?usp=sharing

SC-W 2023, November 12–17, 2023, Denver, CO, USA Bücker et al

Figure 4: Image with: A) High Uncertainty. B) Low Uncertainty output is always 4 for all the ensembles

trained in parallel using the entire training set and the predictions
are aggregated by averaging the predicted probabilities.

Giving the assignment: Since students are not assumed to know
ML, we begin the assignment by briefly introducing it in class. We
then spend 15–30 minutes of lab time explaining the provided code
to do a simple Fully Connected Neural Network that classifies the
MNIST handwritten digits [12].

For the application, the idea is to run each model as a tasks; this
results in independent tasks whose results must then be aggregated.
Once they can identify the given code, the students are asked to
write the code to map the tasks to the nodes using MPI4Py, an MPI
package for Python.

Interesting variations of this assignment include adding the abil-
ity to check the accuracy of the model at regular intervals or killing
some of the lowest performing nodes and reassign their resources.

ACKNOWLEDGMENTS
Development of the 𝑘-nearest neighbor assignment was partially
supported by NSF grants CCF-1652442 and DUE-1726809.

The 𝑘-means assignment was developed in the context of the
GAMUVa group (https://gamuva.infor.uva.es/), and it has been
partially supported by Vicerrectorado de Innovación Docente y
Transformación Digital de la Universidad de Valladolid, Proyectos
de Innovación Docente, PID2122_65, and PID2223_58, and by the
NVIDIA Hardware Grant Program, which provided GPU devices
used during the assignments.

Development of the pipeline assignment used the Ara cluster at
Friedrich Schiller University Jena, which is supported by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) un-
der grants INST 275/334–1 FUGG and INST 275/363–1 FUGG.

Development of the hyperparameter optimization assignment
was supported by Sustainable Horizons Institute, part of the Ex-
ascale Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration and by Argonne National Labo-
ratory. This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357.

REFERENCES
[1] Aawright, Abunch, Nslobody, and Yingchal. 2013. Decomposi-

tion, Assignment, and Orchestration of K-Means Clustering, Paral-
lel Computer Architecture and Programming (CMU 15-418). On
http://15418.courses.cs.cmu.edu/spring2013/article/10 (last visit Aug 2023).

[2] Mulya Agung, Muhammad Alfian Amrizal, Steven Bogaerts, Ryusuke Egawa,
Dani el A. Ellsworth, Jorge Fernandez-Fabeiro, Arturo Gonzalez-Escribano,
Sukhamay Kundu, Alina Lazar, Allen Malony, Hiroyuki Takizawa, and David P.

Bunde. 2019. Peachy Parallel Assignments (EduHPC 2019), Fire extinghuising.
In IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC
2019). IEEE, Denver (CO), USA. https://doi.org/10.1109/EduHPC49559.2019.00015

[3] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-Escribano añd
J. Gutierrez, D.A. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-Gutiez, and D.P. Bunde.
2018. Peachy Parallel Assignments (EduHPC 2018), Energy Storms. In IEEE/ACM
Workshop on Education for High-Performance Computing (EduHPC 2018). IEEE,
Dallas (TX), USA. https://doi.org/10.1109/EduHPC.2018.00012

[4] H. Martin Bücker, Jeremiah Corrado, Daniel Fedorin, Diego García-Álvarez,
Arturo Gonzalez-Escribano, John Li, Maria Pantoja, Erik Pautsch, Marieke Plesske,
Silvio Rizzi, Erik Saule, Johannes Schoder, George K. Thiruvathukal, Wolf Weber,
and David P. Bunde. 2023. Full versions of Peachy assignments from EduHPC
2023. (2023). https://doi.org/10.6084/m9.figshare.c.6860107

[5] Rocío Carratalá-Sáez, Arturo Gonzalez-Escribano, Alexandros-Stavros Iliopoulos,
Charles E. Leiserson, Charlotte Park, Isabel Rosa, Tao B. Schardl, and Yuri Torres
David P. Bunde. 2022. Peachy Parallel Assignments (EduHPC 2022), Hill Climbing
with Monte Carlo. In IEEE/ACM Workshop on Education for High-Performance
Computing (EduHPC 2022). IEEE, Dallas (TX), USA. https://doi.org/10.1109/
EduHPC56719.2022.00012

