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Abstract—With the proliferation of mobile devices, mobile
mashups promise great data aggregation and processing capabil-
ities for all end users. During the data collection and aggregation
procedures, some data providers fail to protect confidentiality and
privacy of user queries and transmit information in plain text.
This enables attackers to eavesdrop on wireless networks and
compromise user information. Since mobile mashups can adopt
server-side, client-side, or hybrid architectures, no one-size-fits-all
solutions can be designed to solve this problem.

In this paper, we propose to design two mechanisms using
mobile clouds to preserve data query privacy in mobile mashups.
For server-side mashups, we propose to use dynamically created
virtual machines as proxies to process data collection and
aggregation in order to prevent information leakage through
eavesdropping. For client-side mashups, we propose to use live
migration of the application level virtual machines into mobile
cloud to hide the data collection and aggregation procedures from
attackers. We will evaluate the proposed approaches through both
analysis and experiments on real platforms.

I. I NTRODUCTION

With the proliferation of smart phones, numerous new
widgets based on the Web 2.0 standard are developed. Among
these applications, many are built upon the mashup technique.
A mashup application is a system which combines the local
contents with the information from other web providers, such
as Google, Ebay, and Craigslist into an integrated information
presentation. The published web service interfaces such as
Google Maps and Yahoo! Flickr greatly simplify the creation
of the mashups by hiding their internal complexity.

While the mashup technique enables the development of
new applications, it also raises security concerns. Previous
research has been focusing on the prevention of information
leakage among service providers in the same mashup pages
[1], [2]. In this paper, we investigate the security problem
from a new perspective. As an example, a health care company
develops a mobile mashup: a patient needs to input only an ad-
dress and a disease. The mashup will search in the company’s
database to locate all doctors specialized in this disease within
10 miles of the input address. It will then retrieve information
from two other providers to label these doctors on a map
and show their patient reviews. The company knows that the
privacy of health information is critical. Therefore, it encrypts
the query results from the database. Unfortunately, the map
and doctor review companies transmit information in plain

text. Now if an attacker monitors the returned data of this
mashup, he can easily derive the disease that the user might
have. This kind of information leakage is beyond the control
of the developer of this mashup since she/he cannot determine
the interface design of the data providers.

In parallel to the development of mobile mashups is the
design and deployment of mobile cloud computing [3]. Mobile
cloud provides transparent services to portable devices such
as smart phones in order to resolve the discrepancy between
the limited resources of such devices and the demands of
innovative applications. While the security of mobile cloudhas
attracted interests from researchers [4], [5], using it to provide
security services for other application environments deserves
more efforts. At least two reasons make us believe that mobile
cloud is an appropriate solution to privacy preservation in
mashups. First, mobile cloud provides transparent services
to end users so that we can hide the sources of aggregated
information. Second, mobile cloud allows components of
the mashup software to move freely between end users and
cloud infrastructure. In this way, it becomes more difficultfor
attackers to track the information flow.

Recent research [6] shows that for mobile devices client-
side, server-side, and even hybrid mashups are all popular.
Therefore, in this paper we propose to design two mechanisms
for privacy preservation in data acquirement for client-side and
server-side mashups respectively. For server-side mashups, the
server can dynamically create virtual machines in the mobile
cloud to work as proxies to handle information collection and
integration. The nondeterministic location of a virtual machine
makes it extremely difficult for attackers to eavesdrop on the
communication contents. For client-side mashups, we propose
to use the techniques described in [7], [8], [9] to decompose
the application into multiple components and move the data
collection and aggregation part into the cloud. The overhead
and safety of both approaches will also be studied.

Contributions of the paper can be summarized as follows.
First, we explore using mobile cloud to improve information
privacy in mobile mashups. Second, we have designed dif-
ferent mechanisms for client-side and server-side approaches
so that they can be integrated with various widgets. Last but
not least, we evaluate the proposed approaches through both
analysis and experiments on real platforms.



The remainder of the paper is organized as follows. In
Section II we will discuss the related work. In Section III
we will present the details of the proposed approaches and
their application environments. Section IV will investigate the
performance and security of the approaches. Finally, Section
V will conclude the paper.

