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ABSTRACT
The Parallel and Distributed Computing community has been inter-
ested in integrating PDC content into early CS curriculum to prime
the students for more advanced materials and build a workforce
able to leverage advanced computing infrastructure. To deploy this
strategy at scale, it is important to identify anchor points in early
CS courses where we can insert PDC content.

We present an analysis of CS courses that primarily focuses on
CS1 and Data Structure courses. We collected data on course con-
tent through in-person workshops, where instructors of courses
classified their course materials against standard curriculum guide-
lines.

By using these classification, we make sense of how Computer
Science is being taught. We highlight different types of CS1 and
Data Structure courses. And we provide reflection on how that
knowledge can be used by PDC experts to identify anchoring points
for PDC content, while being sensitive to the needs of instructors.
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1 INTRODUCTION
Parallel and Distributed Computing is a topic that is critical to Sci-
entific Computing, Machine Learning, Simulation, and Big Data;
especially to process data at scale. Having a large population of
scientists and engineers who can leverage modern computing hard-
ware is critical to delivering the next generation of computing. The
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challenge has been on finding the best strategy to integrate PDC
education into the CS curriculum without too much disruption.

The NSF/IEEE-TCPP PDC curriculum guidelines released in 2012
(PDC12) represents an effort to bring more parallel computing
concepts into early computer science courses. To date, it has been
moderately successful. But insufficient knowledge or training in
PDC topics among instructors has been a challenge to overcome. In
particular, instructors would like access to materials that are related
to their current course learning objectives. Other strategies include
having PDC experts create learning materials for instructors in
early CS courses, but developing appropriate materials one course
at a time is a herculean task.

The strategy we pursue is to get a deeper understanding of
the structure of these early courses so that one can develop ma-
terials for many courses at once. However, we believe that the
structure and content of these courses are more varied than we
usually imagine them to be. We intend to use the ACM/IEEE Com-
puter Science curriculum guidelines [11, 18] as a lingua franca for
classifying/aligning the course content against these guidelines. By
bringing together large numbers of courses into this framework,
we can get a better understanding of how early CS courses are
being taught, what topics are being covered and the level of stu-
dent expectations. This level of understanding of a course structure
then makes it possible to provide recommendations for PDC ex-
perts to develop materials (lectures, assignments, labs) that can be
integrated into specific part(s) of a wide range of courses.

Over the past three years, we have built and used the CSMaterials
system [9, 10] to build a collection of early CS courses (CS1, CS2,
Data Structures, Algorithm Analysis) aligned to the ACM/IEEE
CS 2013 guidelines. CS Materials is a public resource that allows
instructors to assess their course learning materials against the
ACM and PDC Curriculum Guidelines, by classifying their course
in the system.

In this paper, we describe the analysis of the early CS courses
that we have collected over the past three years, variations within
these courses and their implications for introducing PDC content
into them.
Contributions.Weuse aNonNegativeMatrix Factorization (NNMF)
scheme to analyze two sets of courses, roughly corresponding to
CS1 and Data Structures and Algorithms and analyze the resulting
categories; the results bring out flavors of these courses correspond-
ing to the underlying content, as well as the level of agreement
among them. The factorization also allows us to look at the content
of these courses and recommend PDC content into specific parts of
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these courses. Further study will be needed with a larger sample
size to confirm these results.

2 BACKGROUND
2.1 Curriculum Guidelines
ACM and IEEE produce computing curriculum guidelines and the
latest version is from 2013 [11] with an expected revision by Dec.
2023 [18]. The 2013 guidelines specify a ‘redefined body of knowl-
edge, a result of rethinking the essentials necessary for a Computer
Science curriculum’. The guidelines provide numerous exemplars
at the syllabus level of actual courses and programs that can be
adopted by CS departments. The guidelines divide the body of
knowledge into knowledge areas; which are further divided into
knowledge units; which subdivide further into topics and learning
outcomes. Learning outcomes have three levels of mastery: familiar-
ity, usage and assessment. The CS Materials system we use currently
supports the 2013 CS curriculum guidelines. Sub-areas of computing
have also developed their own standards, such as parallel comput-
ing [14], cybersecurity [3], data science [2] and high school CS
curriculum [6, 7].

