
Secure Software Attestation for Military
Telesurgical Robot Systems

Kyle Coble
SIS Dept. and CyberDNA

UNC Charlotte
kjcoble@uncc.edu

Weichao Wang
SIS Dept. and CyberDNA

UNC Charlotte
weichaowang@uncc.edu

Bill Chu
SIS Dept. and CyberDNA

UNC Charlotte
billchu@uncc.edu

Zhiwei Li
SIS Dept. and CyberDNA

UNC Charlotte
zli19@uncc.edu

Abstract—Telesurgical robot systems (TRS) are often deployed
in unattended environments such as battlefields or rural areas.
Therefore, adversaries can easily access the devices, compromise
the system, and install their own malware. If the integrity and
health of the system software and configuration files are not
verified before their usage, the safety and lives of the injured
soldiers and patients may be in danger. Many existing software
attestation mechanisms depend on the calculation delay to
distinguish a correct memory image from a compromised system.
We cannot directly apply this technique to transcontinental TRS
when we consider the long transmission delay between the verifier
and the prover. In this paper, we propose a software attestation
mechanism that can distinguish between these two kinds of delay.
A secure communication protocol among the verifier, telesurgical
robot, and secure token of the remote medical personnel is
designed. The safety of the approach is analyzed and its overhead
is evaluated.

I. INTRODUCTION

Telesurgical Robot Systems (TRS) have a significant po-
tential in military operations and disaster relief operations by
providing real-time assistance to the medical personnel when
the necessary expertise is not available on site. For example,
an initiative led by the Telemedicine Advanced Technical
Research Center (TATRC) at U.S. Army Medical Research
& Materiel Command (USAMRMC) has allowed a specialist
at Brooke Army Medical Center, Texas to provide real-time
advice and instructions through the Medical Communications
for Combat Casualty Care (MC4) systems so that a doctor at
the 47th Combat Support Hospital can accomplish a complex
surgical procedure [1]. The development and deployment of
this technique becomes an essential component in the future
war against terror and other foreign military operations.

Because of the complexity of the systems, investigators
have focused their research on the development of the latest
techniques in mechanical, electrical, and robotics and the con-
struction of the prototype systems. Not enough attention has
been paid to the security of the systems. However, considering
the hostile environments such as a battlefield in which the TRS
will be deployed, we must carefully address the challenges
in security, safety, and robustness [2]. Previous research on
the security of the telesurgical robot systems focuses on the
problems such as user authentication and access control. For
example, the SecureITP protocol [3] uses the certificates based
on X.509 to authenticate the surgical robots and uses AES
encryption to protect the data traffic. The EUROMED-ETS

approach [4] uses trusted third parties to manage the public
keys of the medical practitioners and to enforce access control.
Abuse case models [5] are established to investigate the end-
to-end security in telemedical networks. The security of a
simulated kyphoplasty telesurgery system is studied in [6].
While these approaches solve some problems in securing the
telesurgical robot systems, the security issues other than en-
cryption and authentication have not been extensively studied.

In this paper, we plan to investigate the remote software
attestation of the telesurgical systems. Under many conditions,
the TRS systems are deployed in an unattended manner.
Therefore, adversaries can easily access the devices, com-
promise the system, and install their own malware. If the
integrity and health of the system software and configuration
files cannot be verified before their usage, the safety and
lives of the injured soldiers and patients may be jeopardized.
Current remote software attestation approaches rely on filling
the empty memory with pseudo random “noise”, traversing
the program memory in pseudo-random patterns, and timing
the attestation procedure to verify the integrity of the OS. For
example, in [7], [8], [9], if the correct attestation response is
returned within a time window, the device is considered safe.
The extra calculation delay introduced by the malicious OS
can be detected by the verifier.

