
Abstract – To bridge the gap between the instruction of secu-
rity primitives and protocols, we have designed and developed 
a digital Lego system and supporting course materials. Our 
digital Lego pieces are designed to use shapes to provide a 
generic representation of security protocols. With the auto-
matic Lego piece generation and fitting method, we have de-
veloped a protocol demonstration and experiment environment 
that allows students to practice with these abstract concepts. 
The developed exercises will expose the relationship among 
security primitives and properties, and train students’ capabili-
ties to design secure protocols under different requirements. 
Our approach applies the pedagogical methods learned from 
toy construction sets by treating security atomics as Lego 
pieces and protocols as construction results.

Index terms –Digital Lego System, Exercises, Security Pro-
tocol Instruction, Education Visualization 

I. INTRODUCTION

With the importance of information security being well 
recognized, more and more universities have established 
their security curricula [1]. These security curricula usu-
ally consist of an introductory level course and a group of 
advanced courses. The introductory course generally fo-
cuses on the security atomic units and standard opera-
tions such as encryption, authentication, integrity protec-
tion, and freshness preservation, which can be viewed as 
building blocks of information assurance. The advanced 
courses focus on security protocols in specific fields 
such as operating systems, networks, or databases, and the 
prevention and detection of attacks on them.  

Although this curriculum structure has considered the 
knowledge development patterns of students, there still 
exists a gap between teaching security atomic units and 
teaching security protocols. This gap may impact stu-
dents’ capabilities to design and assess security protocols 
that can satisfy various combinations of requirements in 
different applications. It has been shown that a group of 
atomic units may finally compose vulnerable protocols if 
they are inappropriately organized. At the same time, stu-
dents in the advanced courses may spend a significant 
amount of time on understanding how complex systems 
(e.g. TCP/IP) work, which may distract them from inves-

                                                          
Contacts: weichaowang, aidong.lu, lyu8, zli19@uncc.edu    

tigating the relationship among atomic units and proto-
cols. Therefore, a new approach must be designed and 
developed to bridge this teaching gap. We believe that 
new instructional tools should be developed to cultivate 
students’ capability to select suitable atomic units and 
organize them appropriately.  

The objective of this project is to develop an innovative 
digital construction set that integrates the achievements in 
security education and visualization, and based on this, 
design instructional demonstrations and hands-on experi-
ments to assist students to bridge the security atomic units 
and protocols. The approach applies the pedagogical 
methods that have been learned from the successful edu-
cation of children and adults using electronic blocks or 
construction sets [2]. It treats the atomic units as Lego 
pieces and the protocols as construction results. We have 
developed three groups of hands-on exercises to help stu-
dents understand the relationship among atomic units and 
protocols. We also design exercises with multiple diffi-
culty levels to cultivate their capabilities to manipulate 
atomic units and design security protocols. 

The contributions of the project are as follows. While the 
decomposition and construction exercises using toy build-
ing sets have been shown to be successful in children’s 
education, this project provides an environment to evalu-
ate the effectiveness of this pedagogical method in adult 
education in information assurance. We carefully inte-
grate security and visualization techniques to improve the 
outcomes of information assurance education. Our results 
will also enable instructors to develop and improve new 
materials for security courses in the future. 

We have developed a prototype system that includes 
atomic unit and protocol representation, Lego piece de-
sign, protocol construction, user interactions, and corre-
sponding demonstrations and exercises. The remainder of 
the paper is organized as follows. Section II discusses 
related work. In Section III we introduce the overall archi-
tecture of the Lego system and the details of each compo-
nent. Section IV presents the design of demonstrations 
and hands-on experiments. Section V discusses future 
extensions. Finally, Section VI concludes the paper. 

A Digital Lego Set and Exercises for Teaching 
Security Protocols
Weichao Wang, Aidong Lu, Li Yu, Zhiwei Li 

University of North Carolina at Charlotte 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

26ISBN 1-933510-96-8 ©2008 CISSE



II. RELATED WORK

Construction sets have an important place in the history of 
education. A building set for castles and walled towns 
appeared as early as in 1800 [3]. In America, building 
blocks have been recommended to parents since 1826 [4]. 
The educational role of construction sets has been en-
hanced through the integration of computational media. 
Building blocks with sensors and fiber optic output can be 
used to construct a speech-enabled alphabet set [5] or 3D 
structures that can communicate to a computer [6].   

Construction sets have been widely used in undergraduate 
robotics education. For example, LEGO bricks [7] can be 
used as controllers for large LEGO sets. The sets provide 
a wide space for students to make hypotheses about how 
things work and validate their assumptions [8]. Similar 
digital construction sets have been used in artificial intel-
ligence, programming, and general engineering courses 
[9, 10, 11]. Inspired by the success in robotics education, 
digital construction sets have been applied to the design 
of space habitat and vehicle [12] and computer sys-
tems[13]. 