II. RELATED WORK

Previous research on security in mashup applications fo-
cuses on preventing information leakage among multiple sub-
frames belonging to different information sources. The ap-
proaches can be classified into three groups. In the first group,
researchers define the “object-capability” languages in which
access control, message passing, and object reference are
all tightly managed. For example, Caja [10] implements a
subset of javascript to protect third party contents in web
applications. The second group use the concept of sandbox-
ing. They encapsulate information from each source with
a subspace. Specially designed communication channels are
then implemented among these components. Examples of the
approaches include Subspace [11] and WebJail [2]. In the
third group, a complete set of communication protocols are
implemented so that all sub-frames must communicate with
each other through the protocols. Examples of the approaches
include OMOS [12] and SMash [1].

Using proxy-based approaches to preserve privacy in net-
works has been investigated in different environments. For
example, both Crowds [13] and Hordes [14] use proxies
to defend against traffic analysis attacks in Internet. Similar
technique has been adopted to achieve anonymity in HTTP
requests [15], P2P networks [16], and location based services
[17]. The techniques of cloud and virtualization make the
dynamic establishment and maintenance of a proxy very easy.

Decomposing a web application into multiple components
and moving some of them into cloud can serve different
purposes of mobile computing. The early models such as
Dryad [18] and IBM SPL [19] all enable an application to
be composed by connecting modules. CloneCloud [7], MAUI
[8], and COMET [9] focus on reducing energy consumption
and computation overhead by offloading some components of
an application into the cloud. In [20], the authors propose a
composition approach to rich mobile application development
to promote modular, flexible and configurable widgets, and
reuse of software packages.

III. T HE PROPOSEDAPPROACHES

In this section, we present the details of the proposed
approaches. We will first elaborate on the system assump-
tions and the attacker model. We will then discuss the pri-
vacy preservation procedures for server-side and client-side
mashups respectively.

A. System Assumptions and Attacker Model

Figure 1 illustrates the application scenarios that we need
to protect. In this environment, end users depend on mashups
through mobile cloud to get the needed information. The figure

shows both server-side and client-side mashup applications.
We assume that end users have enough computation power to
support secure encryption algorithms so that they can protect
confidentiality of the traffic. However, neither the end users nor
the servers have any control over the communication standard
with the data providers. It is possible that a data provider
chooses to return data in plain text and any eavesdropper will
be able to understand the contents.

Fig. 1. Mashup scenarios in mobile cloud.

We assume that an attacker will be able to eavesdrop on
the incoming and outgoing traffic of the mobile end users. If
a mashup server has a fixed position and static IP address in
the infrastructure, the attacker will be able to eavesdrop on
the node as well. The attacker does not have the computa-
tion power to compromise the secure encryption algorithms
adopted by the mobile devices. In theory, for a dynamically
created virtual machine (VM) in the mobile cloud, the attacker
could trace and locate the node, launch a co-residence attack
[21], and steal information from the VM through side-channel
attacks [22]. However, the analysis in subsequent sectionswill
show that the difficulty level and overhead of such attacks
are very high. Therefore, we assume that the attackers cannot
eavesdrop on a dynamically created virtual machine in the
mobile cloud even if its IP address is known.

B. Privacy Preservation for Server-side Mashups

An attacker can eavesdrop on the network traffic of the
mashup server if it has a fixed position and static IP address.
However, it becomes much more difficult to locate and monitor
a dynamically created VM in the mobile cloud. In this part,
we will design a mechanism based on this observation.

Fig. 2. Privacy preservation for server-side mashups.

Figure 2 illustrates the proposed mechanism to protect data
privacy in server-side mashups. Instead of letting the mashup



server directly connect to data providers, we request it to initi-
ate multiple virtual machines in the cloud to serve as proxies.
Since the VMs are created by the server, it can determine
the communication methods with the VMs. Therefore, secure
encryption algorithms can be used to protect network traffic
on this segment. Note that traffic between the proxies and data
providers could still be transmitted as plain text.

Through monitoring the outgoing traffic from the server, at-
tackers can figure out the IP addresses of the proxies. However,
eavesdropping on the proxies will be a very difficult job that
demands a lot of resources from the attackers. Experiments in
[23] show that the attackers need to launch 40 to 80 virtual
machines to achieve co-residence with one of the proxies if the
mobile cloud owner does not adopt any VM placement policies
to prevent cartography. This number could be even larger if
the cloud owner randomly places VMs in the infrastructure.