Many software attestation approaches assume a direct,
short-range wireless connection between the verifier and
prover so that the transmission delay between them can be
ignored. This assumption, however, does not hold any more
in a military, transcontinental telesurgical robot system. For ex-
ample, a TRS deployed in Iraq needs to transmit the informa-
tion through a multi-hop path consisting of UAV (Unmanned
Aerial Vehicle), satellite, and local area networks to reach the
medical center in Texas. The one-way transmission delay can
be as long as 500 to 1000 milliseconds [10]. Therefore, the
malicious attackers can easily hide the extra computation time
during the attestation under the transmission delay and deceive
the verifier. Note that the digital signatures of the TRS over the
self-measured attestation duration will not solve the problem
when the device has been compromised by the attacker.

To solve this problem, in this paper we propose an attes-
tation procedure that uses a smart card to perform the time
measurement for the verification. This card will only draw
power from the TRS, and it has its own processing unit.

The 2010 Military Communications Conference - Unclassified Program - Cyber Security and Network Management

978-1-4244-8179-8/10/$26.00 ©2010 IEEE 1817

When an attestation is needed, the remote verifier will send
the parameters for the attestation to the smart card through
the TRS. The smart card will then provide the parameters
to the TRS and measure the computation time. Finally, the
smart card will calculate the measurement results, generate a
digital signature, and transmit the results back to the verifier.
The verifier can then examine the calculation delay and the
attestation result to diagnose the health of the system.

Using a smart card to measure the attestation duration
provides a unique advantage over traditional approaches.
Through separating the device under attestation from the time
keeper, we ensure that a compromised TRS cannot hide behind
network latency. This is a crucial step in verifying that these
systems are safe and stable before relying on them to perform
sensitive tasks. To demonstrate the feasibility of our approach,
we will analyze the overhead and the safety of the proposed
mechanism. Our approach will ensure that telesurgical robot
systems can be attested and verified to be safe, regardless of
their locations or their network connection speed.

The remainder of this paper is organized as follows. In
Section II, we present the details of our approach to resolving
the remote attestation problem of a TRS. Section III provides
an analysis of the performance and safety of our approach.
In Section IV, we review the related work. Finally, Section
V summarizes our work and explains how we plan to further
refine the design.

II. PROPOSED APPROACH

A. System Assumptions

An abstract model of the software attestation problem can be
described as follows. We assume that a control component (the
verifier) that is far from the TRS (the prover) needs to remotely
verify the integrity of the system software. We assume that
the verifier knows the expected program memory contents at
the prover. This assumption is reasonable for critical real-time
systems such as a TRS for a number of reasons.

First, the OS for TRS is usually a specially designed system
that does not perform any other tasks. The updates to the
TRS system (such as a software patch) can be issued only
by the remote control component. Second, to guarantee the
cleanliness of the system, under many conditions the remote
verifier will force the TRS to reboot before performing an
important task. In this way, the verifier will have an accurate
depiction of the program memory contents of the TRS.

We assume that the TRS contains a memory-content-
verification function that the verifier can remotely activate.
Here we do not require the verification function to be stored
on a tamper-proof hardware and the attackers can change the
function freely if they compromise the TRS. However, since
the verifier has the same function, the final attestation results
will be different if the attackers have changed the verification
function. We assume that the verifier and prover share a secure,
lightweight pseudo random number generator (PRNG) [11]. In
this way, the two nodes can generate the same memory access
patterns when they have the same seed for the PRNG.

The TRS will contain a smart card slot and medical per-
sonnel have to insert their smart card to activate the TRS.
The smart card has its own processing unit that can perform
the operations such as digital signature [12]. The smart card
can also measure a time duration at the accuracy level of
10−6second. This can be achieved since the GPS chip set
has already been embedded into the SIM card and smart card
[13]. Using its public/private key pair, the smart card can
communicate securely with the verifier through the prover.
The prover can discard the packets between the smart card
and the verifier if it has been compromised. However, it does
not have the computation power to directly compromise the
encryption key.

