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Abstract— In this paper, we address the problem of energy
efficient localized routing in wireless ad hoc networks. Numerous
energy aware routing protocols were proposed to seek the power
efficiency of routes. Among them, several geographical localized
routing protocols were proposed to help making smarter routing
decision using only local information and reduce the routing
overhead. However, most of the proposed localized routing
methods cannot theoretically guarantee the power efficiency of
their routes. In this paper, we give the first localized routing
algorithm, called Localized Energy Aware Restricted Neighborhood
routing (LEARN), which can guarantee the power efficiency of
its route asymptotically almost sure. Given destination node t, an
intermediate node u will only select a certain neighbor v such that
∠vut ≤ α for a parameter α < π

3
in our LEARN method. We

theoretically prove that for a network, formed by nodes that are
produced by a Poisson distribution with rate n over a compact
and convex region Ω with unit area, when the transmission range
rn =

q
β ln n

πn
for some β > π

α
, our LEARN routing protocol will

find the route for any pair of nodes asymptotically almost sure.
When the transmission range rn =

q
β ln n

πn
for some β < π

α
, the

LEARN routing protocol will not be able to find the route for
any pair of nodes asymptotically almost sure. We also conducted
simulations to study the performance of LEARN and compare
it with a typical localized routing protocol (GPSR) and a global
ad hoc routing protocol (DSR).

I. INTRODUCTION

Wireless ad hoc network (including sensor network) draws
lots of attentions in recent years due to its potential applica-
tions in various areas and it intrinsically has many special
characteristics and some unavoidable limitations, compared
with traditional fixed infrastructure networks. Energy conser-
vation and scalability are probably two most critical issues
in designing protocols for wireless ad hoc networks, because
wireless devices are usually powered by batteries only and
have limited computing capability while the number of such
devices could be very large. In this paper we focus on de-
signing routing protocols for wireless ad hoc networks which
can achieve both energy efficiency by carefully selecting the
forwarding neighbors and high scalability by using only local
information to make routing decisions.

A number of energy efficient routing protocols [1]–[8] have
been proposed recently using various techniques (dynamic
transmission power adjustment, adaptive sleeping, topology
control, multi-path routing, directional antennas, etc). Most of
the proposed energy-aware routing methods take into account
the energy-related metrics instead of traditional routing metrics

such as delay or hop count. To select the optimal energy
route, those methods usually need the globe information of
the whole network, and each node need also maintaining the
routing table as protocol states. In opposition to the energy
efficient routing protocols, several stateless routing protocols,
particularly, many localized geographic routing protocols [8]–
[12] have been proposed to improve the scalability. In those
localized routing protocols, by assuming each node have
position information, the routing decision is made at each
node by using only local neighborhood information. They do
not need the dissemination of route discovery information,
and no routing tables are maintained at each node. Previous
localized routing protocols are not energy efficient, i.e., the
total power consumed by their route could be very large in the
worst case [12], [14]. Recently, some energy-aware localized
routing protocols [6], [8], [13] take the energy concern during
the routing decision. However, all of them cannot theoretically
guarantee the power efficiency of their routes.

We study energy-efficient localized routing protocol for ad
hoc networks. Our main contributions are follows.

• New Localized Routing Protocol: We propose a new
localized routing protocol, called localized energy aware
restricted neighborhood routing (LEARN). In LEARN,
whenever possible, the node selects the neighbor inside
a restricted neighborhood (defined by a parameter α)
that has the largest energy mileage (i.e., the distance
traveled per unit energy consumed) as the next hop node.
If no such neighbor inside the restricted neighborhood, it
acts as greedy routing. The guarantee of delivery can be
achieved by using face routing as the backup.

• Power Efficiency of LEARN: We theoretically prove
that LEARN is power efficient, i.e., when LEARN routing
finds a path from the source node to the target node, the
total energy consumption of the found path is within a
constant factor of the optimum. Notice that, LEARN rout-
ing is the first localized routing which can theoretically
guarantee the power efficiency of its routes. In addition,
we also prove that the total Euclidean length of the found
path is within a constant factor of the optimum.

• Critical Transmission Range for LEARN: We the-
oretically prove that for a network, formed by nodes
that are produced by a Poisson distribution with rate n
over a compact and convex region Ω with unit area,



when the transmission range rn =
√

β ln n
πn for some

β > π
α , our LEARN routing protocol will find the route

for any pair of nodes asymptotically almost sure. When
the transmission range rn =

√
β ln n

πn for some β < π
α ,

the LEARN routing protocol will not be able to find the
route for any pair of nodes asymptotically almost sure.

• Simulation for LEARN: We conducted extensive simu-
lations to study the performance of LEARN and compare
it with a typical localized routing protocol (GPSR) and
a global ad hoc routing protocol (DSR). The simulation
results show that our LEARN routing protocol has good
performances in random networks.

The rest of the paper is organized as follows. We first
introduce the network model and review related works in
Section II. Then we present our localized energy aware routing
protocol (LEARN) and prove its energy efficiency in Section
III. In Section IV, we study the asymptotic transmission
range for our LEARN routing. Some implementation issues
and possible improvements are discussed in Section V. We
compare the performance of our method with existing routing
methods in Section VI and conclude our paper in Section VII.

II. PRELIMINARIES AND NETWORK MODEL

A. Network Model

There is a set V of n = |V | of wireless devices (called nodes
hereafter) distributed in a region Ω. Typically, we assume that
the region Ω is a unit-area square or a unit area disk. Each node
is assigned a unique ID i ∈ [1, n]. Additionally, each node
knows its position information either through a low-power
GPS receiver or some other ways. By one-hop broadcasting,
each node i can gather the location information of all nodes
within its transmission range. We assume that every wireless
node has a uniform transmission range r. The multi-hop
wireless network is then modeled by a communication graph
G = (V, E), where E is the set of m = |E| undirected links
and a link (u, v) belongs to E if and only if the Euclidean
distance between u and v is at most r. Hereafter, we use
‖u− v‖ to denote the Euclidean distance between node u and
node v. For a undirected link uv ∈ G, we use ‖uv‖ to denote
its length. We also assume that each node i can dynamically
adjust its transmission power based on the neighboring node
it wants to communicate. We further assume that the energy
needed to support the transmission of a unit amount of data
over a link uv is c(‖uv‖), where c(x) is a non-decreasing
function on x. Let r0 be the value such that r0

c(r0) = maxx
x

c(x) .
We call r0

c(r0) as the maximum energy mileage 1 under energy
consumption model c(x). We assume that the energy mileage

x
c(x) is an increasing function when x < r0 and is a decreasing
function when x > r0. For example, in the literature it is
commonly assumed that c(‖uv‖) = E0(‖uv‖γ + c), where
E0, γ ≥ 2, and c are constants depending on the transmission
environment and device. For the sake of the analysis, it is often