Even after putting a malicious VM onto the same physical
box as a proxy, the attacker still faces the challenge to derive
out the network traffic of the proxy through side channel
attacks. Please note that this is different from the cross VM
private key extraction attack [24] in the following aspects.
First and most importantly, in [24] the attacker must be able
to remotely and repeatedly activate the encryption algorithm
in the target VM and put the secret key into cache. In our
scenario, the mashup procedure is initiated by the end user as
a one-time execution so the attacker has no control over its
happening. Second, in [24] the attacker knows exactly where
the key will reside in the cache through code analysis. In our
scenario, the returned information for the mashup could be
put at any place in the cache. Last but not least, in [24] the
attacker must be able to regain control of the CPU sufficiently
frequently to conduct side-channel observations through the
trigger of Inter-Processor Interrupts (IPI). Such functionality
may not be enabled in the mobile cloud environment.

The mashup server can create multiple VM proxies to
further increase the difficulty for the attackers to trace and
intercept network traffic. Here we propose two dispatching
mechanisms for the server to place requests from end users to
different proxies. In the “vertical” dispatching scheme, every
request from a mobile user will be treated as a separate
transaction and assigned to a single proxy. Round-robin or
least workload based placement can be used to maintain
balance among the proxies. The advantage of this approach
is that when the server determines to terminate a proxy, we
can stop assigning new requests to it. Therefore, the switchto
a new proxy can be accomplished smoothly.

In the “horizontal” dispatching scheme, each proxy will
be in charge of handling all interactions with one or a few
data providers. In this way, every user request needs the
collaboration of multiple proxies and only the server itself can
integrate the returned data. The advantage of this approachis
that when an attacker intercepts the network traffic to a proxy,
it can get access to only a part of the mashup result. Since there
could be many returned messages from the same provider,
the attacker cannot identify the request that it is interested in.
The disadvantage, however, is that a malfunctioned proxy may

impact the processing of a large number of user requests. The
designer of a mashup application could choose the dispatching
mechanism that fits her needs the best.

C. Privacy Preservation for Client-side Mashups

In theory, we can adopt a similar technique to protect the
privacy of information in client-side mashups. However, prod-
ucts such as Mobile Virtualization Platform by VMware can-
not yet provide full control of a virtual environment through
an app on a thin client such as a smart phone. Therefore,
we need to design a new mechanism to protect client-side
mashups. Previous research [7], [8], [9] shows that partitioning
the execution of a mobile application and offloading some
operations into the cloud has become a practical solution. In
this paper, we propose to build an approach upon COMET
[9]. The basic idea is shown in Figure 3.

Fig. 3. Live migration based privacy preservation.

In this approach, the mobile device will host an application
level virtual machine such as JVM, Microsoft .NET CLR, or
the DalvikVM in Android to execute the mashup application.
The VM will contain a partitioning and migration management
component. When the mashup application is ready to pull
information from providers, the partitioner will suspend the
execution on the mobile device, and migrate the thread to a
VM clone that is hosted in the cloud. The migrated thread
will execute on the clone to acquire and integrate information
from different providers. Finally, the thread will return to the
mobile device and merge the remotely created states into the
original process.

This approach does not depend on a static server since the
VM clone can be hosted by any physical box in the cloud.
The mobile device can execute the mashup in an application
level VM until the information acquirement phase. It will then
package the states of the VM and port it to its clone. Since a
mobile user can randomly choose the placement of its clone, it
is very difficult for an attacker to intercept the mashup traffic
unless it can eavesdrop on the whole cloud simultaneously.
Since the thread migration traffic is encrypted, the attacker will
not learn anything by monitoring the inbound and outbound
traffic of the mobile user.

Most functionality needed for this approach can be found
in the implementation of COMET. We can choose the start
position of thread migration in the mashup application so that
all communication with the data providers is conducted by the
clone VM. The functionalities of suspension, porting, resume,



and merge have been included in the DalvikVM of Android.
Since the mobile end users can randomly choose machines in
the cloud to host their clones, we do not expect unbalanced
workload to occur frequently.

IV. EXPERIMENT RESULTS AND EVALUATION

In this section, we will present the evaluation efforts and
the experiment results. We will focus on the changes in
computation and communication overhead in both mobile
devices and servers. We will also study power consumption
of the proposed approaches.