The 2012 NSF/IEEE-TCPP curriculum for Parallel Distributed
Computing [14] (we will denote PDC12) is an effort to accurately
map the PDC topics that are necessary for all students to know. It is
divided in four areas: Algorithm, Architecture, Programming, and
Cross-Cutting and Advanced topics. Contrary to the CS13 guide-
lines, the PDC12 curriculum presents learning outcomes only as a
description of topics rather than as separate items. The PDC guide-
lines also associate Bloom levels [5] (such as Know, Comprehend,
and Apply) with the topics to clarify the minimum level of under-
standing a student should have. While the CS13 curriculum groups
topics into a core-1 (must cover 100%), core-2 (should cover 80% at
least), and elective; the PDC curriculum only exposes two levels:
core and elective. The PDC curriculum is currently under revision
with a new version coming in 2023 (a beta version was released in
late 2020 [15]).

2.2 Learning Material Repositories
The CS education community has published pedagogical content,
especially for early CS courses. For CS0, CS1, and CS2 assignments
unrelated to PDC, Nifty assignments are a popular set of assign-
ments [16]. For PDC content, the Peachy Parallel Assignments [8]
and PDC Unplugged [13] are common resources.

Nifty Assignments. The Nifty assignments repository is a set of
assignments that have been collected since 1999 (over 100 assign-
ments) through an annual competition, as part of the ACM SIGCSE
conference. These selected assignments are presented at the confer-
ence and are chosen based on their engagement, adaptability, and
scalability. These assignments are intended for early courses like
CS0, CS1, and CS2. They now include metadata including topics,
difficulty level, strengths/weaknesses, dependencies, and variants.

Peachy Parallel Assignments. The EduPar and EduHPC work-
shops launched the Peachy Parallel assignments to promote well-
designed, exciting and intriguing tasks that contain some [8] fea-
tures of distributed and parallel computing. Peachy Parallel’s em-
phasis on adoption has been successfully implemented in real-world

educational settings. Peer review, publication, and presentation of
the tasks at EduPar and EduHPC have resulted in 11 assignments
released in 2018 and 9 published in 2019.

PDC Unplugged. A repository called PDC Unplugged includes a
variety of unplugged parallel and distributed computing activities.
The activities cover CS0, CS1, and CS2 early courses, Data Struc-
tures and Algorithms sophomore courses, and advanced courses.
Throughout these sessions, there are around 130 different activities.
These exercises offer a simple introduction to PDC resources and
can be included in a larger assignment that starts with unplugged
activities and progresses to a more formal programming activity.
The unplugged activities in PDCUnplugged are linked to the entries
of the curricular standards that they address.

3 DATA COLLECTION
3.1 CS Materials
The CSMaterials system [9, 10] was constructed to facilitate the clas-
sification of learning materials against national standards for cur-
riculum guidelines. Classifying learning materials against curricu-
lum guidelines facilitates comparing learning materials or whole
courses and programs against a common baseline. Currently, CS
Materials supports the ACM/IEEE 2013 CS guidelines [11] as well
as the NSF/IEEE-TCPP 2012 curriculum guidelines for parallel and
distributed computing [14]. We currently have over 30 courses
classified in our system. Each course is made up of a collection of
materials that are mapped to topics and learning outcomes in the
ACM/PDC guidelines. All courses, their classifications, and con-
tributed materials can be accessed on our CS Materials website [17].
In total, about 1700 materials have been added to CS Materials.

3.1.1 Visualization. CS Materials currently supports three visual-
ization types to display course topics/outcomes: radial views, simi-
larity graphs, and a table (matrix) view for interactively classifying
course topics and outcomes.