This proposed research is inspired by the fact that various 
security protocols are constructed by a limited number of 
primitives. For example, Millen and Shmatikov [14] have 
summarized ten reduction rules to decompose security 
protocols into simple units. Cremers [15] investigated 
how to decompose a complicated protocol into sub-
protocols. A graphic environment for security protocol 
analysis is proposed by Saul and Hutchison [16]. 

Research efforts have been made to assist the teaching of 
abstract security protocols. For example, Saul and Hutchi-
son [17] have proposed a graphical tree-based specifica-
tion environment to teach GNY based security protocol 
analysis. Hamey [18] developed a highly visual and inter-
active game environment for teaching secure data com-
munication protocols. Bergstrom et al [19] developed a 
visual learning environment to teach network security 
courses. A visualization tool for teaching security proto-
cols is proposed by Schweitzer et al [20]. 

III. INFRASTRUCTURE OF DIGITAL LEGO SYSTEM

We have developed a new education tool for teaching 
security atomics and protocols using digital Legos. We 
visualize security protocols with Lego pieces to enhance 
important concepts in security curriculum and provide an 
interactive environment for both lectures and exercises. 
Our Lego construction and demonstration system inte-
grates advanced techniques from several research areas 
such as security protocol verification and interactive visu-
alization. We first briefly describe the working procedure 

of the system and provide more details of each component 
in the following subsections. 

Figure 1. Architecture of our digital Lego system. 

Figure 1 illustrates the overall infrastructure of our Lego 
system. The system provides two channels for users to 
input and construct security protocols: plain text and an 
interactive visualization interface. In the first method, a 
user can type text to describe messages exchanged among 
protocol participants. These messages will be parsed into 
a uniform representation format and stored in the system. 
In the second method, a user can directly construct secu-
rity protocols through dragging-and-dropping a group of 
pre-defined Lego pieces. The input security protocol will 
be illustrated as Lego construction results. The protocol 
will be passed to knowledge based verification compo-
nent, which will analyze it and return results to the visu-
alization interface. If the analysis shows that the protocol 
is not safe, a possible attack will be generated and corre-
sponding Lego structures will be constructed automati-
cally to demonstrate the compromise.   

A. Uniform Protocol Representation 

We propose a two-level representation for security proto-
cols to assist the design of Lego pieces and future proto-
col manipulation. At the high level, we use parametric 
strand space model [21, 22, 23] to describe a protocol. To 
define briefly, a strand represents the operations of a prin-
cipal and all messages received by and sent from it. In this 
way, a security protocol can be represented as strands of 
principals matching together. Similarly, an attack can be 
represented as strands of malicious entities inserted be-
tween those of legitimate parties. A legible security pro-
tocol must satisfy the following two rules: (1) every mes-
sage must have a sender and a receiver; (2) the sender can 
generate all components of a message based on its knowl-
edge. We adopt a variation of Athena [22] to analyze se-
curity protocols. 

We use a free term algebra illustrated in Figure 2 to de-
fine messages in a protocol. We define variables as a spe-
cial kind of atomic terms. To assist substitution operations 
in protocol verification, we further divide variables into 
three different types and define them as follows. A term
variable represents a variable that can be bound to any 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

27ISBN 1-933510-96-8 ©2008 CISSE



other terms or an empty term. A principal variable can be 
bound to either a particular principal name or another 
principal variable. A key variable can be bound to a pub-
lic key, a private key, a symmetric key, or another key 
variable. 

Figure 2. Syntax of term representation. 

B. Knowledge Based Protocol Verification and Attack 
Construction 

In this system, we propose a generic framework to model 
knowledge of legitimate parties and attackers and de-
scribe the procedures of knowledge learning and reason-
ing. To define briefly, a knowledge model consists of two 
essential components: a knowledge base that contains the 
minimum set of information units known to the entity, 
and a set of rules to learn new knowledge or apply exist-
ing information. 

Deriving the minimum set of information units to form 
the knowledge base is crucial to the termination and effi-
ciency of protocol verification since a poorly represented 
knowledge set may lead to state explosion during the 
analysis procedure. The generation and usage of this 
knowledge base depend on an inference system, which 
consists of two sets of rules. The reduction rules try to 
decompose received or eavesdropped messages through a 
group of operations such as splitting or decryption to 
learn new knowledge. The deduction rules, on the con-
trary, try to synthesize messages based on the information 
units in the knowledge base. Although the internal repre-
sentation of knowledge bases of a legitimate party and an 
attacker is similar, they have different rule sets in their 
inference systems. For example, a legitimate party will 
not use an identity to replace a random number with the 
same length. An attacker, on the contrary, will conduct 
such an operation to form a type-flaw attack. 

