On the Difficulty of Software-Based
Attestation of Embedded Devices

e introduction
° paper summary
e critique

e |f a remote node can only use software to
prove that it is still running as it should, it is

difficult to o
e The papers

0 SO.
hows two general attack methods

that make the node appear to be
uncompromised when required to prove itself.

e |t also show
techniques,
the attacks.

s attacks against specific
and how modifications can prevent

e assumptions and previous work

e generic attacks
— return-oriented rootkit
— code compression

e difficulties with specific attestation proposals
— SWATT

e Software code attestation

— Remotely verify a node has not been
compromised

— Verify via memory checksum + nonce
e Attack goals

— Modify executable memory
— Still pass attestation

e General assumptions

— Compromised device doesn’t interact with other malicious
nodes

— Unmodified hardware (not tamper-resistant)
— Verifier aware of configuration

e Hardware: MicaZ

— COTS wireless sensor
— Atmel AVR

— Harvard memory architecture (program, data, and external
memories)

e Paper contents applicable to similar micro-controllers

* return-oriented programming (ROP)

executes existing code (no code changes necessary)
Arbitrary functionality (given large enough code size)

Manipulates program stack so return executes desired
code

Segment starts near a return statement, segments strung
together

If existing code known, compilers make creation of ROP
easy

— Attack uses ROP rootkit

e ROP root-kit attack

e Start of attestation code modified to initiate cleanup
sequence

e Cleanup modifies return address on stack
e Attestation occurs _ Attestation request
e Returns to ROP that

initiates re-infection

code

— T

Program Memory Program Memory Data Memory

Registers, 1/O
DATA/BSS

Attestation Routine

Stack
Restored Memory

Hook 2

Initial State Attestation State
“____) o

_ﬁte_station return

Figure 3: Return-Oriented Programming attack.

Compression attack

— Previously, unused program space filled with
pseudorandom values so attacker cannot use

them.

— Compress code to make space for attack code

— Decompressed on-the-fly
during attestation

— Achieved average of 11.6%
compression

Program Memory

Program Memory

Original Program

e S |
e S e |
e S e et

e e e

Compressed
Original Program

Before the Attack

|
. After the Attack

Time

Figure 5: Compression Attack.

e SoftWare-based ATTestation (SWATT), Seshadri et. al.

e [ntroduces time-to-respond
e Attacker would slow down function if redirecting memory
e Relies on fastest redirection and checksum known

— Paper introduces faster redirection
 Requires half program memory unused

e Redirect Ox11xx...xx accesses to 0x10xx...xx and store malicious
code in Ox11xx...xX

e 2 cycles vs previously fastest 3 cycles.
o Still detectable .. relies on processor capabilities

— Porting SWATT required rewrite of algorithm, changed
timing

* Preventing rootkit attack on SWATT

— Data memory not verified, allows attack
— Verify memory or clean memory after attestation
— Verification difficult

e Architecture uses different address space, instructions
e Pseudorandom verification requires branch
e Unpredictible contents (registers, 1/0O, stack)

— Clean memory and reboot

e Disrupts rootkit attack, not shadow attack