To understand a course’s coverage in terms of topics or objectives,
users can view a hit-tree in the CS Materials system. The hit-tree is
a tree representation where items associated with the course are
highlighted in a subset of the ACM/PDC classification tree. The tree
is arranged radially by identifying the level with the most nodes,
known as the reference level, and uniformly spacing all nodes at
that level. The radial tree can also be used for alignment between
two subsets of materials where the size of the node indicates the
number of materials that are classified against that classification
item, while the node color uses a divergent scale, ranging between
the two sets of materials (mid-range of the scale represents the
materials are fully aligned)

The matrix visualization provides users the ability to quickly edit
the curriculum mapping of multiple materials at once. This matrix
displays materials as columns and curriculum-mapped tags as rows.
The cell indicates whether a particular tag maps to a material, and
the view is interactive to allow to quickly edit curricular mappings.
To help users understand the materials and their course mapping,
entries in the matrix view are bi-clustered to highlight related
material/tag patterns in the curriculum.
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Class Name CS1 OOP DS Algo SoftEng PDC
UNCC ITCS 2214 KRS Data Structures and Algorithms X
UNCC ITCS 2214 Saule Data Structures and Algorithms X
UNCC ITCS 3145 Saule Parallel and Distributed Computing X
UNCC ITCS 3112 KRS Object Oriented Programming X
CCC CSCI 40 Kerney CS1 X
Hanover cs225 Wahl Algorithmic Analysis 2021 X
VCU CMSC 256 Duke Data Structures and Object-oriented Programming X X
CCC CSCI 41 Kerney CS2
BSC CAC 210 Wagner Data Structures and Algorithms X
UNCC ITCS 2215 KRS Algorithms X
GSU CSC4350 Levine Software Engineering X
Tulane CMPS1100 Kurdia Intro to Programming X
Knox CS309 Bunde Parallel Computing X
LSU CSC 1350 Kundu Parallel Computation X
UCF COP3502 Ahmed Computer Science 1 (CS1) Data structure and algorithm X X
WashU CSE131 Singh Computer Science 1 X
UNL CSCE 155E Bourke Computer Science I using C X
UNCC ITCS 4155 Payton Software Development Projects X
Tulane CMPS1500 Toups CS1 X
UTSA Bopana Computer Network

Figure 1: Courses in the dataset considered in this paper

3.1.2 Searching. It can be helpful to search for materials such as a
better set of slides or examples to explain complex concepts, engag-
ing assignments that meet specific learning outcomes, or external
materials to provide alternate explanations for students. The CS
Materials system leveraging the mapping materials with topics
and learning objective to find materials related to certain topics,
learning objectives, and outcomes Materials can also be searched
by course level, author, programming language and datasets used.

It can be difficult to find specific learning materials in current
repositories. However, using CS Materials, searching for assign-
ments or lecture materials that match specific topics and learning
outcomes is easy, but also more robust. This approach is more
comprehensive and reliable. Instructors can use the system to eas-
ily locate "additional materials" for their students to use in their
studies.

It can also be difficult to understand how good the result of a
search is and if the recommendations relate to the original search
topic. To solve this, we create a graph where materials (including
query and results) are vertices and the edges between them are
weighted by the similarity they share. The similarities are then
passed to a Multidimensional Scaling (MDS) [1] algorithm to map
the materials to a 2D location where more similar materials are
naturally clustered together.

3.2 Course Analysis Workshops
We conducted long-form workshops where instructors input and
analyzed one of their courses. These workshops follow a 2-day for-
mat located at a university or colocated with a scientific conference.
Some of the early workshops were conducted online. The first day
is spent educating the attendees on modern course design, how
to use CS Materials, and inputting their class in the system. The
second day is spent analyzing their class. We instruct them on how
to study the coverage of their class; on how to study the alignment
between content delivery, activities, and assessment; on how to find
new materials for their class; and on how to study the dependencies
of topics in their classes.

Each workshop had about 10 attendees. In total, there are 31
courses fully classified in the system. For technical reasons, we
had to exclude 11 and retain 20 in total. We list the courses in
Figure 1. Based on the name of the courses, we grouped them as
CS1, Object Oriented Programming, Data Structure, Algorithms,
Software Engineering, or Parallel and Distributed Computing.

Figure 2: NNMF model of all courses with 𝑘 = 4,𝑊 matrix
only.

4 ANALYSIS
4.1 Methods: Non-Negative Matrix Factorization
A core assumption of our researchmethod is that classifying courses
against curriculum guidelines will lead to us understanding the
structures and differences in courses. The first question we seek to
answer is whether we see any difference in the courses based on
their classification against the ACM/IEEE Computer Science 2013
guideline.