Using strand space models, Perrig and Song [24] have 
generated a group of well-formed formula to represent the 
most widely used security properties such as authentica-
tion and confidentiality. In this way, the procedure of pro-
tocol verification works as follows. We will start from the 
strand of an innocent participant and formulate it into an 
initial state. Using the inference systems of legitimate 
parties and attackers, we try to construct all possible com-
plete message exchanging procedures that follow the for-
mat of the protocol. Finally, we will identify those com-

plete procedures that do not contain corresponding strands 
of other legitimate participants and generate attack proce-
dures. 

C. Design of Lego Set

To effectively visualize security protocols, we design a 
set of digital Lego pieces that can transform abstract pro-
tocol information into meaningful visual forms. Our de-
sign is to use the boundary shapes of Lego pieces to rep-
resent all the protocol information. Simulating the key 
features of real Lego sets, two digital Lego pieces can be 
put together only when their adjacent boundaries share the 
same shape. We design Lego pieces to represent common 
sending and receiving activities and use multiple Lego 
pieces to visualize a protocol. We believe that this design 
matches the spirit of Legos closely, which will increase 
the interests of students and attract their focus to impor-
tant security concepts represented by Lego shapes. 

We have developed an automatic Lego generation ap-
proach that is generic for visualizing various security pro-
tocols. Our approach is to design basic shapes to cover all 
the atomics in the uniform representation of protocols, 
and use them to synthesize Lego pieces by connecting 
basic shapes. As shown in Figure 3, every Lego piece is 
generated through composing multiple blocks. We use 
two green blocks and one adjustable blue block as the 
basic shape of a Lego piece. The shapes of the two green 
blocks match each other to ensure the vertical connection 
of a strand. They always point downward, since we as-
sume that protocols are executed from top to bottom. The 
two orange blocks on the left and right sides are used to 
represent message contents. Their size is automatically 
adjusted according to the length of messages. A Lego 
piece can represent the sending of a message with convex 
shapes or receiving with concave shapes. This design al-
lows us to generate all the Lego pieces automatically and 
compose various shapes freely. 

      
         (a)                                            (b) 

Figure 3. Design of protocol Legos. (a) The composition of a 
Lego piece; (b) The top row shows an example of Lego pieces 
representing message delivery when sender is on the right side; 
the bottom row shows an example of message delivery when 

sender is on the left side. 

To represent message contents, we align meaningful tex-
tures in 2D message grids to generate multi-level Lego 
boundaries. We design a general construction method 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

28ISBN 1-933510-96-8 ©2008 CISSE



based on the message grammar, so that we can visualize 
all kinds of message contents. From the message grammar 
shown in Figure 2, we can see that a message can include 
a list of atomics connected by manipulation operators 
such as encryption. We can view concatenation as the 
connection of two or more atomics at the same level, 
while encryption as the coverage of atomics at a deeper 
level. For example, in a message },},{,{ BBAA KAB , the 
top level contains “A”, “KAB”, and “B”, and the second 
level contains “A” and “B” that are covered by encryption. 
In this way, we can transform any message into a 2D grid 
tree structure. 

Each element in the 2D grid can be uniquely represented 
by two properties: its category and related principal. We 
have summarized several categories based on the gram-
mar, such as principal, nonce, public keys, symmetric 
keys, and data. We assign a different shape to each of 
these categories. Similarly, we assign a different shape to 
each principal name. This two-feature representation of an 
element is more efficient than generating a different shape 
for every principal-category combination. As shown in 
Figures 4, 5, 6, each atomic unit is represented by its 
category texture and related principal on the top. We 
choose intuitive shapes for category textures, shown in 
Table 1. For example, we use character “K” for keys. We 
always place higher levels outside, so that only when the 
outside boundary matches, inside boundaries will be 
compared. We also add background line patterns to con-
nect multi-level boundaries, so that all the textures are 
connected as continuous boundaries to represent various 
message contents.   

A B S Prin-
cipal

Public 
Key 

Sym-
metric
key 

Non-
ce

Non-
ce 2 

Table 1. Sample Lego shapes 

D. Design of Interactions

We have developed several interaction tools in our digital 
Lego system for exploring and editing security protocols. 
These tools will be integrated with the hands-on exercises 
described in Section IV. 

Since message content is the essential information in a 
security protocol, our interaction tools concentrate on 
visualizing and editing message contents of Lego pieces 
with different levels of detail. As shown in the syntax 
representation of Figure 2, the message content of each 
sent and received piece can be structured as a tree. There-

fore, the depth of the trees is an intuitive way to control 
message details in the protocol visualization. As shown in 
Figure 4, starting from depth 0, we only reveal the princi-
pal as a sender or receiver without showing any message 
contents. At a certain depth, we will visualize all the con-
tents at and above the current depth. This will show com-
plete message contents at the highest depth level. Since 
our Lego pieces are synthesized automatically during 
visualization and interaction, we can use the depth of 
message trees to control displayed information. 