We assume that the attackers will have full control over
the TRS if it is compromised. This means they can install
malware on the system and copy the original OS to other parts
of program memory or the hard-drive. However, the attackers
cannot change the hardware architecture of the TRS (e.g. add
another 1GB memory, boost the CPU speed, etc). This can be
enforced by implementing the TRS on a specially designed
single board computer, which is a popular solution for many
telesurgical robot systems [14].

B. Overview of Current Approaches

In this part we describe the current approaches to software
attestation [7], [8], [9] and explain why they cannot be directly
applied to a TRS. As shown in Figure 1, the prover has
the attestation function in its program memory. When the
verifier sends the attestation request with a random seed for
PRNG and a nonce to the prover, the prover will activate
the PRNG with the seed to generate the pseudo random
memory access sequence. The prover will then concatenate
the nonce and the accessed program memory contents and
use a secure hash function to generate the attestation result
as hash(nonce, accessed value 1, accessed value 2, · · ·,
accessed value n, nonce). The final calculation result will
be sent back to the verifier. The verifier will use its own copy
of the expected program memory to calculate the hash result
and compare the two values. If the two values are the same,
the integrity of the TRS is verified. Note that the seed and
the nonce values will prevent an attacker from conducting the
pre-computation attacks. To prevent the attacker from using
the free program memory space to store the malicious code,
the attestation function will generate pseudo random numbers
to occupy the free spaces [8], [9].

At the bottom of Figure 1, the attackers compromise the
TRS and the malicious OS controls the device. Since the
pseudo random numbers in the free space of the program
memory will also participate in the hash calculation, the
attackers will copy the contents of the original OS from the
occupied area to the data memory or the hard drive. Note that
the attestation function can still execute under the control of
the malicious OS. However, during the random memory access
procedure, an ‘if’ operation will be inserted before every ‘load’
operation to determine whether or not the accessed memory
has been moved by the attacker. Since the hash calculation is

1818

very efficient, the conditional jump caused by the ‘if’ operation
will greatly increase the execution time of the attestation
function. For example, each round of the main loop of the
attestation function in [7] needs only 23 CPU cycles, while
the ‘if’ operation needs 3 cycles. When the attestation function
reads hundreds of thousands of memory locations, the increase
in execution time will reach several hundred milliseconds. If
the verifier and the prover have a direct wireless connection,
this increase can be easily detected. Therefore, even if the
prover correctly calculates the hash result, the verifier can still
detect the compromise through the time delay.

Fig. 1. Current software attestation approaches.

There is a major drawback when we have to measure the
attestation duration over a multi-hop, long distance connection
between the verifier and the TRS. The one-way transmission
delay between a telesurgical system in Iraq and the medical
center in US can easily reach 800 to 1000 milliseconds, which
will allow an adversary to execute the modified code, return
a “correct result”, and hide the extra calculation time in the
transmission delay. The digital signature generated by the
TRS over the measured attestation duration cannot be used
to defend against such attacks since the TRS has already been
compromised. Therefore, a new mechanism must be designed
to solve this problem.

C. Proposed Attestation Protocol

Based on the analysis in Section II.B, we find that the
major reason current attestation mechanisms cannot be applied
to telesurgical systems is because we cannot distinguish the
network delay from the attestation calculation time. When we
reexamine the application scenario of the TRS, we find that
when a telesurgery is being conducted, one or several medical
personnel are usually present at the remote site. Although they
may not have any computer security knowledge, their identity
tokens such as the smart card can help the verifier perform the
attestation function.

The application scenario of the proposed attestation protocol
is illustrated in Figure 2. We assume that every medical
personnel has a smart card to prove her/his identity. The smart
card has its own public/private key pair and can conduct asym-
metric encryption/decryption. The smart card also contains a
GPS chip set on it so that it can receive the accurate time
provided by the satellites. When a smart card is inserted into
the TRS, it can communicate with the robot without any delay.
At the same time, the TRS will serve as the router between
the verifier and the smart card.