[6] Henri Casanova, Rafael Ferreira da Silva, Arturo Gonzalez-Escribano, William
Koch, Yuri Torres, and David P. Bunde. 2020. Peachy Parallel Assignments
(EduHPC 2020), Life Evolution. In IEEE/ACM Workshop on Education for High-
Performance Computing (EduHPC 2020). IEEE, Atlanta (GE), USA. https://doi.
org/10.1109/EduHPC51895.2020.00012

[7] Henri Casanova, Rafael Ferreira da Silva, Arturo Gonzalez-Escribano, Herman Li,
Yuri Torres, and David P. Bunde. 2021. Peachy Parallel Assignments (EduHPC
2021), Wind Tunnel. In IEEE/ACM Workshop on Education for High-Performance
Computing (EduHPC 2021). IEEE, St. Louis (MO), USA. https://doi.org/10.1109/
EduHPC54835.2021.00012

[8] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Cliff Stein. 2009. Intro-
duction to Algorithms (third edition ed.). MIT Press.

[9] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Communication of the ACM 51, 1 (Jan. 2008), 107–113.

[10] Abiodun M. Ikotun, Absalom E. Ezugwu, Laith Abualigah, Belal Abuhaija, and
Jia Hemi ng. 2023. K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data. Information Sicences 622
(2023), 178–210. https://doi.org/10.1016/j.ins.2022.11.139

[11] N. Mi J. Bhimani, M. Leeser. 2015. Accelerating K-Means Clustering with Par-
allel Implementations and GPU computing. In 2015 IEEE Conference on High
Performance Extreme Computing (HPEC). IEEE, Waltham (MA), USA. https:
//doi.org/10.1109/HPEC.2015.7322467

[12] Yann LeCun, Lawrence D Jackel, Léon Bottou, Corinna Cortes, John S Denker,
Harris Drucker, Isabelle Guyon, Urs A Muller, Eduard Sackinger, Patrice Simard,
et al. 1995. Learning algorithms for classification: A comparison on handwritten
digit recognition. Neural networks: the statistical mechanics perspective 261, 276
(1995), 2.

[13] Mitchell, Tom M. 1997. Machine Learning. McGraw-Hill, Boston, MA.
[14] Kai Nagel and Michael Schreckenberg. 1992. A cellular automaton model for

freeway traffic. Journal de physique I 2, 12 (1992), 2221–2229.
[15] Steven J. Plimpton and Karen D. Devine. 2011. MapReduce in MPI for Large-scale

Graph Algorithms. Parallel Computing (ParCo) 37, 9 (Sept. 2011), 610–632.
[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 2007. Numerical

Recipes. Cambridge University Press, Chapter 7.
[17] Erik Saule. 2018. Experiences on Teaching Parallel and Distributed Computing

for Undergraduates. In Proc of IPDPSW 2018.
[18] J. Schoder, M. Plesske, W. Weber, and H. M. Bücker. 2023. Project: Program Your

Favorite Data Science Pipeline. Friedrich Schiller University Jena. Retrieved
August 18, 2023 from https://git.uni-jena.de/big_data_assignments/projects.git

[19] Clifford A. Shaffer. 2011. Data Structures & Algorithm Analysis in Java (3rd edition
ed.). Dover.

[20] Ramses van Zon and Marcelo Ponce. 2023. Parallelizing a 1-Dim Nagel-
Schreckenberg Traffic Model. (2023). https://doi.org/10.48550/arXiv.2309.14311

https://gamuva.infor.uva.es/
https://doi.org/10.1109/EduHPC49559.2019.00015
https://doi.org/10.1109/EduHPC.2018.00012
https://doi.org/10.6084/m9.figshare.c.6860107
https://doi.org/10.1109/EduHPC56719.2022.00012
https://doi.org/10.1109/EduHPC56719.2022.00012
https://doi.org/10.1109/EduHPC51895.2020.00012
https://doi.org/10.1109/EduHPC51895.2020.00012
https://doi.org/10.1109/EduHPC54835.2021.00012
https://doi.org/10.1109/EduHPC54835.2021.00012
https://doi.org/10.1016/j.ins.2022.11.139
https://doi.org/10.1109/HPEC.2015.7322467
https://doi.org/10.1109/HPEC.2015.7322467
https://git.uni-jena.de/big_data_assignments/projects.git
https://doi.org/10.48550/arXiv.2309.14311

	Abstract
	1 Introduction
	2 k-Nearest Neighbor
	3 K-means clustering
	4 Data Science Pipeline
	5 Traffic Model
	6 1D Heat Equation in Chapel
	7 Hyper-Parameter Optimization
	Acknowledgments
	References