Depth 
0

Depth 
1

Depth 
2

Depth 
3

Figure 4. A Lego piece with different levels of detail for mes-
sage KBSKASbNA }}{,{

We provide the following exploration tools for users to 
visualize protocol contents. 

Overall message details: This tool is designed to 
control the details of messages in the overall pro-
tocol visualization. This tool can help students 
understand a complex protocol gradually with 
additional information.  
Group message details: We allow users to adjust 
message details for principal groups in a proto-
col. Users can select to adjust the details of send-
ers or receivers, or the details of a specific prin-
cipal.
Individual message details: We also allow users 
to adjust individual message details of sender or 
receiver Lego pieces. 
Zoom in/out: This tool allows users to enlarge 
selected pieces or shrink them. 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

29ISBN 1-933510-96-8 ©2008 CISSE



Our editing tools provide the following functionalities: 
Pick: A user can use mouse to point to a Lego 
piece and click the left button to select it. 
Highlight: A user can highlight an information 
unit after selection. 
Move: Users can move a Lego piece freely by 
moving the mouse with the left button pressed. 
New: Users can add a new Lego piece. 
Delete: Users can delete a selected Lego piece. 
Message content modification: The message con-
tents can be modified by editing the text and the 
system will automatically update the Lego piece. 

IV. HANDS-ON EXERCISES USING LEGO SETS

We use our digital Lego set to improve security curricu-
lum by developing three groups of hands-on exercises. 
These exercises are designed with increasing difficulty 
levels, so that we can integrate them into our lectures and 
homework according to the required course materials. We 
design the first exercise group to help students get famil-
iar with security protocols and attacks, the second exer-
cise group to expose relationships among security primi-
tives and properties, and the third exercise group to culti-
vate capabilities of students to design secure protocols. 
The following of this Section describes the details of each 
group and provides examples to illustrate their usages. 

A. Automatic Demonstration of Protocols and Attacks 

The first step of security protocol instruction is to help 
students understand the procedures of message exchanges 
and enforcement of security properties with the execution 
of a protocol. To achieve this goal, we design our first 
group of exercises using the proposed Lego system to 
generate effective demonstrations of a protocol or an at-
tack.

Our system can be used to visualize both pre-loaded and 
user-defined protocols. The operations of each participant 
will be laid out as a vertical strand, with each sent or re-
ceived message as a Lego piece. The knowledge base of 
each participant will be displayed next to its identity to 
illustrate the increases as a protocol proceeds. Both stu-
dents and instructors can use our overall, group, and indi-
vidual message content controlling tools to adjust the dis-
played details easily. 

While the demonstration of a preloaded protocol or attack 
can be directly generated, the system will first verify a 
user-defined protocol before it is accepted. The verifica-
tion has two purposes. First, the system will make sure 
that every legitimate party has enough knowledge to gen-
erate the messages that it sends out. In other words, we 
need to verify that the protocol is legible. For example, 

node A will not be able to sign a packet with node B’s 
private key. To enforce this property, the system will start 
from the initial knowledge base of each participant and 
verify the changes of its knowledge and the contents of 
sent messages. The system will ask the user to improve 
her/his design if a conflict is detected. Second, the system 
will try to identify vulnerabilities in the protocol, con-
struct possible attacks, and demonstrate them with our 
Lego set. This task can be accomplished by the protocol 
verification component following the procedure described 
in Section III.B. In these demonstrations, the knowledge 
units for constructing fake messages will be highlighted to 
help students understand the capabilities of attackers. 

To help other instructors and promote the adoption of the 
Lego system, we have preloaded the system with a group 
of security protocols and attacks that are widely used in 
information assurance courses. The following table pro-
vides a list of these preloaded contents. 

Preloaded Security Protocols 
SKID2
SKID3
Wide-Mouth Frog 
Yahalom 
Needham-Schroeder 
Otway-Rees 
Woo-Lam 
Denning-Sacco 

Preloaded Attacks 
Man-in-the-middle attack using SKID3 
Resend attack using Needham-Schroeder 
Type flaw attack using Woo-Lam 
Impersonation attack using Denning-Sacco 

Table 2. Preloaded protocols and attacks in Lego system. 

B. Identifying Critical Information Pieces 

The second group of exercises focuses on training stu-
dents’ capability to identify security primitives in a com-
plex protocol. Although there are hundreds of security 
protocols that are adopted by different systems, the num-
ber of schemes to enforce individual security properties is 
usually limited. For example, the most frequently used 
methods to guarantee freshness of information are se-
quence numbers, timestamps, and freshly generated non-
ces. Based on this observation, we have identified a group 
of security properties and enumerated the methods to en-
force each of them.  

Using this information, we have designed several exer-
cises for each preloaded protocol. In this exercise, stu-
dents are required to highlight the distributed information 
units that are essential to the enforcement of a specific 
security property. After they finish their selection, our 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

30ISBN 1-933510-96-8 ©2008 CISSE



system will compare the highlighted contents with previ-
ously recorded answers. If the user input is insufficient to 
enforce this property or more than enough, the system 
will display the correct answer. Currently, the questions 
and answers in this exercise are manually designed. We 
will develop a method to automatically generate questions 
and answers in the future.  