To perform that analysis we represent the courses as 𝐴, a 0-1
matrix where each row represents a course in our analysis, and
each column represents an entry in the curriculum guideline. Then
we will perform a nonnegative matrix factorization (NNMF) [12]
to obtain two matrices𝑊 and 𝐻 such that 𝐴 ≈𝑊 ×𝐻 . While 𝐴 is
of dimension 𝐶𝑜𝑢𝑟𝑠𝑒𝑠 ×𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚,𝑊 is of size 𝐶𝑜𝑢𝑟𝑠𝑒𝑠 × 𝑘 , and
𝐻 is of size 𝑘 ×𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚 where 𝑘 is a hyper parameter of this
unsupervised machine learning model. All the NNMF we present
are computed using scikit learn v1.3.0 with default parameters and
random initialization.

This decomposition is particularly suitable for classifying objects
when it is expected that these objects are linear combinations of a
few types. NNMF is commonly used in Natural Language Process-
ing for topic modeling [4] where, for instance, news articles can be
modeled as a combination of topics, and these topics are associated
with a particular set of words in the lexical field of that topic. Simi-
larly, for courses, it is reasonable to expect that courses in the same
space will cover the same type of computer science and if a course
is outside of a single type, it will spend some time covering one and
sometimes covering the other in what will approximate a linear
combination. As an example, the parallel computing course of one
of the authors can briefly be expressed as 20% theory, 40% shared
memory programming, and 40% distributed memory programming.

To interpret the decomposition, one should think of the hyperpa-
rameter 𝑘 as the number of types of courses we are trying to extract
from the data. Matrix𝑊 is a mapping of particular courses to types
of courses. And matrix 𝐻 is a mapping of types of courses to the
topics and outcomes in the guideline which is usually covered by
that type of course.



SC-W 2023, November 12–17, 2023, Denver, CO, USA McQuaigue et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  50  100  150  200  250

H
ow

 m
an

y 
co

ur
se

s 
th

e 
ta

g 
ap

pe
ar

s 
in

Tags

(a) CS1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  50  100  150  200  250  300

H
ow

 m
an

y 
co

ur
se

s 
th

e 
ta

g 
ap

pe
ar

s 
in

Tags

(b) Data Structures

Figure 3: Agreement in CS1 and Data Structure courses

4.2 Do we see the different types of courses in
the data?

We computed a decomposition of all courses with 𝑘 = 4 dimensions.
We present a heat map of the𝑊 matrix in Figure 2. That matrix has
1 row per course and one column for each of the 𝑘 = 4 dimensions.
We expect each of the dimensions to represent a type of course and
the decomposition supports that hypothesis. Dimension 4 has a
high intensity on courses which seems to be about data structures.
Dimension 2 has high intensity on courses related to software
engineering. Dimension 3 has a high intensity in parallel computing
courses. Dimension 1 has a high intensity in CS1 courses.

This result validates two hypotheses. First, classifying courses
against curriculum guidelines enables one to differentiate and study
the content of courses. Second, nonnegative matrix factorization
uncovers structure in course classification data.

4.3 Is there agreement on what CS1 is?
While all the CS1 courses appeared in the same type in the analysis
presented in Figure 2, they did not all belong to the type with the
same intensity. This indicates that there are differences in these
courses. To understand the differences, we first present in Figure 3a
an overview of the agreement of topics in CS1. We show the distri-
bution of how many courses tags appear in.

We have 6 courses in the data set that are called CS1 or intro pro-
gramming. They map in total to over 200 curriculum tags. But only
about 25 appear in 3 or more courses. And only 50 tags appear in 2
or more courses. This seems to indicate a significant disagreement
between CS1 courses.

To understand the structure of that disagreement, we show in
Figure 4 a tree view of the curriculum tags that appear in multiple
CS1 courses. The curriculum guideline is organized as an ontology:
there are knowledge areas that contains knowledge unit, which
themselves contain topics and learning outcomes. It makes a tree
visualization particularly appropriate. The red node is the root of
the curriculum guideline. We labeled the knowledge areas (the
first level nodes) with their names (SDF: Software Development
Fundamentals, Algo: Algorithm and Complexity, Arch: Architecture
and Organization, PL: Programming Languages).