1Here we assume that the derivative of function d(
c(x)

x
)/dx =

c′(x)x−c(x)

x2 is monotone increasing, thus, r0 is unique.

assumed that E0 = 1 and γ = 2, i.e., c(‖uv‖) = ‖uv‖2 + c.
Under this specific energy consumption model, we can show
that the maximum energy mileage is r0 =

√
c. Notice that

when r0 > r, the best length of the forwarding link is r.

B. Problem Specification

A routing protocol is said to be a localized protocol if, given
the information of the source node s and the target node t
and the k-hop neighborhood information, the current node u
can decide which neighboring node v to forward the message.
Here k is a constant, usually 1 or 2. Given a routing method
A, let PA(s, t) be the path found by A to connect the source
node s and the target node t. A routing method A is called
power efficient if for every pair of nodes s and t, the energy
consumption of path PA(s, t) is within a constant factor of
the least energy-consumption path connecting s and t in the
network. In this paper, we want to design a localized power
efficient routing method A.

For a general network, it was shown in [14] that there
is no deterministic localized routing method that is power
efficient. Kuhn et al. [14] constructed an example to show
that any deterministic (randomized) geometric ad-hoc routing
algorithm has (expected) cost (either hop-count, Euclidean
distance, or energy-consumption) Ω(OPT 2), where OPT
is the optimum cost. We then concentrate on designing a
localized routing method that is power efficient with high
probability. Here a routing method is power efficient with high
probability if (1) with high probability, the routing method
will find a path successfully; and (2) with high probability,
the found path is power efficient.

C. Related Work on Localized Routing

The geometric nature of the multi-hop ad-hoc networks
allows the promising idea: localized routing protocols. The
most popular localized routing is greedy routing where the
current node u always finds the next relay node v such that
the distance ‖t− v‖ is the smallest among all neighbors of
u. Here t is the destination. There are several variations of
greedy routing which use various criteria of “greedy” instead
of nearest to the destination. For example, compass routing
[15] finds the next relay node v such that the angle ∠vut is
the smallest; farthest neighbor routing finds the farthest node
as the forwarding node; most forwarding routing [8] finds the
relay node v such that ‖t− v′‖ is the smallest, where v′ is the
projection of v on segment ut. Though greedy routing and its
variations were widely used for wireless networks, it is easy to
construct an example to show that greedy algorithm will not
succeed to reach the destination but fall into a local minimum
(a node without any “better” neighbors).

To guarantee the packet delivery, face routing is proposed by
[15]. The idea of face routing is to walk along the faces which
are intersected by the line segment between the source and the
destination. In each face, it uses the right hand rule to explore
the boundaries. [14], [15] proved that face routing guarantees
to reach the destination after traversing at most O(n) edges
when the network topology is a planar graph. Though face



routing terminates in linear time, it is not satisfactory, since
already a simple flooding algorithm can terminate in O(n)
steps. Then Kuhn et al. [11], [14] proposed two refined face
routing methods, in which, restricted search areas are used to
avoid exploring the complete boundary of faces.

Greedy routing is a simple and efficient method but cannot
guarantee the packet delivery, while face routing can guarantee
the delivery but may take a very long exploration (O(n) steps).
One natural approach to improve the performance of localized
routing is to combine greedy routing and face routing by using
face routing to recover the routing after simple greedy method
fails in local minimum. Many wireless protocols used this
approach [8]–[12].

Although face routing and greedy face routing can guarantee
the packet delivery when underlying topology is planar and
some of localized routing protocols guarantee the delivery
if some special geometry structures are used as the routing
topology, none of these guarantees the ratio of the distance
traveled by the packets over the minimum possible. Bose and
Morrin [16] proposed a method to bound this ratio using
the Delaunay triangulation. They showed that the distance
traveled by the packet is within a constant factor of the distance
between the source and the destination. However, recently,
Wang and Li [17] showed the Delaunay based routing [16]
is not power efficient (i.e., the power spent by the route could
be sufficiently larger than the optimal least-power path).

D. Related Work on Power Efficient Routing

Since energy is a scarce resource which limits the life of the
network, a number of energy efficient routing protocols [1]–
[8] have been proposed recently using a variety techniques.
Classical routing algorithm may be adapted to take into
account energy-related criteria rather than classical metrics
such as delay or hop distance. Most of the proposed energy-
aware metrics are defined as a function of the energy required
to communicate on a link [1], [2], [5] or a function of the
nodes remaining lifetime [3]. However, to minimize the global
consumed energy of selected route, most of minimum energy
routing algorithms are centralized algorithms as [3]–[5]. In
this paper, we focus on stateless localized routing. Thus, we
only review the following related work about power efficient
techniques for “local” routing which address how to save
energy when making routing decision.

In [13], Roosta proposed a localized routing method called
probabilistic geographic routing to address power-aware rout-
ing for ad hoc and sensor networks. It selects the next hop
probabilistically among a set of neighbor candidates and the
neighbors assign the probability proportional to their residual
energy and the link reliability. In [6], Melodia et al. proposed
a partial topology knowledge forwarding for sensor network,
where each node selects the shortest energy-weighted path
based on local knowledge of topology. They assumed the
neighborhood discovery protocol provides each node the local
knowledge of topology within certain range. They gave a
linear programming formulation to select the range which
minimizes the energy expenditure of the network. Since the

solution of the linear programming problem is not feasible in
practice, they also proposed a distributed protocol to adjust
the topology knowledge range. In [8], Stojmenovic and Lin
proposed a power-aware localized routing which combining
the cost metric based on remaining battery power at nodes and
the power metric based on the transmission power related to
distance between nodes. They proved the loop-free properties
of their methods and show their efficiency by experiments.
Stojmenovic and Datta [7] further combined the above method
with face routing to guarantee the delivery. However, they
provide no theoretical guarantee of power efficiency for all
of their methods.