Figure 5 illustrates an example in which the user is asked 
to identify the contents that help node B authenticate the 
identity of node A in the Woo-Lam protocol. 

KBSb

KBSKASb

KASb

b

NABS
NASB

NBA
NAB
ABA

},{:
}}{,{:

}{:
:
:

(a)

(b)
Figure 5. (a) The Woo-Lam authentication protocol. (b) The 

highlighted contents illustrate the information that helps node B 
authenticate the identity of node A. 

C. Protocol and Attack Construction with Increasing 
Difficulties 

The ultimate goal of our third group of exercises is to 
enable students to design security protocols that satisfy 

requirements of different systems. To achieve this goal, 
we divide the exercises into three subgroups with increas-
ing difficulty levels. Below we describe each of them in 
detail. 

In the first subgroup of exercises, we will remove the in-
formation units that are essential for the enforcement of a 
specific security property and ask the user to fill the 
blank. These exercises can be viewed as a natural exten-
sion of the previous group of practices and they can use 
the same manually designed questions. Since there may 
be several different methods to fill the blanks and enforce 
the property, the user input will be provided to the proto-
col verification component. If the analysis shows that the 
protocol is not safe or the property is not enforced, the 
system will display the result and ask the user to improve 
her/his design. This procedure will continue until a cor-
rect answer is provided by the user or the user chooses to 
see the system’s answer. 

The second group of exercises will train students to form 
messages based on available knowledge. We are espe-
cially interested in the formation of fake messages to con-
duct attacks. In this exercise, the screen will be divided 
into two parts. On the left side we illustrate the original 
protocol. On the right side, we will insert a part of the 
attacker’s strand into the protocol execution procedure 
and leave several messages as blank. The user is asked to 
fill the lost contents of these messages based on the at-
tacker’s knowledge base. After a user fills the blanks, the 
attack will be analyzed by the system. If the attack fails to 
compromise the protocol, the system will provide the cor-
rect answer. Figure 6 illustrates an example in which the 
user is asked to form a type-flaw attack on Woo-Lam 
protocol.  

The last group of exercises will train students’ capabilities 
to design security protocols under specific requirements. 
We will define the initial knowledge bases for legitimate 
participants and ask users to design a protocol that satis-
fies one or several security properties. The design result 
will be provided to the verification component for analy-
sis. Since the initial knowledge base has been identified, a 
user-defined protocol will be labeled as not legible if it 
uses some information that is not available to a legitimate 
party. The verification procedure will also identify vul-
nerabilities of the designed protocol and construct possi-
ble attacks. The user can improve her/his design based on 
these feedbacks and submit the updated protocol to the 
verification component for another round of evaluation. 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

31ISBN 1-933510-96-8 ©2008 CISSE



KBSb

KBSb

b

b

NABM
Mbyblockedpacket

NASB
NBM
NMB
ABM

},{:

},{:
:
:
:

(a)

(b)

Figure 6. (a) The attacker conducts a type-flaw attack on Woo-
Lam authentication protocol. (b) The user is asked to input the 

fake message sent by the attacker (circled by green lines). 

V. FUTURE WORK

In the future, we propose to improve the Lego system 
through strengthening its protocol representation and at-
tack analysis capabilities, providing more user-friendly 
interfaces, and conducting systematic evaluation. From 
the technical point of view, we will improve the represen-
tation capabilities of the knowledge model by integrating 
one-way functions into the model. We will also investi-
gate the verification of protocols with non-atomic keys. 
We will integrate more kinds of security protocols and 
attacks into the system to assist other instructors and pro-
mote its wide adoption. 

We will improve the visualization and interaction inter-
faces of the system so that students can better understand 
the course materials. For example, previous research [25] 
has shown that some people will better accept knowledge 
represented using 2D shapes, while others better using 3D 
shapes. Therefore, we propose to develop 3D Lego pieces 
for security protocol construction and verification. We 
will also develop animation functions that can help to 
keep students’ attention and demonstrate procedures of 
message exchanging effectively. 

With the help from the staff of the Teaching Excellence 
Center, we plan to conduct an evaluation to assess the 
effectiveness of the proposed Lego system in helping stu-
dents understand information assurance knowledge. One 
of the authors will teach an introductory level security 
course every year and the course usually attracts 30 to 40 
junior level students in computer science and information 
assurance majors. The evaluation will include a suite of 
hands-on exercises, team projects, questionnaire, and user 
interview. The teaching experiences and student feed-
backs will provide first hand information for us to im-
prove the approach.   