The curriculum mappings that appear in 2 courses or more span
4 knowledge areas. But only 13 curriculum mappings appear in
4 courses or more and they all fall within Software Development
Fundamentals and 12 of those are in the Fundamental Programming
Concepts knowledge unit. This seems to indicate that there is only
the most basic agreement on what CS1 covers.

4.4 Can we distinguish flavors of CS1?
Out of the count analysis and the agreement analysis, we expect to
see different flavors of CS1. Nonnegative matrix factorization is a
good tool to identify variants of a particular course. We computed
nonnegative matrix factorization using only the CS1 courses and
looked at the results for 𝑘 = 2, 𝑘 = 3, and 𝑘 = 4. Manual inspection
of the𝑊 and 𝐻 matrices indicated that 𝑘 = 3 was the most reveal-
ing. Indeed, 𝑘 = 4 generated two dimensions which were almost
identical, indicating an overfit. Using 𝑘 = 2 seemed to not separate
the courses as well as 𝑘 = 3.

We provide visualization of both the𝑊 and 𝐻 matrices in Fig-
ure 5. Let us first look at the 𝐻 matrix to understand the three
fundamental types extracted by the factorization.

Type 1 seems to contain primarily topics that fall within the
Algorithm and Complexity Knowledge Area. These topics roughly
group in Big Oh notation, complexity analysis, trees, divide and
conquer algorithms and sorting. Topics in other Knowledge Areas
are thematically related to sets, linked lists, stacks, and algorithm
implementation from Software Development Fundamentals; and
Trees and graphs from Discrete Structures.

Type 2 is a more eclectic set. It contains from SDF the core
of imperative programming: variables, conditions, loops, function
calls, and basic algorithms. From Architecture and Organization, it
contains basic representation of information topics such as number
encoding, array and struct encoding in memory, file I/O. And from
SE and IAS, we find topics around correctness of programs and
testing.

Type 3 sees most of its topics in the SDF and PL Knowledge Areas.
It contains the basics of programming: variables, conditions, loops,
and function calls. But it contains almost no algorithm content.
Instead, it contains Object Oriented Programming topics: classes,
inheritance, polymorphism, encapsulation, and generics.

Singh’s class falls strongly in Type 3. Kerney’s falls strongly in
Type 2. And Ahmed’s falls strongly in Type 1. Having a CS1 class
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(a) agreement: 2 courses (b) agreement: 3 courses (c) agreement: 4 courses

Figure 4: Distribution of agreed upon classification in ACM curriculum for CS1 courses. Root in red

CCC CSCI 40 Kerney CS1
Tulane CMPS1100 Kurdia Intro to Programming
UCF COP3502 Ahmed Computer Science 1 (CS1) Data structure and algorithm
WashU CSE131 Singh Computer Science 1
UNL CSCE 155E Bourke Computer Science I using C
Tulane CMPS1500 Toups CS1

(a)𝑊 Matrix
Algo Arch CSDS PL SDF SIPSSEOSIAS

(b) 𝐻 Matrix

Figure 5: NNMF of CS1 courses. k=3

being primarily about algorithms and data structure and not intro-
ducing much programming seemed strange to us. Further investi-
gations showed that at that institution the class called “Computer
Science 1” is not the first of the sequence. It comes after classes
called “Introduction to programming”.

A similar structure happens at Tulane where both courses appear
in our dataset. CMPS1100 is an “Introduction to programming”
class, while CMPS1500 is called “CS1” and contains significant data
structure and algorithm topics.

Two of the CS1 courses in our dataset are mostly imperative
programming courses, two are a blend of imperative programming
and algorithms, and one is purely a data structure and algorithm
class, while one is an object oriented programming class. Further
investigation showed that the object-oriented programming one is
taught in Java, while the others are taught in C and Python.

4.5 Is there agreement on what DS is?
There are 5 Data Structure courses in our dataset and the distri-
bution of counts of tags in different courses is given in Figure 3b.
There is a higher agreement on the content of Data Structures than
there was on CS1. Out of the about 250 curriculum tags of data
structure courses, about 120 appear in two or more courses and 50
appear in more than 3 courses.