The basic idea of the proposed attestation protocol is as
follows. When the smart card is inserted into the telesurgical
system, it sends an attestation request to the verifier. The

verifier will generate the seed for the random memory access
patterns and the nonce for hash calculation. It will encrypt the
values with the public key of the smart card and deliver the
message to the smart card with the help of the TRS. When
the smart card recovers the seed and nonce, it will provide the
numbers to TRS and start its clock. The TRS will execute the
attestation function and send the final result back to the smart
card. The smart card will then generate the digital signature
on the hash result and the measured time duration and send
the values to the verifier so that it can compare the result to
its own calculation.

Fig. 2. Smart card assisted software attestation of the TRS.

During this procedure, the measurement of the attestation
calculation time is conducted by the smart card. Although the
seed for the random memory access patterns and the nonce for
hash calculation are forwarded to the smart card by the TRS,
the asymmetric encryption with the public key of the smart
card prevents the TRS from gaining access to these values
and conducting pre-computation. The smart card will measure
the time duration between the seed and nonce are provided
to the prover and the hash result is returned. Since the smart
card and the TRS have a direct communication channel, we
can effectively separate the network transmission delay from
the attestation time.

c → p : m1 = (certc, Epri(c){IDc, rc, timestamp}) (1)
p → v : (m1, certp, Epri(p){IDp, rp, hash(m1)}) (2)
v → (p) → c : (certv, Epub(c){Epri(v){IDv, IDc, rv, (3)

rc, Epub(p){Epri(v){IDv, IDp, rv, rp, seed, nonce}}}})

c → p : (certv, Epub(p){Epri(v){IDv, IDp, rv, rp, (4)
seed, nonce}})

The TRS conducts the software attestation

p → c : m2 = (Epub(v){Epri(p){rv, rp, hash result}}) (5)
c → (p) → v : (m2, Epub(v){Epri(c){rv, rc, measured (6)

time duration, hash(m2)}})

Fig. 3. Details of the attestation protocol.

The details of the authentication and attestation procedures
are illustrated in Figure 3. In these messages, we use the sub-
index of ‘v’, ‘p’, and ‘c’ to represent the verifier, the prover
(TRS), and the smart card, respectively. For example, pub(c)
and pri(c) represent the public key and private key of the smart
card. We use Ekey{∗} to represent an asymmetric encryption.
We assume that the verifier, the prover, and the smart card
each have a valid certificate for their public keys issued by
a trusted third party. The rc, rp, and rv are random numbers

1819

generated by the three parties to uniquely label the attestation
procedure and defend against the replay attacks.

Below we provide an explanation of the protocol. In mes-
sage (1) and (2), the smart card and the TRS send their cer-
tificates to the verifier to establish the secure communication
channel. The timestamp in message (1) and hash(m1) in
message (2) are used to prove the freshness of the attestation
request to the verifier. In message (3), the verifier sends the
seed and nonce to the smart card through the TRS. Here the
encryption with the public key pub(c) of the smart card will
prevent the TRS from getting access to the values. In message
(4) and (5), the smart card provides the seed and nonce to
the TRS and the TRS returns back the attestation hash result.
Note that these messages are protected by the public keys of
the TRS and verifier respectively. In this way, the smart card
can only measure the attestation duration but cannot learn any
information about the software system. Finally, in message (6),
the smart card generates the digital signature of the measured
time duration. It adds the hash value of m2 into the digital
signature to make sure that the time duration and the attestation
result are bound together.

We use ProVerif [15], a widely used automated protocol
analyzer, to verify the security of our attestation protocol
under the standard Dolev-Yao intruder model. We assume that
the cryptography algorithms are safe, and an intruder has the
capability to overhear, intercept, and forge new messages. We
are especially interested in the secrecy and integrity properties
of the measured time duration. We use Horn clauses to
encode the attestation protocol and the final verification results
indicate that the attacker is unable to impersonate the smart
card with a fake time duration.