Algorithm 1 LEARN: Localized Energy Aware Restricted
Neighborhood Routing
Input: A parameter 0 < α < π

3 , energy model c(x), r0, and
two constant parameters η1 < η2. (e.g., α = π

4 , c(x) = x2 +c,
r0 =

√
c, η1 = 1/2 and η2 = 2).

1: Assume the uniform transmission range of all nodes is r.
2: while node u receives a packet with destination t do
3: if ‖t− u‖ ≤ r then
4: Node u forwards the data to t directly and return.
5: end if
6: if r0 < r then
7: if ∃v with η1r0 ≤ ‖uv‖ ≤ η2r0 and ∠vut ≤ α then
8: Node u forwards the packet to such a neighbor v such

that |‖uv‖ − r0| is minimized.
9: else if ∃v with ‖t− v‖ < ‖t− u‖ and ∠vut ≤ α then

10: Node u forwards the packet to the node v with the
minimum ‖t− v‖.

11: else if ∃v with ‖t− v‖ < ‖t− u‖ then
12: Node u forwards the packet to the node v with the

minimum ‖t− v‖. In other words, node u applies the
traditional Greedy routing.

13: else
14: Node u applies the Face routing method to guarantee the

delivery, or simply drops the packet.
15: end if
16: else
17: {Comment: The following is about the case r0 ≥ r}
18: if ∃v with ‖t− v‖ < ‖t− u‖ and ∠vut ≤ α then
19: Node u forwards the packet to the node v with the

minimum ‖t− v‖.
20: else if ∃v with ‖t− v‖ < ‖t− u‖ then
21: Node u forwards the packet to the node v with the

minimum ‖t− v‖. In other words, node u applies the
traditional Greedy routing.

22: else
23: Node u applies the Face routing method to guarantee the

delivery or simply drops the packet.
24: end if
25: end if
26: end while

III. POWER EFFICIENT LOCALIZED ROUTING

In this section, we describe in detail our power efficient
localized routing method, called localized energy aware re-
stricted neighborhood routing (LEARN). The definition of
energy mileage provides us the insight in designing energy ef-
ficient routing (without considering the retransmissions here).



Whenever possible, we should use link that has larger energy
mileage. Additionally, to save the energy consumption, the
total distance traveled should be as small as possible. Thus,
intuitively, our localized energy aware restricted neighborhood
routing protocol will work as follows. The current intermediate
node u with message will first find the “best” neighbor v
among all neighbors w such that ∠wut ≤ α for a parameter
α < π/3. Here we define the “best neighbor” as the node
v such that ‖uv‖

c(‖uv‖) is maximum among all such neighbors;
the use of the angle α is to bound the total distance of
the routing path. Algorithm 1 illustrates our localized energy
aware routing protocol. Recall that r0 is the best link length
that achieves that maximum energy mileage.

To make the later analysis easier, we call the routing
algorithm LEARN if no Greedy routing and no Face routing
is used when no node v satisfying that ∠vut ≤ α. If greedy
routing is applied afterward, then the routing protocol is called
LEARN-G. Furthermore, if the Face routing is used at the
end to get out of the local minimum, the routing protocol is
called LEARN-GF. Figure 1 illustrates our localized routing
algorithm. If no such neighbor v exists, then we use the
traditional greedy routing as shown in Figure 1(b).

α

r

u
t

v

0
α

v

u
t

(a) forwarding inside 2α region (b) greedy forwarding
Fig. 1. Illustrations of LEARN: (a) power efficient forwarding in 2α-sector
region, (b) traditional greedy forwarding when the sector region is empty.

Theorem 1: When LEARN routing indeed finds a path
PLEARN (s, t) from the source s to the target t, the total
Euclidean length of the found path is within a constant factor
‖t− s‖, thus, a constant factor of the optimum.

Proof: We will prove that the total Euclidean length
of PLEARN (s, t) is at most δ‖t− s‖ for any source s and
destination t for a constant δ = 1

1−2 sin α
2

. Notice that α <

π/3. We prove it by induction on the number of hops. It is
clearly true when the path has only one-hop. Assume that
it is true for the path with (k − 1)-hops. Then consider any
path v0v1v2 · · · vk−1vk with k-hops. By induction, the length
of path v1v2 · · · vk−1vk is at most δ‖vk − v1‖. Then it is
sufficient to show that ‖v0v1‖+ δ‖vk − v1‖ ≤ δ‖vk − v0‖.

Let ∠v0vkv1 = 2x and ∠v1v0vk = θ ≤ α. Then a
simple geometry computation shows that ‖v0v1‖

‖vk−v0‖−‖vk−v1‖ =
sin(x+π/2)
sin( π

2−x−θ) = cos x
cos(x+θ) . Notice that by our routing protocol,

we have v0vk is the longest link in triangle v0v1vk. Thus, it
is easy to show that we need x < π

2 −θ and x < π−θ
4 . Simple

computation shows that cos x
cos(x+θ) ≤ 1

1−2 sin θ
2
≤ 1

1−2 sin α
2

for x < min(π
2 − θ, π−θ

4 ). Thus, ‖v0v1‖ + δ‖vk − v1‖ ≤
δ‖vk − v0‖. This finishes the proof.

We then show that our LEARN routing protocol is indeed

energy efficient when it finds the path successfully. We prove
it by two separate cases: r0 ≥ r or r0 < r.

Theorem 2: When LEARN routing indeed finds a path
PLEARN (s, t) from the source s to the target t and r0 ≥ r,
the total energy consumption of the found path is within a
constant factor of the optimum.

Proof: When r0 ≥ r, for any intermediate node u
with packets to forward to destination t, our LEARN routing
protocol will select the neighbor v with ∠vut ≤ α and ‖t− v‖
is minimized. See Figure 2 (a) for illustration.

Assume that the path v0v1v2 · · · vk−1vk is found by our
routing protocol to connect source node s = v0 and destination
node t = vk. We first prove that for every two consecutive
links vi−1vi and vivi+1, ‖vi−1vi‖ + ‖vivi+1‖ > r. Assume
that this is not true, i.e., there are 3 consecutive nodes, say u,
v, and w on the path with ‖uv‖+ ‖vw‖ ≤ r. Obviously, w is
neighbor of u since ‖uw‖ ≤ ‖uv‖+‖vw‖ ≤ r. We can prove
that ∠wut ≤ α (the proof is omitted here due to space limit).
Additionally, by the routing protocol we know that ‖t− w‖ <
‖t− v‖ and ‖t− v‖ < ‖t− u‖. These contradict the selection
of node v by node u for forwarding: it should select the node
that is closest to destination t and clearly node v is not (since
neighbor w is closer to t than neighbor v).