Figure 6 shows tree views of the agreement of topics in Data
Structure courses. The curriculum entries that appear in 2 courses
or more span many Knowledge areas. By 3 courses or more, the

curriculum entries now span 5 Knowledge Areas: Algorithm and
Complexity (Algo), Software Development Fundamental (SDF), Dis-
crete Structures (DS), Computational Sciences (CS), and Program-
ming Languages (PL). An agreement at 4 courses or more drops
Programming Languages.

The agreement at 4 courses or more spans what most tradi-
tionally think of as a Data Structure class: Big-Oh notation and
complexity analysis; Basic linear data structures such as arrays,
linked list, stacks, and queues; Standard nonlinear data structures
such as hash tables, binary search trees and graphs; Traversals of
these data structures, including recursion; and basic algorithms
related to indexing such as searching and sorting.

4.6 Can we distinguish flavors of Data
Structures?

Based on the previous analysis we expect more agreement in the
data structure courses than in the CS1 courses. So to try to distin-
guish flavors of Data Structure courses, we also included in the
analysis courses that are only labeled “Algorithms”. We performed
nonnegative matrix factorization using 𝑘 = 2, 𝑘 = 3, and 𝑘 = 4.
Upon inspection, we found that 𝑘 = 3 was leading to the most
insight and we present the decomposition in Figure 7.

The three types extracted are more similar than in the CS1 anal-
ysis. All three types include what you would think as core data
structures: big oh notation, trees, and graphs. Here are the differ-
ences.
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(a) agreement: 2 courses (b) agreement: 3 courses (c) agreement: 4 courses

Figure 6: Distribution of agreed upon classification in ACM curriculum for DS courses. Root in red.

UNCC ITCS 2214 KRS Data Structures and Algorithms
UNCC ITCS 2214 Saule Data Structures and Algorithms
Hanover cs225 Wahl Algorithmic Analysis 2021
VCU CMSC 256 Duke Data Structures and Object-oriented Programming
BSC CAC 210 Wagner Data Structures and Algorithms
UNCC ITCS 2215 KRS Algorithms
UCF COP3502 Ahmed Computer Science 1 (CS1) Data structure and algorithm

(a)𝑊 matrix
Algo Arch CS DS PL SDFIM

(b) 𝐻 matrix

Figure 7: NNMF of Data Structure courses and Algorithm courses. k=3

Type 2 contains a significant amount of Object Oriented Pro-
gramming topics that fall in the PL and SDF Knowledge Areas.
Type 3 has more combinatorial algorithm topics: greedy, dynamic
programming, counting, enumerating, and sets. Type 1 seems to
have more problem-solving, datasets, APIs, visualization.

While the two courses named directly “algorithms” map in type
3 is not surprising, the BSC course also maps to type 3. VCU’s
Data structure course maps firmly in type 2. UNCC’s 2214 courses
are two sections of data structure taught by different instructors
(authors of this paper) and bothmostly match to type 1, even though
the second one has some mapping small matching of the other two
types. Interestingly, UCF’s course seems to hit all three types evenly.

4.7 PDC courses
Even though we have only 3 PDC courses in our dataset, it seems
relevant to discuss them here. We present the agreement tree views
with 2 courses or more in Figure 8. Not surprisingly, most of the
curriculum entries that 2 courses agree on are in the Parallel and
Distributed Computing (PDC) Knowledge Area. There are also
common tags in Discrete Structure, Algorithms and Complexity,
Systems Fundamental, Software Development Fundamentals, and
Programming Languages.

Excluding the entries that directly relate to concurrency or par-
allelism, there are only a few curriculum entries that are common
between 2 or more courses. They are all related to concepts usually
taught in CS1 and Data Structures: Directed graphs (as a model
of computation), recursion and divide and conquer (for recursive

Figure 8: PDC course agreement: 2 courses

task based parallelism), and Big-Oh analysis (for parallel algorithm
analysis).

5 DISCUSSION
5.1 Summary of results
We have confirmed that the classification of a class against curricu-
lum guidelines can provide insight in the structure of a class. We
have identified different types of CS1 courses: the Object Oriented
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Programming ones, Imperative Programming ones, and the ones
with algorithmic thinking.

We have identified roughly three types of data structure courses.
While they all cover basic data structures, there are some with
a focus on object-oriented programming, those with a focus on
applications, and those which cover combinatorial algorithms.