A. Server-side Mashups

The proxy based approach has no impact on the computation
or communication overhead at the mobile devices since all op-
erations are conducted by the server. The end users, however,
could expect longer mashup response time that is introduced
by the extra communication segment. The extra overhead at
the server comes from the following aspects. First, the server
needs to initiate, manage, and terminate the proxy VMs in
the cloud. Second, to prevent attackers from eavesdropping
on the server, it has to encrypt the communication traffic
with the proxies. When the server handles many requests
simultaneously, the increased CPU usage could impact the
system performance. Last but not least, depending on the
adopted dispatching algorithm for proxies, the server may need
to integrate returned data from different providers to generate
the mashup results.

To assess the overhead in real environments, we setup an
evaluation platform. The mashup server is a Ubuntu virtual
machine with 1GB of RAM and an allotment of two processors
from a Dell Optiplex 980. We choose the open source mashup
WSO2 as the application so that we can easily change its
configuration. The mashup server’s Internet connection was
1.47Mbps down and 490Kbps up. The proxies were running
on remote servers with VMWare ESXi as the hypervisor. Each
proxy was assigned one processor with 512 MB of RAM, us-
ing an Internet connection with 9.59Mbps down and 1.34Mbps
up. All connections for the mashup server to data providers
on the Internet were routed through the remote proxies either
encrypted with Blowfish (128 bit key size) or in plain text,
both by point-to-point links in OpenVPN. Experiments show
that on average a 19-hop path exists between our server and
the proxies. Our evaluation focuses on the increase in response
time that is introduced by the communication segment between
the mashup server and the proxies.

Table I shows the transmission and processing delay that
is measured at the end user. It represents the time duration
between the sending of a request and the return of corre-
sponding mashup results. The decryption delay at the end
user is not included since it is not impacted by our approach.
The average amount of returned traffic from data providers is
approximately 700KB. To better differentiate the delays caused
by communication and computation overhead, we conduct
three groups of experiments. In the first group, the mashup
server will directly connect to the data providers and retrieve

information. This is the baseline case. In the second group,
the mashup server will retrieve data with the help of proxies.
However, the data traffic between the proxies and mashup
server is not encrypted. In the last group, the proxies will
encrypt the returned data and then deliver it to the mashup
server. 250 experiments for each group are conducted at
different time in a weekday.

TABLE I
DELAY OF PROXY-BASED SERVER-SIDE MASHUP.

Measured delay (ms)
maximum minimum average

baseline case 820 274 293
proxy w/o encryption 1890 519 613
proxy with encryption 1954 523 615

From the table we find that the proposed approach roughly
doubles the waiting time of the end users. This is mainly
caused by the long path between the mashup server and prox-
ies. Comparing the second and third groups of experiments,
we find that the communication delay between the mashup
server and proxies dominates the increase in response time.
The encryption/decryption of the returned data does not impact
the delay to a large extent thanks to the computation resources
available to the server. We also calculate the 95% confidence
interval of the delays and find that very few end users will
experience a large increase in waiting time when the proposed
approach is adopted.

B. Client-side Mashups

For client-side mashups, most overhead introduced by the
proposed approach will be put upon mobile devices. Therefore,
we need to carefully evaluate its impacts on these thin clients
before this approach can be widely deployed. Since modern
mobile devices are usually equipped with extension storage
slots such as microSD cards, we do not expect the increase
in storage overhead to cause a problem. In the following
discussion, we will focus on the increases in communication
overhead and delay, computation overhead during the migra-
tion of the application level VM, and power consumption.

To assess the proposed approach on real mobile platforms,
we build our prototype upon the COMET code offload system
[9]. Here a Samsung Captivate smart phone with Cyanogen-
Mod (CM10) OS is used as the mobile device. The mobile
cloud service (app-level VM migration and execution offload)
is provided by a PC with 4GB RAM and 2.4GHz CPU.
The smart phone uses WLAN to connect to the Internet
and the code offload server. The measured phone download
bandwidth is 371KB/s while the upload bandwidth is 522 KB/s
(download is slower since it is flash based). We choose two
mashup applications to evaluate our approach. The “Landmark
Manager” app aggregates information from Facebook, Twitter,
Google Places, Yelp, YouTube, Flickr, Groupon, and many
other sites. It triggers a large amount of network traffic
and relatively heavy computation load. The second app we
choose is EarthAlbum, which is a lightweight Google Map
and Flickr mashup. Table II compares the communication and



computation overhead on the smart phone when it runs the
mashup directly or offloads the task to mobile cloud. Below
we evaluate the overhead from different aspects.