Notice that since r0 ≥ r, then for any path connecting v0

and vk, its energy consumption is at least ‖v0−vk‖
r c(r). This

can be proved as follows. Let xi, 1 ≤ i ≤ k be the ith
link length of the path. Then its total energy consumption
is

∑k
i=1 c(xi) =

∑k
i=1

c(xi)
xi

· xi ≥ ∑k
i=1

c(r)
r · xi =

c(r)
r

∑k
i=1 xi ≥ ‖v0−vk‖

r c(r).
Let xi = ‖vi−1vi‖. Theorem 1 implies that

∑k
i=1 xi ≤

1
1−2 sin α

2
‖v0 − vk‖. Since xi+xi+1 > r for any 1 ≤ i < k, we

have k ≤ 2d
‖v0−vk‖
1−2 sin α

2
r e ≤ 2d 1

1−2 sin α
2
e · d‖v0−vk‖

r e. Thus, the

total energy consumption of the found path is
∑k

i=1 c(xi) ≤
kc(r). This implies that the LEARN routing protocol finds the
path whose energy consumption is at most 2d 1

1−2 sin α
2
e times

of the optimum. This finishes the proof.
Notice that the above theorem applies to any general energy

model c(‖uv‖), where c(x) is a non-decreasing function on
x, and the energy mileage x

c(x) is an increasing function when
x < r0. Here r0 is the value such that r0

c(r0) = maxx
x

c(x) .

tr u
α

v

r0 r

1η
t

r

02η
r

0

v

α
u

(a) Case 1: r0 ≥ r (b) Case 2: r0 < r

Fig. 2. Illustrations of the proof of power efficiency: two cases when LEARN
routing selects a node inside the restricted region.

We then prove the energy efficiency of LEARN routing
protocol for the case when r0 < r and r0 > 0. See Figure 2 (b)
for illustration. In this case, we need an additional requirement
that the energy cost c(x) is smooth around r0, i.e., there exists



a function f() such that c(ar0) ≤ f(a) ·c(r0) for any constant
a in certain range defined by η1 ≤ a ≤ η2.

Theorem 3: When LEARN routing indeed finds a path
PLEARN (s, t) from the source s to the target t and r0 < r,
the total energy consumption of the found path is within a
constant factor of the optimum.

Proof: Notice that when r0 < r, our LEARN routing
protocol will select a forwarding neighbor v for an intermedi-
ate node u such that ‖vu‖ ≤ r0 and ‖t− v‖ is minimized.
Consider any path v0v1v2 · · · vk−1vk found by our routing
protocol to connect source node s = v0 and destination node
t = vk. Let xi = ‖vi−1vi‖. Notice that since r0 < r, then
for any path connecting v0 and vk, its energy consumption is
at least ‖v0−vk‖

r0 c(r0). We will show that the path found by
LEARN is within a constant factor of this. Theorem 1 implies
that

∑k
i=1 xi ≤ 1

1−2 sin α
2
‖v0 − vk‖.

When η1r0 ≤ xi ≤ η2r0 for 1 ≤ i ≤ k, the total energy
consumption is

∑k
i=1 c(xi) ≤ f(η2) · k · c(r0). Notice that∑k

i=1 xi ≤ 1
1−2 sin α

2
‖v0 − vk‖ implies k ≤ ‖v0−vk‖

(1−2 sin α
2 )η1r0 .

Then ratio of the energy consumed by this path over the
optimum energy consumption is at most f(η2)·k·c(r0)

‖v0−vk‖
r0

c(r0)
≤

f(η2)
η1(1−2 sin α

2 ) . Notice that for nodes produced by Poisson
process with rate n over a compact and convex region,
the probability that we cannot find such a neighbor v is
e−n·α(η2

2−η2
1)r02

, which clearly goes to 0 as n increases. In
other words, when n is sufficiently large, our routing protocol
will find a path where each link has length within range
[η1r0, η2r0]. This finishes the proof.

For example, for the energy model c(x) = x2 + c with
η1 = 1/2 and η2 = 2, we have f(η2) = 5/2. Thus, our
routing algorithm finds a path whose energy consumption is
at most 5

1−2 sin α
2

times of optimum when r0 < r.

IV. ASYMPTOTIC TRANSMISSION RANGE FOR LEARN

This section is devoted to study the asymptotic transmission
range for LEARN routing method. In any greedy routing
method, the packet may be dropped by some intermediate node
u before it reaches the destination t when node u could not
find any of its neighbors that is “better” than itself. Thus, to
ensure that the routing is successful for every pair of possible
source and destination nodes, each node in the network should
have a sufficiently large transmission range such that each
intermediate node u will always find a better neighbor. Assume
that V is the set of all wireless nodes in the network and
each wireless node has a transmission range r. Then the
physical communication network is modeled by a unit disk
graph G(V, r), where two nodes u and v are connected in
G(V, r) if and only if their Euclidean distance is at most r.
A routing method A is successful over a network G if the
routing method A can find a path for any pair of source and
destination nodes. Given a routing method A and a set of
wireless nodes V , we define the critical transmission range,
denoted as ρA(V ), for successful routing of A over V as the
minimum transmission range r such that the routing method A

over the network G(V, r) is successful. The subscript A will
be omitted from ρA(V ) if it is clear from the context.

Previously, several studies (e.g. [18]–[21]) focused on the
critical transmission range for certain network properties such
as connectivity, k-connectivity, and coverage. Traditionally it
is assumed that the network nodes are represented by a Poisson
point process of density n, denoted as Pn, over a unit area disk
or square; or by random point process of n nodes, denoted as
Rn, over a unit area disk or square. It was proved in [18], [20]
that it is asymptotic almost sure that the network G(Pn, rn)
(also G(Rn, rn)) is connected when nπr2

n = β ln n for any
constant β > 1. Here an event is said to be asymptotic almost
sure (abbreviated by a.a.s.) if it occurs with a probability
converges to one as n → ∞. It was also shown in [20], [22]
that this bound is tight.