VI. CONCLUSION

To improve information assurance education, we have 
developed a digital Lego system for demonstrating and 
practicing important security concepts. We have carefully 
designed our digital Lego sets to provide a generic repre-
sentation of security protocols. Our approach applies the 
pedagogical methods learned from toy construction sets 
by treating security atomics as Lego pieces and protocols 
as construction results. With our digital Lego sets, we 
have developed a prototype system and supporting in-
structional materials. Three groups of hands-on exercises 
have been designed to strengthen different aspects of se-
curity education. The system can automatically generate 
demonstrations and let students perform hands-on ex-
periments. This approach, if widely adopted, will assist 
instructors in information assurance courses and help stu-
dents better understand the abstract and challenging mate-
rials.

VII. ACKNOWLEDGEMENT

This project is supported by National Science Foundation 
under award numbers 0754592 and 0633150. 

VIII. REFERENCES

[1] V. Pothamsetty. Where security education is lacking. 
In Proc. of InfoSecCD, pages 54–58, 2005. 

[2] P. Wyeth and H. Purchase. Using developmental theo-
ries to inform the design of technology for children. In 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

32ISBN 1-933510-96-8 ©2008 CISSE



Proc. of Conf. on Interaction design and children, pages 
93–100, 2003. 

[3] B. Harley. Constructional Toys. Shire Publications, 
UK, 1990. 

[4] G. Cross. Kids’ Stuff. Harvard University Press, 1997. 

[5] M. Eisenberg, A. Eisenberg, M. Gross, K. 
Kaowthumrong, N. Lee, and W. Lovett. Computationally-
enhanced construction kits for children: Prototype and 
principles. In Proc. of Int. Conf. of Learning Sciences, 
pages 79–85, 2002. 

[6] Y. Kitamura and et al. Real-time 3d interaction with 
activecube. In Proc. of CHI, pages 355–356, 2001. 

[7] M. Resnick and et al. Programmable bricks: Toys to 
think with. IBM Systems Journal, 35(3):443–452, 1996. 

[8] J. Weinberg and X. Yu. Robotics in education: Low-
cost platforms for teaching integrated systems. IEEE 
Robotics and Automation, 10(2):4–6, 2003. 

[9] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, 
and M. Resnick. Scratch: A sneak preview. In Int. Conf. 
on Creating, Connecting, and Collaborating through 
Computing, pages 104–109, 2004. 

[10] F. Martin, B. Mikhak, M. Resnick, B. Silverman, and 
R. Berg. To mindstorms and beyond: evolution of a 
construction kit for magical machines. In Robots for kids: 
exploring new technologies for learning, pages 9–33. 
Morgan Kaufmann Publishers Inc., 2000. 

[11] J. Weinberg, G. Engel, K. Gu, C. Karacal, S. Smith, 
W. White, and X. Yu. A multidisciplinary model for 
using robotics in engineering education. In Proc. Of The 
American Society for Engineering Education Annual 
Conference, 2001. 

[12] A. Howe. The ultimate construction toy: Applying 
kit-of parts theory to habitat and vehicle design. In Proc. 
of Aerospace Architecture Symposium, 2002. 

[13] C. Coulston1 and R. Ford. Teaching functional 
decomposition for the design of electrical and computer 
systems. In Proc. of IEEE Frontiers in Education Annual 
Conference, 2004. 

[14] J. Millen and V. Shmatikov. Constraint solving for 
bounded-process cryptographic protocol analysis. In Proc. 
of ACM CCS, pages 166–175, 2001. 

[15] C. Cremers. Compositionality of security protocols: 
A research agenda. Electronic Notes in Theoretical 
Computer Science, 142(3):99–110, 2006. 

[16] E. Saul and A. Hutchison. A graphical environment 
for the facilitation of logic-based security protocol 
analysis. South African Computer, (21):26–30, 1998. 

[17] E. Saul and A. Hutchison. An Environment to 
Facilitate the Teaching of GNY-Based Security Protocol 
Analysis Techniques. In Proceedings Second World 
Conference in Information Security Education, 2001. 

[18] L. Hamey. Teaching secure communication protocols 
using a game representation, in Proceedings of the fifth 
Australasian conference on computing education, pages 
187-196, 2003. 

[19] L. Bergstrom, K. Grahn, K. Karlstrom, G. Pulkkis, P. 
Astrom. Teaching Network Security in a Virtual Learning 
Environment, Journal of Information Technology 
Education, vol 3, pages 189-217, 2004. 

[20] D. Schweitzer, L. Baird, M. Collins, W. Brown, and 
M. Sherman. GRASP: A Visualization Tool for Teaching 
Security Protocols, in CISSE, pages 75-81, 2006. 

[21] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and 
A. Scedrov. Relating strands and multiset rewriting for 
security protocol analysis. In Proc. of IEEE Computer 
Security Foundations Workshop, pages 35–51, 2000. 