The proposed approach has the following advantages:

• We successfully separate the measurement of the attestation
duration from the communication delay. The direct connection
between the smart card and the TRS will introduce a negligible
delay. Therefore, existing attestation approaches can be applied
to the TRS.

• An attacker has to compromise both the TRS and the smart
card to allow an infected device to pass the software attestation
and deceive the verifier. This will provide an extra layer of
protection to the TRS. Detailed discussion on the safety of
the approach will be presented in Section III.B.

• The approach uses only the operations that are supported
by current smart card techniques. The attestation procedure is
fully automated and transparent to the medical personnel at
the remote site. Therefore, the adoption of the approach will
not demand any extra training for the end users. The approach
does not depend on any specific digital signature algorithm and
it can evolve with the advances of smart card cryptography.

D. TRS for Users without Smart Cards

There are many emergency conditions on a battlefield and
the TRS must adapt to such conditions. For example, we may
need to perform telesurgery on an enemy soldier who will
not have a smart card, or one of our soldiers who has lost

her/his card. Under these conditions, the correctness of the
attestation result cannot be guaranteed. We can adopt two
methods to manage the allowed operations of the TRS under
these conditions. In the first mechanism, we can classify the
operations of the TRS into different groups based on their
impacts on the patients. For example, we will allow the TRS
to perform the operations with no or little impacts (e.g. basic
measurements, sampling blood) even when the attestation
cannot be conducted. On the other hand, the operations that
will cause severe impacts on the patients (such as amputation)
can be performed only after the system has successfully
passed the attestation. In the second mechanism, the system
administrator at the verifier side has the authority to remove
any restrictions on the TRS that are set based on the attestation
results. The motivation of this scheme is to hold the final
decision making power in an intelligent person instead of a
robot, which has been supported by the ethical evaluation of
the impacts of the TRS on the patient-physician relationship
[16].

III. PERFORMANCE AND SAFETY ANALYSIS

In this Section, we evaluate the overhead of the proposed
approach and investigate its safety.

A. Overhead of the Proposed Approach

The proposed approach incurs very little storage overhead
for a TRS or smart card. At the same time, since the TRS needs
to transmit a large amount of video traffic to the remote side
once the surgery begins, the extra communication overhead
caused by the protocol is negligible. Therefore, our analysis
will focus on the computation overhead. The majority of the
computation overhead is caused by generating and verifying
the digital signatures. When we study the attestation protocol
shown in Figure 3, we find that the TRS needs to conduct three
public key encryptions and three decryptions, respectively.
Since telesurgical systems typically operate on a CPU with
high processing power, the encryption and decryption oper-
ations will not significantly impact the system performance.
Note that when the smart card provides the seed and nonce to
the TRS and when TRS sends back the attestation hash result,
both messages are protected by two layers of asymmetric
encryption. When the verifier examines the calculation time,
this factor must be considered. Since the verifier knows the
hardware architecture of the TRS, it can accurately estimate
the required time to conduct these operations.

The smart card needs to conduct three asymmetric encryp-
tion and three decryption operations during the protocol. When
we consider the limited memory space and processing power
of the smart cards, these operations will incur a much longer
computation time. Depending on the adopted digital signature
algorithms and the card type, the computation time can be
different. In Table I, we list the experiment results on the
calculation time of several types of smart cards [17]. Based
on the results, the overall attestation procedure will be shorter
than 10 seconds, which is several degrees of magnitude shorter
than the duration of a surgery. At the same time, all operations

1820

of the smart card are autonomous and do not require any user
interaction.

TABLE I
CALCULATION TIME OF ASYMMETRIC ENCRYPTION ON SMART CARDS.