Surprisingly, there is not much study for the critical trans-
mission range for certain routing methods, except a recent
result [23] for traditional greedy routing [9]. Obviously, for
traditional greedy routing, the critical transmission range ρ(V )
for successful routing is maxu,v minw∈L(u,v) ‖w − u‖ where
lune L(u, v) is the intersection of two disks centered at u and
v respectively using ‖u− v‖ as radius. It was proved in [23]

that ρ(Pn) =
√

β0 ln n
πn a.a.s. for β0 = 1/( 2

3−
√

3
2π ) ' 1.62 and

Poisson point process Pn of density n over a convex compact
region Ω with unit area and bounded curvatures.

It is easy to show that, given a set of nodes V already
distributed in a region Ω, the critical transmission range ρ(V )
for successful routing by restricted greedy routing LEARN is
maxu,v minw: ∠wuv≤α ‖w−u‖ where α is the parameter used
by LEARN. When the destination node is fixed, say node t, the
critical transmission range will be maxu minw: ∠wut≤α ‖w −
t‖. Here we prove a similar result as in [23] for our restricted
greedy routing method LEARN. We also assume that the
network nodes are given by a Poisson point process Pn of
density n over a convex compact region Ω with unit area and
bounded curvatures.

Theorem 4: The LEARN routing (with parameter α < π
3 )

will find a path from the source to the target asymptotically
almost surely when the transmission range rn satisfies nπr2

n =
β ln n for any constant β > β0 = π

α .
Proof: To prove this, it is sufficient to show that when

each node has a transmission range rn satisfying the above
condition, for every node u and every node v there is always
a node w ∈ Pn such that ∠wuv ≤ α and ‖w − u‖ ≤ rn,
i.e., any intermediate node u can find a “better” neighbor w
towards the destination node v.

Given a point distribution Pn, let S(Pn, rn) be the mini-
mum number of such neighboring nodes w that can be chosen
by any intermediate node u for any possible destination v.
As proved in [23], it suffices to prove that the cardinality
|S(Pn, rn)| > 0. We actually will show a much stronger result
that S(Pn, rn) ≥ 1

2L( β
β2

) ln n for any constant β0 < β2 < β.
Here L(x) is defined in [23] as L(x) = xφ−1(1/x) for x > 0
and φ(x) = 1 + x ln x− x for x > 0.

Notice that, given a node u, the area that node u can choose



its neighbor to forward data for a given destination t is a sector
of disk D(u, rn) with angle 2α. Here D(u, r) denotes the disk
centered at node u with radius r. We use Y to denote such
sector. Let d denote the diameter of this sector Y. Clearly
d = rn when α ≤ π

6 , and d = 2 sin α · rn when π
6 ≤ α < π

3 .
Assume that the space is partitioned into grids (quadrates)

of side length η, which we call it η-tessellation of space.
In this paper, we will consider εd-tessellation, where ε is a
constant to be specified later. A polyquadrate is defined as
the set of quadrates that intersect with a convex and compact
region, e.g., Y. Notice that when the grid-partition shifts, we
will have different polyquadrates for the fixed region Y. A
polyquadrate in a η-tessellation is said to have a span s if it
can be contained in a square of side-length s · η. We are only
interested in polyquadrates that has span at most 1

ε and area at
least a certain fraction of πr2

n. Assume that, given Y, there are
In different such polyquadrates that are completely contained
inside, with span at most 1

ε and area at least δ1πr2
n. Here δ1

is a constant to be specified later. For ith such polyquadrate,
let Xi denote the number of nodes of V contained inside.
Also assume that there are I ′n different such polyquadrates
that intersect the boundary of Y with span at most 1

ε and area
at least δ2πr2

n. Here δ2 is a constant to be specified later. For
ith such polyquadrate, let X ′

i denote the number of nodes of
V contained inside. According to Lemma 4 of [23], we have
In = O

((
1
εd

)2
)

= O
(

n
ln n

)
, I ′n = O

(
1
εd

)
= O

(√
n

ln n

)
.

Furthermore, Xi are Poisson random variables with rate at
least δ1πr2

n · n = βδ1 ln n. Similarly, X ′
i are Poisson random

variables with rate at least δ2πr2
n ·n = βδ2 ln n. Then accord-

ing to Lemma 6 of [23], we have minIn
i=1 Xi > L(β′) ln n

a.a.s. for any 1 < β′ < δ1β, and minI′n
i=1 X ′

i > 1
2L(2β′′) ln n

a.a.s. for any 1 < β′′ < δ2β. Thus, we have a.a.s.
min(minIn

i=1 Xi,minI′n
i=1 X ′

i) ≥ min(L(β′), 1
2L(2β′′)) ln n for

any 1 < β′ < δ1β, and 1 < β′′ < δ2β.
To prove the theorem, it is sufficient to show that

S(Pn, rn) ≥ min(minIn
i=1 Xi, minI′n

i=1 X ′
i). In other words, we

only need to show that for any Y, it
1) either contains a polyquadrate P has span at most 1

ε and
area at least δ1πr2

n when Y is inside Ω;
2) or contains a polyquadrate P ′ has span at most 1

ε and
area at least δ1πr2

n when Y intersects boundary of Ω.
First consider the case when Y is contained inside Ω. For

the polyquadrate P , we consider the induced polyquadrate (de-
noted by P−√2εd, formed by all quadrates of P that intersect
with region Y−√2εd. Here Y−x denotes the region of Y that
are of distance at least x from the boundary of Y. The span of
polyquadrate P−√2εd is at most dd−2

√
2εd

εd e+1 < 1
ε . The area

of the polyquadrate P−√2εd is at least the area of Y−√2εd.
Notice that |Y−√2εd| = α(rn−2

√
2εd)2. Thus, it is sufficient

to require that |Y−√2εd| = α(rn − 2
√

2εd)2 ≥ δ1πr2
n.