5.2 What does it mean for PDC adoption?
A common strategy to improve the preparedness of students for
PDC content is to splice some simple topics of Parallel Computing
into early CS courses like CS1 and Data Structures.

What our analysis reveals is that there are different types of
CS1 and Data Structure courses. As such, it is likely that one size
will not fit all. If as a community, we want to create content for
these courses, we need to take into account the major differences
between these courses.

CS1. The CS1 type 2 courses cover in-memory representation
of variables which type 1 and type 3 do not. As such, we could
integrate into type 2 courses activities around the importance of
order of operations in reduction, which matter for floating point
values but do not for integer types. This type of discussion will not
integrate well in CS1 of types 1 and 3 which do not appear to cover
data representations.

Performing actual operations in parallel only will make sense
to students if they can see problems where computation times are
high. It is more likely that type 1 courses which include algorithmic
thinking and implementation will naturally have programs with
longer runtimes and will see the benefit of parallel computing.
Probably parallel-for style syntax can be introduced and leveraged
for students.

CS1 courses that follow type 3 are fundamentally object-oriented
programming courses with little direct algorithmic development. So
loop-based parallelization may not be the best approach there. But
concurrency can likely be introduced in the sense that operations
on two objects may not be strictly ordered for correctness. Maybe
a promise-style concurrency management can be successfully de-
ployed there, or a CORBA-style distributed systems programming.

Data Structures. All the courses we reviewed seem to be covering
core data structure topics. As such possibly all of them could support
discussions of concurrent access to data structures. But in particular
the classes of Type 2 with a focus on Object Oriented Programming
can certainly cover thread-safe types (and even highlight that it is
the primary difference between Java ArrayList and Vector).

Type 3 data structure courses have more discussion of combi-
natorial algorithm topics. As such they are more likely to feature
algorithms with higher runtime which would benefit from paral-
lelism. Brute-force algorithms are perfect for cilk-like parallelism.
Also, dynamic programming algorithms are perfect to discuss paral-
lelization strategies since bottom-up parallelism is a good candidate
for parallelization using parallel-for constructs. Top-down dynamic
programming algorithm poses challenges in parallel since memo-
ization induce complex dependency patterns which can justify a
more complex tasking model.

All three types seem to be covering graphs. And as such, they can
probably consider the Parallel Task Graph model of parallel codes

and as assignments implement topological sorts to derive a feasible
order of tasks and compute metrics like critical path to get a sense
how parallel the graph is. Implementing a list-scheduling simulator
would be a good application of priority queues, and graphs and
would fit well in type 1 Data Structure courses.

5.3 Threats to Validity
The number of courses used to understand the course structure is
somewhat small and might not accurately reflect the overall trend
in CS education. There might be more variants of these courses
that might be revealed with a larger pool of courses. The metric for
measuring agreement uses references to ACM tags coming from the
course materials; however, the depth at which the topic is covered is
not taken into account (assumed constant), which might introduce
a bias. NNMF can be thought of as a way to reveal data dimensions,
but there other dimension reduction techniques, such as PCA, MDS
that could be considered.

Also, participants in the workshop classified their materials
against the curriculum guidelines that are structured as a tree. It is
possible that this tree structure causes the participants to think in
terms of the knowledge units of the CS2013 guideline which could
bias the raw data collected.

6 CONCLUSIONS
In this paper, we argue that understanding better how early Com-
puter Science is being taught will enable Parallel and Distributed
Computing experts to build materials that would help a wide range
of instructors integrate PDC into their courses. We ran workshops
where participants classified the content of their course against the
ACM/IEEE CS curriculum guidelines to get a better understanding
of the structure of their course.

The collected data enables us to build models of early CS courses
using Non-Negative Matrix Factorization. And we identified 3 main
types of CS1 courses and of Data Structure courses. We discussed
how that information can help us target PDC content into such
courses.

In the future, we would like to expand the collection of courses
that are in the system to strengthen the reliability of the analysis
and possibly identify more types of courses. We would also like to
build better models of courses by investigating other algorithms
such as PCA and MDS. Finally, we would like to classify more of the
publicly available PDC materials in the system to help recommend
PDC materials for particular courses.
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