Card type Algorithm Key length Time
Hitachi H8/3113 RSA (sign) 512 bit 68 ms
Hitachi H8/3113 RSA (sign) 1024 bit 480 ms
Atmel MSC0501 RSA (sign) 1024 bit 1416 ms
SGS ST19KF16 RSA (sign) 512 bit 55 ms
SGS ST19KF16 RSA (sign) 1024 bit 380 ms
SGS ST19KF16 DSA (sign) 1024 bit 100 ms

SGS ST16CF54B DSA (sign) 512 bit 163 ms
SGS ST16CF54B RSA (sign) 512 bit 389 ms

B. Security of the Proposed Approach

Our previous analysis shows that to deceive the verifier, the
attacker needs to compromise both the TRS and the smart
card. In the following analysis, we will explain the potential
threats when the attacker compromises only one of the two
devices.

If the malicious attacker compromises a smart card, it
can prevent a TRS from passing the attestation procedure.
The malicious smart card can embed a very long attestation
duration in its message to the verifier and the attestation will
fail. This operation, however, will only prevent the attacker
from using the TRS. When an attestation fails, the verifier
cannot distinguish a compromised TRS from an infected smart
card. Therefore, we propose to adopt a stateless approach: the
verifier will not maintain a record of the previous attestation
results. Whether or not a telesurgical system is diagnosed as
‘healthy’ is solely based on the attestation result of the current
round. In this way, when a healthy smart card is inserted, the
TRS will pass the attestation.

If the TRS has been compromised, it can try different
schemes to impact the time measurement results of the smart
card. For example, since the smart card can communicate to
the verifier only through the TRS, the attacker can discard all
data packets between the two entities. This action, however,
will lead to the timeout of an attestation procedure. Similarly,
the TRS can provide many fake message (3) in the protocol
to the smart card and the smart card will be overwhelmed
by the computation overhead. This denial-of-service attack
will prevent the smart card from assisting the verifier in the
attestation procedure. However, it cannot let a compromised
TRS pass the integrity verification.

As a special attack on the smart card, the TRS can impact
the behaviors of the smart card by adjusting its physical
contact to the reader. For example, in [18] the research shows
that the clock frequency of the smart card can be impacted
when we adjust the interfaces between the card and the
reader. When the frequency of the internal clock changes, the
required time to generate or verify a digital signature will also
change. Fortunately, when we examine the proposed attestation
protocol, we find that these changes will not weaken its safety.
Since we depend on the GPS signals instead of the internal
clocks to measure the attestation duration of the TRS, reducing
the power voltage or even cutting the power supply to the

smart card will not buy the TRS more time to calculate the
hash result. At the same time, the smart card measures the time
duration between the seed and nonce are provided to the TRS
and the hash result is returned back. During this procedure,
the smart card does not need to conduct any computation.
Therefore, the changed clock frequency will not impact the
time measurement accuracy.

C. Return-oriented Programming Attack

A special attack that the software attestation mechanisms
cannot defend against is the return-oriented programming
attack [19], [20]. In this kind of attack, the malicious nodes do
not inject code into the system. On the contrary, they use the
stack of return addresses to chain together the code segments
already in the system to form the malicious functions. For
example, in [20], the attackers can use only the code segments
in the legitimate programs to form a function to copy the
malicious code back and force between the program memory
and data memory. In this way, as soon as the attestation is
accomplished, the malicious code will be copied back to the
program memory. There have been mechanisms [21] designed
to defend against such attacks. We plan to integrate our
approach with those methods to provide a better protection
to the TRS.

IV. RELATED WORK

A. Telesurgical Robot Security

While the majority of the research efforts on telesurgi-
cal systems focus on turning the technique into a practical
method, some efforts have been conducted to improve the
system security. In [3], the researchers integrate the public
key cryptography mechanisms into TRS. In their approach, the
controller and the telesurgical system use digital certificates
based on X.509 to achieve authentication and use TLS/DTLS
protocols to protect the TCP and UDP traffic. They propose
the Interoperable Telesurgery Protocol (ITP), which is an open
framework for establishing secure communications between
the robot and the operator.