We then consider the case that Y intersects the boundary of
Ω. Then let Y′ be the part that are fully contained inside Ω.
Similarly, we consider the polyquadrate P ′−√2εd

induced by
Y′−√2εd

, i.e., the quadrates that are contained inside Ω and Y.
Clearly, the span of this polyquadrate is also at most 1

ε . It is

not difficult to show that the area of Y′ is at least 1
2 of the area

of Y. Thus, the area |P ′−√2εd
| of polyquadrate P ′−√2εd

is at
least |P ′−√2εd

| ≥ |Y′−√2εd
| ≥ 1

2 |Y−√2εd|. Thus, it is sufficient
to require that 1

2 |Y−√2εd| = 1
2α(rn − 2

√
2εd)2 ≥ δ2πr2

n.
In summary, we require the following conditions about the

parameters δ1, δ2, ε:
8
>><
>>:

βδ1 > 1,
βδ2 > 1,

α(1− 2
√

2ε d
rn

)2 ≥ δ1π,

α(1− 2
√

2ε d
rn

)2 ≥ 2δ2π.

Clearly, we can choose δ2 = 1
2δ1. Notice that we defined

β0 = π
α . Thus, it is equivalent to require that


βδ1 > 1,

(1− 2
√

2ε d
rn

)2 ≥ δ1β0.

This clearly has a solution when β > β0. For example, we can
select a constant β1 such that β0 < β1 < β and let δ1 = 1

β1
.

Then ε = 1−
√

β0/β1

2
√

2d0
. Here d0 = d

rn
, which is 1 when α ≤ π

6

and is 2 sin α when π
6 ≤ α < π

3 . In this case, we can choose β2

such that β0 < β1 < β2 < β and set β′ = β
β2

and β′′ = β′/2.
Then we have S(Pn, rn) ≥ 1

2L( β
β2

) ln n.

Notice that when rn =
√

β ln n
πn for some β > β0 = π

α ,
the probability that an intermediate node u cannot find a
forwarding node w to a destination t is e−nαr2

n , i.e., the
probability that the sector does not contain any node. Since the
path from any source node to any destination node contains
at most n hops, the probability that LEARN routing protocol
is successful is at least (1 − e−nαr2

n)n = (1 − n−
β

β0 )n >
1− 1

nβ/β0−1 , which goes to 1 as n →∞.
Notice that in the above proof, we can find ε, δ1 and δ2

only if β > β0 = π
α . It is thus natural to conjecture that β0 is

the threshold value. It is indeed true based on following:
Theorem 5: The LEARN routing (with parameter α < π

3 )
will not be able to find a path from the source to the target
asymptotically almost surely when the transmission range rn

satisfies nπr2
n = β ln n for any constant β < β0 = π

α .
Proof: We basically will show that, a.a.s., there are

two nodes u and v such that we cannot find a node w for
forwarding by node u, i.e., there does not exist node w with
∠wuv ≤ α and ‖w − u‖ ≤ rn. Recall that rn =

√
β ln n

πn

for β < β0. Again we partition the space using grids, where
each grid has side-length ηrn for a constant 0 < η to be
specified later. Then it is easy to show that the number of cells,
denoted by In here, that are fully contained inside the compact
and convex region Ω with unit area is Θ( 1

η2r2
n
) = Θ( n

ln n ).
Let Eu,v denote the event that no forwarding node w (with
∠wuv ≤ α and ‖w − u‖ ≤ rn) exists for node u to reach node
v. Then to prove our theorem, it is equivalent to prove that the
probability at least one of the event Eu,v happens asymptot-
ically almost sure, i.e., 1 − Pr(none of event Eu,v happens).
Clearly, the events Eu,v are not independent for all pairs u
and v. We will consider a special subset of events that are
independent. Consider any cell produced by the grid partition
that are contained inside Ω. See Figure 3 (a) for an illustration.



For each cell, we draw a shaded square with side-length
(η−2(1+δ))rn and it is of distance (1+δ)rn to the boundary
of the cell. We only consider the case when node u is located
in the shaded square as in Figure 3 (a). We also restrict the
node v to satisfy that rn < ‖u− v‖ ≤ (1 + δ)rn, i.e., in the
torus area in Figure 3 (b). Clearly, node v will also be inside
this cell, and the shaded sector area (see Figure 3 (b)) where
the possible forwarding node could locate is also inside this
cell. Thus, events Eu1,v1 and Eu2,v2 will be independent if u1

and u2 are selected as above from different cells.

rδ nr

nrη

u

n +

u
v

(1+δ)r

w

n

rn

(a) selection of u (b) no forwarding node
Fig. 3. Illustrations of the proof of lower bound: (a) a cell and the area where
we will select a node u, (b) the event that node u cannot find a forwarding
node w to reach a node v.

Then for each cell i, we compute the probability that
the event Eui,vi happens, where ui is selected from the
shaded square of cell i and vi is selected such that rn <
‖vi − ui‖ ≤ (1 + δ)rn. Recall that for any region with area
A, the probability that this region is empty of any nodes (for
Poisson process with rate n) is e−nA. Clearly, the probability
that node ui exists is 1−e−n(η−2−2δ)r2

n since the shared square
has area (η− 2− 2δ)r2

n; the probability that node vi exists is
1− e−n(δ2+2δ)r2

n since the torus has area (δ2 + 2δ)r2
n. Given

node ui and vi, the probability that event Eui,vi happens is
e−nαr2

n = e−β/β0 ln n = n−β/β0 . Consequently, event Eu,v

happens for some node pairs u and v is

Pr(Eui,vi) ≥ (1− e−n(η−2−2δ)r2
n)(1− e−n(δ2+2δ)r2

n)n−β/β0

= (1− n−β(η−2−2δ)/π)(1− n−β(δ2+2δ)/π)n−β/β0 .

Thus, the probability that the LEARN routing fails to find a
path for some pair of source and destination nodes is

Pr(at least one of events Eu,v happens)
≥ Pr(at least one of events Eui,vi happens)
= 1− Pr(none of event Eui,vi happens)
= 1− (1− Pr(Eui,vi))

In

= 1− eIn·ln (1−Pr(Eui,vi
)) ≥ 1− e−In·Pr(Eui,vi

).