[22] D. Song. Athena: a new efficient automatic checker 
for security protocol analysis. In Proc. of IEEE Computer 
Security Foundations Workshop, pages 192–202, 1999. 

[23] F. Thayer, J. Herzog, and J. Guttman. Strand spaces: 
Why is a security protocol correct? In Proc. of IEE Symp. 
on Security and Privacy, pages 160–171, 1998. 

[24] A. Perrig and D. Song. Looking for diamonds in the 
desert: extending automatic protocol generation to three-
party authentication and key agreement protocols, in Proc. 
of IEEE Computer Security Foundations Workshop, 
pages 64–76, 2000. 

[25] C. Ho, C. Eastmana and R. Catramboneb, An 
investigation of 2D and 3D spatial and mathematical 
abilities, in Design Studies, 27(4), pages 505-524, 2006. 

Proceedings of the 12th Colloquium for Information Systems Security Education
University of Texas, Dallas
Dallas, TX June 2 - 4, 2008

33ISBN 1-933510-96-8 ©2008 CISSE


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ACaslonPro-Bold
    /ACaslonPro-BoldItalic
    /ACaslonPro-Italic
    /ACaslonPro-Regular
    /ACaslonPro-Semibold
    /ACaslonPro-SemiboldItalic
    /AGaramondPro-Bold
    /AGaramondPro-BoldItalic
    /AGaramondPro-Italic
    /AGaramondPro-Regular
    /Aharoni-Bold
    /Amienne
    /Amienne-Bold
    /Andalus
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /ArabicTypesetting
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArnoPro-Bold
    /ArnoPro-BoldCaption
    /ArnoPro-BoldDisplay
    /ArnoPro-BoldItalic
    /ArnoPro-BoldItalicCaption
    /ArnoPro-BoldItalicDisplay
    /ArnoPro-BoldItalicSmText
    /ArnoPro-BoldItalicSubhead
    /ArnoPro-BoldSmText
    /ArnoPro-BoldSubhead
    /ArnoPro-Caption
    /ArnoPro-Display
    /ArnoPro-Italic
    /ArnoPro-ItalicCaption
    /ArnoPro-ItalicDisplay
    /ArnoPro-ItalicSmText
    /ArnoPro-ItalicSubhead
    /ArnoPro-LightDisplay
    /ArnoPro-LightItalicDisplay
    /ArnoPro-Regular
    /ArnoPro-Smbd
    /ArnoPro-SmbdCaption
    /ArnoPro-SmbdDisplay
    /ArnoPro-SmbdItalic
    /ArnoPro-SmbdItalicCaption
    /ArnoPro-SmbdItalicDisplay
    /ArnoPro-SmbdItalicSmText
    /ArnoPro-SmbdItalicSubhead
    /ArnoPro-SmbdSmText
    /ArnoPro-SmbdSubhead
    /ArnoPro-SmText
    /ArnoPro-Subhead
    /Arnprior
    /Batang
    /BatangChe
    /Baveuse
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /Berylium
    /Berylium-BoldItalic
    /BickhamScriptPro-Bold
    /BickhamScriptPro-Regular
    /BickhamScriptPro-Semibold
    /Biondi
    /Biondi-Light
    /BirchStd
    /BlackadderITC-Regular
    /BlackoakStd
    /BlueHighway
    /BlueHighway-Bold
    /BlueHighwayCondensed
    /BlueHighwayDType
    /BlueHighwayLinocut
    /Boopee
    /Boopee-Bold
    /BradleyHandITC
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScriptStd
    /BurnstownDam
    /Byington
    /Byington-Bold
    /Byington-Italic
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /CarbonBlock
    /Catriel
    /Catriel-Bold
    /Catriel-BoldItalic
    /Catriel-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /ChaparralPro-Bold
    /ChaparralPro-BoldIt
    /ChaparralPro-Italic
    /ChaparralPro-Regular
    /CharlemagneStd-Bold
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlackStd
    /CooperBlackStd-Italic
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CreditValley
    /CreditValley-Bold
    /CreditValley-BoldItalic
    /CreditValley-Italic
    /CurlzMT
    /DaunPenh
    /David
    /David-Bold
    /DFKaiShu-SB-Estd-BF
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /DokChampa
    /Dotum
    /DotumChe
    /EarwigFactory
    /EccentricStd
    /EdwardianScriptITC
    /EngraversMT
    /EngraversMT-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /EstrangeloEdessa
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /EuphemiaCAS
    /EuphorigenicS
    /EurostileBold
    /EurostileRegular
    /FangSong
    /FelixTitlingMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FrenchScriptMT
    /GaramondPremrPro
    /GaramondPremrPro-It
    /GaramondPremrPro-Smbd
    /GaramondPremrPro-SmbdIt
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GiddyupStd
    /Gisha
    /Gisha-Bold