B. Remote System Attestation

The problem of remote system attestation has attracted a
large amount of research efforts since the proliferation of
embedded devices in pervasive computing. Both hardware and
software-based approaches have been designed to achieve the
goal. For example, the IBM cryptographic coprocessor [22]
is designed to protect the software stack. The systems such
as TCG [23] and NGSCB [24] use secure hash functions to
verify the system integrity and store the results in a secure
coprocessor. In [25], the Micro-Controller Units running at
a higher privilege are used to protect the system integrity.
Although the tamper-proof hardware will provide a solid
foundation for the attestation mechanisms, it will introduce
extra cost to the manufacture and maintenance of the robots.
Therefore, a pure software based approach is preferred.

The software based approaches usually depend on the delay
of the verification procedure caused by the malware to detect

1821

an integrity violation. In SWATT [7], the attestation function
randomly reads the program memory locations to force the
malware to embed the “if” operations into hash calculation.
The large number of “if” operations will introduce a noticeable
delay into the attestation procedure. In [8], [9], the empty
space in the device memory is filled with pseudo random
numbers to prevent the malicious code from using the space.
The code self-modification technique [26] has been used to
mitigate the attack on the attestation function.

C. Smart Card in Security Applications

The smart cards have been widely used for authentication
[27] and key distribution [28] in electronic commerce. To
compromise the security of this specially designed hardware,
the malicious users have tried various attacks on power
analysis [29] and electromagnetic radiations [30]. In this
paper, we use the smart cards as an independent device for
time measurement. Since the smart card uses satellite based
clocks and draws only power from the host device, it will
be very difficult for the compromised TRS to manipulate the
measurement results.

V. CONCLUSION

Telesurgical robot systems have important military usage
in the future. In this paper we present a new mechanism
that allows the verifier to remotely attest the integrity of the
software system on the TRS. Using the smart card of the
medical personnel as an independent device to measure the
attestation duration, we can effectively separate it from the
network transmission delay and diminish the impacts on the
detection accuracy. We study the overhead of the proposed
approach and investigate its security.

We are collaborating with the researchers at UT Dallas
to extend our approach in the following aspects. First, we
will integrate the software attestation mechanism into the ITP
protocol to provide comprehensive protection of the TRS.
Second, we will implement our approach in the simulator of
the Raven Surgical Robot and test its performance on real
networks. Finally, we plan to evaluate the smart card assisted
attestation mechanism in several other network applications
with very long transmission delays.

ACKNOWLEDGMENT

This research is supported in part by NSF award 0516085
and 0830624.

REFERENCES

[1] B. Snethen and R. Steen, “Telesurgery pilot in Iraq enabled by MC4,”
US Army News Frontpage, 2009.

[2] N. Dowler and C. Hall, “Safety issues in telesurgery–summary,” in
Proceedings of IEE Colloquium on Towards Telesurgery, 1995.

[3] G. Lee and B. Thuraisingham, “Cyber physical systems security applied
to surgical robotics,” UT Dallas, submitted under review at Computer
Standards and Interfaces, Tech. Rep., 2010.

[4] D. S. Stefanos, S. Gritzalis, J. Iliadis, D. Gritzalis, and S. Katsikas,
“Trusted third party services for deploying secure telemedical applica-
tions over the www,” in the WWW, Computers & Security, 1999, pp.
627–639.

[5] F. Wozak, T. Schabetsberger, and E. Ammmenwerth, “End-to-end secu-
rity in telemedical networks–a practical guideline,” International Journal
of Medical Informatics, vol. 76, no. 5, pp. 484–490, 2007.

[6] Y. Yang, F. Bao, and R. Deng, “Secure an image-based simulated
telesurgery system,” in Proceedings of the International Symposium on
Circuits and Systems (ISCAS), 2003.

[7] A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla, “Swatt: Software-
based attestation for embedded devices,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2004.