TABLE II
OVERHEAD COMPARISON BEFORE AND AFTER OFFLOADING.

Overhead on the mobile phone
client-side mashup offload to mobile cloud
(1) directly get contents (1) VM state migration

communication from data providers; and merge;
overhead (2) reception of the

aggregation results;
(1) aggregate the fetched (1) decryption of the

computation data; aggregation results;
overhead (2) state separation and

merge for VM migration;

The majority of the communication overhead comes from
the reception of the aggregation results, and the migration
and return of the application level VM states. In [7], [8]
researchers have tested about 10 different applications onthe
Android system and found that on average the state migration
will cause 10KB to 25KB traffic. The aggregation results of
mashup applications usually have the size of several hundred
kilo-byte to several mega-byte. For example, our experiments
with Landmark Manager show that if the smart phone directly
gets data from various providers, the download traffic size
is about 700KB. If the aggregation is offloaded to mobile
cloud, the returned results to the smart phone have the size
of 4.8MB. On the contrary, for the EarthAlbum mashup, both
the raw data and the aggregation result have the size of 300KB.
Although for some mashup the size of the raw data and that of
the aggregation result could have a large difference, our later
analysis will show that the proposed approach will save both
time and energy by offloading the computation overhead.

To prevent information leakage through eavesdropping, data
traffic between the mobile device and the offload server must
be encrypted. The latest results [25] show that a tablet with
1GHz CPU running Android system can encrypt 5MB data
with AES or RC4 within 2 seconds. Our measurement on the
smart phone with RC4 with 64bit key size matches to this
speed.

Our experiments show that the proposed approach has a
response time comparable to the scheme when the mobile
phone directly executes the mashup. For example, for the
EarthAlbum app, the proposed approach has the average
response time of 8.52 seconds while the direct execution on the
smart phone has an average response time of 7.89 seconds. For
the Landmark Manager app, the proposed approach shortens
the response time by about 35% since the server in the mobile
cloud can aggregate the data much more efficiently than the
smart phone.

Since the most valuable resource for mobile devices is
energy, we must carefully assess the power consumption of
the proposed approach. Our measurements show that for the
offloading approach, the most energy consuming operation is
the rendering of the final results. On the contrary, for the direct
execution scheme the most energy consuming operation is the
aggregation procedure. From the results shown in Table III,we

find that the proposed approach reduces power consumption
on the mobile device by offloading the mashup procedures to
the cloud environment. Based on the measurement results, we
find that the proposed approach brings improvements in both
user privacy preservation and power usage efficiency.

TABLE III
COMPARISON OF THEPOWER CONSUMPTIONRESULTS.

Power consumption on the mobile phone
per execution (% of the battery capacity)

client-side mashup offload to mobile cloud
EarthAlbum 0.147% 0.127%

Landmark Manager 0.55% 0.327%

V. CONCLUSION

In this paper, we study the problem of privacy preservation
for mobile mashups. Since end users do not have control over
the communication protocols with the data providers, new
mechanisms must be designed to defend against eavesdropping
attacks. For server-side mashups in mobile clouds, we propose
to use a proxy based approach to protect confidentiality of the
communication between the mashup server and data providers.
Experiments in cloud environments show that except for the
lengthened response time, other aspects of the application
performance are not impacted. For client-side mashups, we
propose to use live migration of application level virtual
machines into mobile clouds to hide the data acquirement and
aggregation procedures from eavesdroppers. We investigate
the computation, communication, and power consumption
overhead of the approach.

Immediate extensions to our approaches consist of the
following aspects. First, we plan to test our approach for client-
side mashups and collect feedbacks on user experiences. This
effort will allow us to assess the potential for the deployment
of our approaches in real mobile cloud environments. Second,
we plan to explore the integration of the two approaches so that
application developers and end users do not have to explicitly
distinguish server-side mashups from client-side applications.
A uniform approach will further reduce the difficulty of its
wide deployment and adoption.
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