

- Network coding technique
 - improve network throughput, reduce congestion and enhance robustness
 - previous research focuses on the protection of NC and the detection of pollution attacks
- A different aspect: can network coding be used to detect malicious attacks?
 - Avoid the adoption of complex security schemes
 - Provide a new incentive for deployment of NC
 - Initial exploration in this paper: Sybil attacks in WN

Presentation organization

- Motivation
- Background
- Basic Idea
- Physical layer issues
- Network layer issues
- Analysis
- Related work
- Conclusions and future work

Background

- Sybil attacks in wireless networks
 - The same node presents multiple identities
 - is an example of stealth attack: difficult to detect through traditional methods
 - can threaten the safety of routing protocols and attack detection mechanisms
 - Previous Sybil detection schemes based on physical layer properties:
 - Depend on special hardware or inaccurate measurement

Basic idea

 The difference b/w two tdiff can cancel out the impacts of the sending time TD

$$||t_{diffB} - t_{diffA}|| = ||(d_{BD} - d_{AD}) + (d_{AC} - d_{BC})|| / s$$

 $\leq (||d_{BD} - d_{AD}|| + ||d_{AC} - d_{BC}||) / s \leq 2 \times d_{AB} / s$

- The difference b/w tdiffA and tdiffB is restricted by the distance b/w A and B.
- If A and B are two physical nodes, they will demonstrate different time differences under different sender pairs
- If A and B are linked to the same physical node, they will always receive the same interference sequences

- Therefore, we can detect the Sybil nodes by examining the interference sequences at the nodes
- A mechanism is needed to verify the time difference
 - Cannot directly ask the nodes for their time difference: the Sybil nodes will lie to avoid detection
 - If || tdiffA tdiffB || is large enough, the two nodes can combine their received signals to recover the two sequences
 - The Sybil nodes will always get the same interference results and cannot separate the sequences

Physical layer issues

- Procedure to separate the colliding signals
 - Estimate the magnitudes of the two vectors [Katti et al. Sigcomm'07]
 - Use prior knowledge about one sequence or combine two different signal interference results to recover the data sequences
- Detect the start of signals and collisions
 - Use the incoming energy level changes to detect the first sequence
 - Measure the variance in the energy level of the incoming signals to detect collision

Network layer issues

- Network assumptions
 - Unit disk graph model for neighbor detection
 - Wireless nodes can adjust the transmission power
 - Share a secure, lightweight pseudo random bit generator
 - Omni-directional antenna
- The Sybil nodes
 - Have access to all knowledge bound to the identities under their control
 - Cannot compromise encryption keys or reverse a hash function

Network layer issues

- Generation of sending sequences
 - The sequences should satisfy two conditions:
 - Kept as a secret before they are sending out
 - Committed sequences and cannot be changed by the (malicious) senders
 - Sequence generation procedure
 - The senders select their seeds for the PRBG
 - The hash results of the seeds are broadcasted as the commitment of the sequences

10/21/2011

- Why depend on PNC instead of system clocks to measure the time difference
 - The clock drift of wireless nodes is at microsecond level
 - The software defined-radio can easily use a much higher frequency
 - We will have a much higher Sybil detection sensitivity

Limitations and future work

- What about attackers with multiple antennas or directional antennas
- What about collaborative attackers
- Implementation on SDR
- Thanks. Questions?

