

DEEJAM: Defeating Energy-Efficient Jamming in IEEE 802.15.4-based Wireless Networks

Anthony D. Wood, John A. Stankovic, Gang Zhou

Department of Computer Science University of Virginia

UNIVERSITY / VIRGINIA

Wireless Sensor Networks

- Embedded in physical environment
- Devices with limited resources
- Large scale static deployment
- Diverse applications: military, volcano monitoring, zebra tracking, healthcare, emergency response ...

8 MHz 8-bit uP 128 MB code 4 KB data mem 250 Kbps radio

UNIVERSITY VIRGINIA

• IEEE 802.15.4 radios: MICAz, Telos/Tmote/Tmini, iMote2, XYZ

2/24

Physical-Layer DoS

- Threats and Vulnerabilities:
 - WSNs becoming ubiquitous, connected to IP networks
 - Devices are easy to compromise
 - Jamming is easy to do in software
 - DoS attacks will spread to WSNs

Attacker's goal: disrupt communication as steathily and energy-efficiently as possible

Physical-Layer DoS

• State of the Art:

- Military hardware
- Detection of jamming, evasion by physically moving, channel surfing (Xu et al.)
- Data blurting, schedule switching (Law et al.)
- Multi-frequency protocols:
 - Bluetooth, Tang et al., Zhou et al.
- Wormholes to exfiltrate data (Cagalj et al.)
- Low-density parity codes (Noubir)

UNIVERSITY

Physical-Layer DoS

- Our approach:
 - Hide messages from the jammer
 - Evade the jammer's search
 - Reduce impact of corrupted messages
 - Raise the bar for jamming DoS attackers

UNIVERSITYof

DEEJAM: defeating jamming at the MAC-layer

Contributions

- Define, implement, and show efficacy of four jamming attack classes:
 - interrupt jamming, activity jamming, scan jamming, pulse jamming
- Propose four complementary solutions that together greatly improve communication:
 - frame masking, channel hopping, packet fragmentation, redundant encoding
- Evaluate integrated protocol on MICAz platform to show suitability for popular embedded hardware.
- Empirically show continued communication despite an ongoing attack

Assumptions

- Static wide-area deployment, no mobility
- Lightweight cryptographic primitives available
- Key distribution, time synchronization available
- Each pair of neighbors shares K_N , used to generate other keys and pseudo-random sequences.
- Attacker compromises mote or uses mote-class hardware
 - Can use all resources available to regular node

IEEE 802.15.4 Transceivers

- 802.15.4 defines: 250 Kbps, 16 channels, DSSS, 4-bit symbols, 32 chips/symbol
- Transmit path:
 - micro fills TXFIFO, issues transmit command
 - after small delay, radio chip transmits frame

Preamble	SFD	Len	Payload	FCS
----------	-----	-----	---------	-----

- Receive path:
 - search for DSSS coding
 - sync 4-bit symbols on preamble
 - sync bytes on Start of Frame Delimeter (SFD)
 - buffer frame, signal micro
 - micro reads RXFIFO, parses packet

A1: Interrupt Jamming

- Attack goal: only jam when message on air
- Configure radio to generate interrupt on SFD
- In SFD interrupt vector, issue transmit command

D1: Frame Masking

- Defense goal: prevent interrupt upon message header reception
- Neighbors use secret SFD sequence:
 K_S = E_{Kn}(0)
 SS = { E_{Ks}(i) mod 2^q}, q is length of SFD [1 or 2B]
- Without knowing *SS*, attacker's radio:
 - synchronizes on DSSS encoding in preamble
 - searches for its configured SFD (not SS_i)
 - does not capture message or generate interrupt

A2: Activity Jamming

- Attack goal: poll channel energy to find message
- Attacker's micro polls RSSI / CCA output of radio
- When activity is detected, initiate jamming

UNIVERSITY / VIRGINI

D2: Channel Hopping

- Defense goal: evade activity check
- Neighbors channel hop according to secret shared sequence:

 $K_{C} = E_{Kn}(1)$ $CS = \{ E_{Kc}(i) \mod C \}, C \text{ is number of channels } [16]$

• Attacker has ${}^{1}\!/_{C}$ chance of sampling correct channel, ${}^{U}\!/_{C}$ chance of detecting a message for channel utilization U

A3: Scan Jamming

- Attack goal: find messages and jam
- Attacker scans channels, checking for activity and jamming if detected

A3: Scan Jamming

• For *C* channels, attacker can always jam if:

$$\frac{T_{pkt} - (T_{init} + T_{txdelay})}{T_{scan}} > C$$

 Since channel is chosen randomly, probability of successful scan jamming is at most:

$$\mathcal{P} = \min\left(\frac{T_{pkt} - (T_{init} + T_{txdelay})}{C \cdot T_{scan}}, 1\right)$$

Defender wants to increase C and/or decrease T_{pkt}

UNIVERSITY // VIRGINI/

D3: Packet Fragmentation

- Defense goal: hop away before jammer reacts
- Fragment packets based on minimum reactive jam time
- Reassemble sequence of fragments at receiver

A4: Pulse Jamming

- Attack goal: blindly disrupt fragments
- Transmit with duty cycle sufficient to corrupt any fragments present on a chosen channel:

$$T_{hdr} / (2T_{hdr} + T_{frag})$$
 [< 50%]

- Disadvantages:
 - Not reactive, not stealthy
 - Cannot selectively jam by inspecting header

D4: Redundant Encoding

- Defense goal: recover from damaged fragments
- Redundantly encode fragments with configurable rate *R*
- (Some) fragments corrupted on a pulse jammed channel are recoverable
- Requirement for CS: $C_i \neq C_{i+1}$

DEEJAM MAC Protocol Summary

- Compute FCS for entire packet
- Divide into small fragments
- Encode redundantly with rate R
- Assign SFD from receiver's current SS
- Transmit on channel in *receiver's* current CS

Channel hopping by itself is not sufficient
 Cannot assume a priori that attacker pulse jams

UNIVERSITY of

Implementation

- Prototype implementation in nesC for TinyOS, using MICAz's TI Chipcon CC2420
- To minimize fragment length:
 - shortened $T_{txdelay}$ to 4B
 - shortened preamble to 1B
 - removed unused IEEE 802.15.4 MAC fields
- Interrupt jamming: byte-serial receive mode + FIFOP interrupt with threshold zero

Evaluation

- Sender to receiver, attacker jamming
- Five 60s runs, 32 msg/s, 39B total length
- Total of 9595 messages per datum
- Use 16 channels
- Transmit power -7 dBm
- Measure:
 - Packet Delivery Ratio with attacks
 - Jamming effort
 - PDR with no attacks

Performance (with attacks)

Conclusions

- With no defense, a stealthy interrupt jamming attack is 100% effective
- Adding defenses forces attacker to adapt
- Ultimately, despite an active pulse jamming attack, PDR drops by only 11%
- For many systems, recovery of performance during attack is worth the overhead
- More powerful jamming is possible—but without countermeasures it is not necessary