[8] Y.-G. Choi, J. Kang, and D. Nyang, “Proactive code verification protocol
in wireless sensor network,” in ICCSA, 2007.

[9] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-based
attestation for node compromise detection in sensor networks,” in
Proceedings of IEEE International Symposium on Reliable Distributed
Systems, 2007, pp. 219–230.

[10] M. Lum, J. Rosen, H. King, D. Friedman, and et al, “Telesurgery via
unmanned aerial vehicle (uav) with a field deployable surgical robot,”
in Proceedings of Medicine Meets Virtual Reality, 2007, pp. 313–315.

[11] R. Jenkins, “Isaac,” in International Workshop on Fast Software Encryp-
tion, 1996, pp. 41–49.

[12] Y. Lin, X. Maozhi, and Z. Zhiming, “Digital signature systems based
on smart card and fingerprint feature,” Journal of Systems Engineering
and Electronics, vol. 18, no. 4, pp. 825–834, 2007.

[13] “A-gps - the world’s first assited gps sim card,” Sagem Orga Group press
news, 2007.

[14] M. Lum, D. Friedman, J. Rosen, G. Sankaranarayanan, H. King,
K. Fodero, R. Leuschke, M. Sinanan, and B. Hannaford, “The RAVEN
- design and validation of a telesurgery system,” International Journal
of Robotics Research, vol. 28, pp. 1183–1197, 2009.

[15] B. Blanchet, “Automatic verification of correspondences for security
protocols,” J. Comput. Secur., vol. 17, no. 4, pp. 363–434, 2009.

[16] A. van Wynsberghe and C. Gastmans, “Telesurgery: an ethical ap-
praisal,” J. Med Ethics, vol. 34, no. 10, 2008.

[17] H. Handschuh and P. Paillier, “Smart card crypto-coprocessors for
public-key cryptography,” in Smart Card Research and Applications,
J.-J. Quisquater and B. Schneier, Eds., 2000, pp. 386–394.

[18] H. Bar-El, “Known attacks against smartcards,” Discretix Technologies
Ltd. Tech Report, 2005.

[19] R. Hund, T. Holz, and F. Freiling, “Return-oriented rootkits: Bypassing
kernel code integrity protection mechanisms,” in Proceedings of the
USENIX Security Symposium, 2009.

[20] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the diffi-
culty of software-based attestation of embedded devices,” in Proceedings
of ACM conference on Computer and communications security, 2009,
pp. 400–409.

[21] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measure-
ment and attestation: towards defense against return-oriented program-
ming attacks,” in Proceedings of the ACM workshop on Scalable trusted
computing, 2009, pp. 49–54.

[22] S. W. Smith and S. Weingart, “Building a high-performance, pro-
grammable secure coprocessor,” Comput. Netw., vol. 31, no. 9, pp. 831–
860, 1999.

[23] “Trusted computing group (tcg),” https://www.trustedcomputinggroup.org/,
2003.

[24] “Next-generation secure computing base (ngscb),”
http://www.microsoft.com/resources/ngscb/ default.mspx, 2003.

[25] M. LeMay and C. A. Gunter, “Cumulative attestation kernels for
embedded systems.” in European Symposium on Research in Computer
Security, 2009, pp. 655–670.

[26] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim, “Remote software-
based attestation for wireless sensors,” in ESAS, 2005.

[27] B. Preneel, “A survey of recent developments in cryptographic algo-
rithms for smart cards,” Computer Networks, vol. 51, no. 9, pp. 2223 –
2233, 2007.

[28] W.-S. Juang, “Efficient multi-server password authenticated key agree-
ment using smart cards,” IEEE TRANSACTIONS ON CONSUMER
ELECTRONICS, vol. 50, pp. 251–255, 2004.

[29] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks - Revealing
the Secrets of Smartcards. Springer, 2007.

[30] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming and Security, 2001, pp. 200–210.

1822