Notice that In ·Pr(Eui,vi) = Θ( n
ln n )(1−n−β(η−2−2δ)/π)(1−

n−β(δ2+2δ)/π)n−β/β0 ' n1−β/β0

ln n , which goes to ∞ as n →
∞ when β < β0, η − 2 − 2δ > 0, and δ > 0. This can
be easily satisfied, e.g., δ = 1, η = 5. Thus, limn→∞ 1 −
e−In·Pr(Eui,vi

) = 1.
Notice that above results assume that the deployment region

Ω has a unit area. Generally, we will often have a convex and
compact region Ω with area D, and the transmission range
r could be fixed (or dynamically changed based on node

density). Assume again that the network nodes are produced
by a Poisson process with rate n (i.e., the expected number of
nodes in a unit area is n, thus the total number of deployed
nodes in the area is nD). Then by a proper scaling of the
distance unit, we have the following theorem

Theorem 6: When the transmission range rn and the Pois-
son process rate n satisfy that nπr2

n = β · ln(D · n) for any
β > β0, our LEARN routing protocol will successfully route
the data a.a.s.. When nπr2

n = β · ln(D · n) for any β < β0,
our LEARN protocol will not be able to route the data a.a.s..

So far, we mainly concentrated on the routing LEARN.
Notice that the critical transmission range of our LEARN-
G routing protocol will be exactly same as the traditional
greedy routing [9] method since at last we use the greedy
routing to find the forwarding node if LEARN fails. There are
a number of other localized routing methods developed already
and many to be developed in the future. We thus would like
to know the general critical transmission range for successful
routing by any localized routing method A. We then generalize
the above theorems and conclude that,

Theorem 7: For a general localized routing method A,

the critical transmission range is ρA(Pn) =
√

βA ln(D·n)
nπ .

Here βA is the ratio of the area of the disk centered at
an intermediate node u with radius rn over the area of the
forwarding region in this disk from where the intermediate
node u can choose its next neighbor w; D is the area of the
convex and compact deployment region; and n the rate of the
Poisson point process. We require that the forwarding region
of any intermediate node u for any target node t is convex
and compact and at least a constant fraction of the forwarding
region is contained inside the deployment region Ω.

Notice that the above theorem not only applies to the routing
method, it also applies to the critical range for the connectivity
of the network in which βA = 1. This is based on the
following observation: a network, formed by a set V of n
nodes and each node has a transmission range rn, is connected
if and only if the routing method H that uses the path with the
minimum hop number can successfully find a path for every
pair of source and destination nodes. For this special routing
method H, clearly the area to find the forwarding node w by
a node u is the disk D(u, rn), i.e., βH = 1.

So far, we assumed that the link is always reliable and
the nodes are always awake. This is always an ideal case.
To capture the practical aspects of wireless networks, we
assume that a wireless link uv is reliable with a constant
probability p1 > 0 and each node is awake with a constant
probability p2 > 0. Similarly we can show that that the
critical transmission range for a successful routing by a general
routing method A is ρA(Pn) =

√
βA ln(D·n)

nπp1p2
.

V. PRACTICAL IMPLEMENTATION AND IMPROVEMENTS

A. Face Routing After LEARN Fails

It is well-known in the literature that greedy routing may fail
to delivery the packets in certain circumstances. Face routing
is then often used (e.g., [9], [10], [12]) to get out of the



local minimum encountered in the greedy routing. For face
routing based on a certain planar graph H , actually, some
improvements can also be made to reduce the total energy
consumption. Assume that uv and vw are links in the planar
graph H and face routing selects both links uv and vw for
routing. If u and w are within the transmission range of
each other (clearly they may not be neighbors in H), we can
short-cut the route by replacing uv and vw with the direct
link uw only. Similar improvement can be made till no such
improvement exists. This simple short-cut will reduce the hop
number of the found path. Since here we want to design
energy efficient routing protocols, we can use a new criterion
to decide whether to do short-cut: we do short-cut only if the
energy consumption of link uw is less than the total energy
consumption of links uv and vw.

B. Mobile Networks

So far, all above studies have assumed a static random
network. A static random network can model static sensor
networks well, where sensors are distributed randomly and will
be static after deployment. However, in certain applications,
the wireless nodes may be mobile during the communication.
Notice that for static networks, greedy routing will terminate
after a finite time because at any intermediate node u, we will
always make a positive movement towards the target t if any
intermediate node u finds a forwarding node. Thus, the path
from the source to the target involves at most n nodes for a
network with n wireless terminals. The above argument will
not extend directly to the case when the intermediate nodes
are mobile. Since forwarding packets, receiving packets, and
processing packets will incur some delay, a mobile interme-
diate node u will often have different locations at different
stage of the forwarding packets. It could happen that the node
u may not move toward the destination node t. Consequently,
the absolute distance of the selected next-hop node w to the
target t may be longer than what was already achieved by
some previous node on the route, even by node u.

When nodes are mobile, instead of face routing, we will let
each node hold the packets for a short-time (called holding
time) when it cannot find a forwarding neighbor initially, in
the hope that it will find another node that is closer to target
node during this holding time when all nodes are moving.
If no such node exists after this holding time interval, this
intermediate node will drop the packets.

By assuming (1) the destination node t is static, (2) the delay
T0 from the moment an intermediate node u is selected as the
forwarding node to the moment that node u selects the next-
hop node w for forwarding (plus the holding time mentioned
above) is bounded by constant, and (3) the maximum distance
that this intermediate node u can travel during this time
interval T0 is bounded by a constant `, we can prove that
LEARN routing protocol will terminate in mobile networks
with high probability. Notice that our LEARN routing protocol
will terminate when an intermediate node u cannot find any
forwarding node w after it received a forwarding request but
before the holding time expires. When u can find a forwarding

node w, we can show that the expected forwarding distance by
node w is at least Θ(rn) for any possible feasible location of u
and w. Observe that the Euclidean distance between any pair
of source and target is at most O(n·rn) (otherwise the network
will not be connected). Thus, the LEARN routing protocol will
terminate after at most Θ(n) forwardings. However, this does
not directly implies that it will find the path from any pair
of nodes asymptotically almost surely. The reason is that now
the number of hops of the path could be much longer than the
static case, thus, the probability that the routing is successful
becomes smaller. We leave it as a future work to compute the
critical transmission range for mobile networks: the relations
between the critical transmission range for successful routing
and the moving distance `.

