Corrections on “Data Collection Capacity of Random-Deployed Wireless Sensor Networks”

Siyuan Chen and Yu Wang

Abstract—Our paper [1] gave a data collection method under physical interference model, which can match the optimal data collection capacity in order. In our analysis of the capacity, we first derived a lower bound of interference distance \(L \) such that all simultaneous transmissions based on interference blocks with length \(L \) can be successfully received. Recently, via personal communications, Dr. Gruia Calinescu from Illinois Institute of Technology let us know that there is a bug in our derivation. To fix the problem, this correspondence provides an alternative derivation which can still guarantee the same result of our capacity analysis.

I. INTRODUCTION

Our paper [1] studied the data collection capacity under physical interference model. We provided a data collection method based on scheduling transmissions over interference blocks with size \(L \), which can match the optimal data collection capacity in order. In our analysis of the capacity, we first derived a lower bound of interference distance \(L \) such that all simultaneous transmissions as shown in Fig. 1 can be successfully received.

Consider the SINR at the receiver in interference block \((0,0)\) (which is in the center of the field) since it has the minimum SINR among all receivers. Based on physical interference model, its SINR is

\[
P \cdot r^{-\beta} \leq B \cdot N_0 + \sum_{all \ blocks \ (i,j) \ except \ (0,0)} P \cdot (d_{i,j})^{-\beta}.
\]

Here, \(d_{i,j} \) is the distance from the sender in block \((i,j)\) to the receiver in block \((0,0)\). Therefore, we need to derive \(L \) such that \(SINR \geq \eta \), i.e.,

\[
\sum_{all \ blocks \ (i,j) \ except \ (0,0)} (d_{i,j})^{-\beta} \leq \frac{r^{-\beta}}{\eta} - \frac{B N_0}{P}.
\]

In [1], we then proved that

\[
\sum_{all \ blocks \ (i,j) \ except \ (0,0)} (d_{i,j})^{-\beta} \leq \frac{2\pi}{3} (L - 2d)^{-\beta} (\frac{1}{2^{\beta-1}} + 2).
\]

However, as pointed out by Gruia Calinescu, there are two errors in our derivation of the inequality above:

1. \(\left(\frac{1}{1 - r^{\beta}}\right)^{1/2} \leq \frac{1}{2\pi} (\frac{1}{r^\beta} + \frac{1}{\eta}) \) is not true for \(i > 1 \), \(j > 1 \) and \(\beta > 2 \).
2. \(\sum_{i,j \geq 1} \frac{1}{\eta} \left(\frac{1}{r^\beta} + \frac{1}{\eta}\right) \) is not equal to \(\frac{1}{2\pi} \sum_{i \geq 1} \frac{1}{r^\beta} + \frac{1}{2\pi} \sum_{j \geq 1} \frac{1}{\eta} \), since the first term has much more items (around \(k^2 \) items where \(k = \frac{a}{2L} \)) than the second term has (around \(2k \) items).

II. CORRECTIONS

Fortunately, Dr. Gruia Calinescu also referred us to [2], which already has a method to bound the interference under physical interference model. Next, we provide detailed derivation for our problem based on their method.

\[
P \cdot r^{-\beta} \leq B \cdot N_0 + \sum_{all \ layers \ i \geq 1} c_i P \cdot (d_i)^{-\beta}.
\]
Here, \(d_i \) is the minimum distance from a transmitter on \(i \)th layer to the receiver in block \((0, 0)\) and \(c_i \) is the number of transmitters on \(i \)th layer. Therefore, we need to derive \(L \) such that
\[
\sum_{i \geq 1} c_i (d_i)^{-\beta} \leq \frac{r^{-\beta}}{\eta} - \frac{BN_0}{P}.
\]
Notice that \(d_i = iL - 2d \) and \(c_i = 8i \). For example, there are 8 transmitters at the first layer with distance at least \(L - 2d \) and 16 transmitters at the second layer with distance at least \(2L - 2d \), and so on. Thus,
\[
\sum_{i \geq 1} c_i (d_i)^{-\beta} = \sum_{i \geq 1} 8i(iL - 2d)^{-\beta} \\
\leq \sum_{i \geq 1} 8i(iL - 2id)^{-\beta} \\
= 8(L - 2d)^{-\beta} \sum_{i \geq 1} i^{-(\beta-1)}.
\]
Since \(\beta > 2 \), \(\sum_{i \geq 1} i^{-(\beta - 1)} \) converges to a constant, let it be denoted by \(\phi \). Then we only need
\[
8\phi(L - 2d)^{-\beta} \leq \frac{r^{-\beta}}{\eta} - \frac{BN_0}{P},
\]
to guarantee that the SINR at the receiver in the center is at least \(\eta \). This can be satisfied by setting
\[
L \geq \left(\frac{1}{8\phi} \cdot \left(\frac{r^{-\beta}}{\eta} - \frac{BN_0}{P} \right) \right)^{-\frac{1}{\beta}} + 2d.
\]
Remember \(r \leq \left(\frac{P}{BN_0} \eta \right)^{1/\beta} \), this makes sure we can find such suitable \(L \). We can further select \(L = \left(\frac{1}{8\phi} \cdot \left(\frac{r^{-\beta}}{\eta} - \frac{BN_0}{P} \right) \right)^{-\frac{1}{\beta}} + 2d \). Since \(r = \sqrt{5}d \),
\[
\frac{L}{d} = \left(\frac{1}{8\phi} \cdot \left(\frac{5^{\beta/2}}{\eta d^{-\beta}} - \frac{BN_0}{Pd^{-\beta}} \right) \right)^{-\frac{1}{\beta}} + 2 \\
= \left(\frac{1}{8\phi} \cdot \left(\frac{5^{-\beta/2}}{\eta} - \frac{BN_0 d^{\beta}}{P} \right) \right)^{-\frac{1}{\beta}} + 2.
\]
When \(n \to \infty \), this ratio goes to a constant, denoted by \(\alpha \). This lead to the same analysis result which we need for our data collection method in [1] to achieve optimal capacity.

III. Conclusion

This correspondence provided a simple correction of our lower bound derivation for interference distance in [1] so that our data collection method and its capacity analysis stand the same. We would like to thank Dr. Gruia Calinescu for pointing out the problem and suggesting possible fix to us. In addition, we also want to acknowledge that similar interference-aware scheduling (taking turn among interference blocks) has been used in both [2] and [3] for unicast or broadcast.