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /HeavyHeap
    /HoboStd
    /HurryUp
    /Huxtable
    /Impact
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /IskoolaPota
    /JasmineUPC
    /JasmineUPCBold
    /JasmineUPCBoldItalic
    /JasmineUPCItalic
    /Jokerman-Regular
    /JuiceITC-Regular
    /KaiTi
    /Kalinga
    /Kartika
    /KodchiangUPC
    /KodchiangUPCBold
    /KodchiangUPCBoldItalic
    /KodchiangUPCItalic
    /KozGoPro-Bold
    /KozGoPro-ExtraLight
    /KozGoPro-Heavy
    /KozGoPro-Light
    /KozGoPro-Medium
    /KozGoPro-Regular
    /KozMinPro-Bold
    /KozMinPro-ExtraLight
    /KozMinPro-Heavy
    /KozMinPro-Light
    /KozMinPro-Medium
    /KozMinPro-Regular
    /Kredit
    /KristenITC-Regular
    /Latha
    /Leelawadee
    /Leelawadee-Bold
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LevenimMT
    /LevenimMT-Bold
    /Ligurino
    /Ligurino-Bold
    /LigurinoCondensed
    /Ligurino-Italic
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /LithosPro-Black
    /LithosPro-Regular
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /MaiandraGD-DemiBold
    /MaiandraGD-Italic
    /MaiandraGD-Regular
    /MalgunGothicBold
    /MalgunGothicRegular
    /Mangal
    /Marlett
    /MatisseITC-Regular
    /Meiryo
    /Meiryo-Bold
    /Meiryo-BoldItalic
    /Meiryo-Italic
    /MesquiteStd
    /MicrosoftHimalaya
    /MicrosoftJhengHeiBold
    /MicrosoftJhengHeiRegular
    /MicrosoftSansSerif
    /MicrosoftUighur
    /MicrosoftYaHei
    /Microsoft-Yi-Baiti
    /MingLiU
    /MingLiU-ExtB
    /Ming-Lt-HKSCS-ExtB
    /Ming-Lt-HKSCS-UNI-H
    /MinionPro-Bold
    /MinionPro-BoldCn
    /MinionPro-BoldCnIt
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Medium
    /MinionPro-MediumIt
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MinyaNouvelle
    /MinyaNouvelleBold
    /MinyaNouvelleBoldItalic
    /MinyaNouvelleItalic
    /Miriam
    /MiriamFixed
    /Mistral
    /MongolianBaiti
    /MoolBoran
    /MS-Gothic
    /MS-Mincho
    /MS-PGothic
    /MS-PMincho
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSpecialty
    /MS-UIGothic
    /MT-Extra
    /Mufferaw
    /MVBoli
    /MyriadPro-Bold
    /MyriadPro-BoldCond
    /MyriadPro-BoldCondIt
    /MyriadPro-BoldIt
    /MyriadPro-Cond
    /MyriadPro-CondIt
    /MyriadPro-It
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /Narkisim
    /Neuropol
    /NSimSun
    /NuevaStd-BoldCond
    /NuevaStd-BoldCondItalic
    /NuevaStd-Cond
    /NuevaStd-CondItalic
    /Nyala-Regular
    /OCRAExtended
    /OCRAStd
    /OratorStd
    /OratorStd-Slanted
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PlanetBenson2
    /PlantagenetCherokee
    /PMingLiU
    /PMingLiU-ExtB
    /PoplarStd
    /PrestigeEliteStd-Bd
    /Pupcat
    /Raavi
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rod
    /RosewoodStd-Regular
    /SegoePrint
    /SegoePrint-Bold
    /SegoeScript
    /SegoeScript-Bold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /Shruti
    /SimHei
    /SimplifiedArabic
    /SimplifiedArabic-Bold
    /SimplifiedArabicFixed
    /SimSun
    /SimSun-ExtB
    /StencilStd
    /Stereofidelic
    /SybilGreen
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Tandelle
    /Tandelle-Bold
    /Tandelle-BoldItalic
    /Tandelle-Italic
    /Teen
    /Teen-Bold
    /Teen-BoldItalic
    /Teen-Italic
    /TeenLight
    /TeenLight-Italic
    /TektonPro-Bold
    /TektonPro-BoldCond
    /TektonPro-BoldExt
    /TektonPro-BoldObl
    /TempusSansITC
    /TimesNewRoman
    /TimesNewRoman-Bold
    /TimesNewRoman-BoldItalic
    /TimesNewRoman-Italic
    /TimesNewRomanMT-BoldCond
    /TimesNewRomanMT-Cond
    /TimesNewRomanMT-CondItalic
    /TimesNewRomanPS
    /TimesNewRomanPS-Bold
    /TimesNewRomanPS-BoldItalic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-Italic
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /TraditionalArabic
    /TraditionalArabic-Bold
    /TrajanPro-Bold
    /TrajanPro-Regular
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga
    /VelvendaCooler
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vivaldii
    /Vrinda
    /Waker
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