C. Other Issues

In our LEARN routing protocol, the neighbor node v is
selected after the destination node t is known. Here we propose
a variation of LEARN routing protocol, called LEARN-Y, in
which each intermediate node u will pre-select a constant
number of candidate forwarding neighbors v. It essentially
uses a structure similar to Yao structure [24]. A node u
partitions the region surrounded u into k equal-sized cones
centered at u. At each cone i, node u selects the neighboring
node vi that is closest to r0. When node u needs to forward
packets for a destination node t, it then forward it to the
neighbor vi that is at the same cone as t. It is easy to show
that the number of links used for routing is at most k · n.
Similarly, we can also prove that LEARN-Y routing protocol
will successfully route the data if rn =

√
β ln n
πn2 for any β > k,

and the found path is energy efficient whenever k > 6.
Notice that so far we only concentrated on the energy

consumption of the path. In practice, sometimes, it may be
more interesting to find a path that can support the maximum
throughput per unit energy consumption by the network. Thus,
instead of selecting link that has the best energy mileage,
one possible criterion for selecting best neighbors could be
to select a neighbor v such that the following is maximized:
‖uv‖ ·B(uv)/c(uv). Here B(uv) is the bandwidth of link uv
and c(uv) is the energy consumption of link uv. When B(uv)
is uniform for all links, this is exactly our LEARN protocol.

VI. PERFORMANCE EVALUATION

In this section, we will study the critical transmission range
for LEARN and its piratical performance (in terms of delay,
energy consumption, and network throughput) via simulation.

A. Critical Transmission Range for LEARN

We first study the study the critical transmission range for
restricted greedy routing LEARN in random networks. In our
experiments, we randomly distribute n wireless nodes in a
disk with radius 5 unit. Node density n is 50, 100, 200,
300, 400, and 500. The parameter α is π/4 or π/6. For each
choice of α and n, 1000 sample of networks is generated, and
the critical transmission range is generated for each sample.
Figure 4 illustrates the average and 95 percentile critical



transmission range for our restricted greedy routing LEARN
in random networks when α are π/4 and π/6. It is clear
the critical transmission range decreases when the number of
nodes increases. And with smaller α, LEARN need a larger
critical transmission range to guarantee the delivery. Figure
5 shows the detailed distributions of the critical transmission
range in random networks with different size when α = π/4.
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Fig. 4. The average and 95 percentile critical transmission range for LEARN
routing in random networks when α = π/4, π/6.

B. Network Performance Comparisons

We then conducted extensive simulations to evaluate the
actual routing performance of our algorithm LEARN using
QualNet 3.9 simulation tools [25], by comparing it with GPSR
[10] and DSR [26]. we randomly deploy a group of wireless
nodes to a 1000m×1000m square area. One node is randomly
designated as the sink, and all the other nodes periodically
generate data and send to the sink. We adopt IEEE 802.11b
in physical and MAC layer model. The transmission data rate
is set to 2Mbps. The maximum transmission power of every
node is 15.0dBm and receiver sensitivity is −89.0dBm. We
simulate periodical traffic from all sensors to the sink using
CBR (Constant Bit Rate) scenario, i.e., each node send 50
rounds data to the sink with 128 bytes each. Qualnet does not
provide energy model in standard distribution, while several
different energy models are developed by end users. In our
simulation, we let each node u adjust transmission range
to sufficiently reach the next hop v and assume the energy
consumption is ‖uv‖2 + C, where C = 1

4r2 and r is the
maximum transmission range of each node. The values of η1,
η2 and α are 1/2, 2 and 55◦ in all simulations.

1) Performance with Static Networks: We first evaluate
the routing performance in static scenario, where nodes po-
sition does not change during the routings. For our algorithm
LEARN, we use the one with the face routing, i.e., LEARN-
GF. We vary the network size from 30 to 120 and evaluate
the average packet delays, energy consumptions and network
throughput, as shown in Figure 6 (a)-(c). Given each network
size, we generate 50 random topologies to get the average
performance. We first compare packet delay of three methods.
Here, packet delay is the time cost for one round successful
information gathering. When we measure packet delay, we

wait until all one-round packets reach the sink. In other words,
it is basically the maximum packet delay of all packets in
one round. DSR has larger packet delays and consume more
energy as expect. Our LEARN algorithm indeed consumes
30% less energy than GPSR, since we carefully choose next
hop to increase energy mileage. The packet delay and network
throughput of LEARN is about 96% of that through GPSR
routing similar network performance. Notice that LEARN
often uses links that are shorter than the one used by GPSR,
and thus its routing path often has more hops than GPSR. The
disadvantage of more hops is compensated by generally the
improved reliability of shorter links.

2) Performance with Mobile Networks: We then evaluate
the performance in mobile scenario, where sink is static and all
the other nodes follow random Waypoint mobility model. For
random waypoint, a node randomly selects a destination from
the physical terrain. It moves to the destination at constant
speed, chosen between MOBILITY-WP-MIN-SPEED and
MOBILITY-WP-MAX-SPEED (meters/sec). After it reaches
its destination, the node stays there for MOBILITY-WP-
PAUSE time, and the process is repeated (selecting another
destination and speed). Here we set MOBILITY-WP-MIN-
SPEED = 0 meters/second and MOBILITY-WP-PAUSE =
10 seconds, while varying MOBILITY-WP-MAX-SPEED in
the range [10, 100] meters/second. Here, we do not use face
routing for our LEARN, i.e, we test LEARN-G. Figure 6
(d)-(f) show the results. Similarly DSR has larger packet
delays and consume more energy as expected. Routing based
on LEARN algorithm consumes about 26% less energy than
GPSR, and the packet delays and throughput of LEARN and
GPSR are again similar (about 98%).

For both static networks and mobile networks, we also per-
form several experiments by varying data reporting intervals.
The results are consistent, and ignored due to space limit.

VII. CONCLUSION

We proposed localized energy aware restricted neighbor-
hood routing protocol LEARN for wireless sensor or ad hoc
networks. We theoretically proved that our LEARN routing
protocol is energy efficient. We also studied the critical
transmission range for the successful packet delivery a.a.s..
Our mathematical formulation also extends to any routing
protocol in which the region to find the next hop node by
an intermediate node is compact and convex. We conducted
extensive simulations to study the performance of our LEARN
routing compared with GPSR and DSR. To the best of our
knowledge, our new localized routing method is the first
localized routing protocol that has theoretical guarantee of
power efficiency of the generated routes in random networks
with high probability.
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Fig. 6. (a)-(c) Performance of static networks with various sizes (30−120). (d)-(f) Performance of mobile networks with various maximum speeds (10−100).
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