
Towards the Attacker’s View of Protocol Narrations
(or, How to Compile Security Protocols)

Zhiwei Li
Department of SIS

UNC Charlotte
Charlotte, NC 28223
zli19@uncc.edu

Weichao Wang
Department of SIS and CyberDNA

UNC Charlotte
Charlotte, NC 28223

weichaowang@uncc.edu

ABSTRACT
As protocol narrations are widely used to describe security
protocols, efforts have been made to formalize or devise
semantics for them. An important, but largely neglected,
question is whether or not the formalism faithfully accounts
for the attacker’s view. Several attempts have been made
in the literature to recover the attacker’s view. They, how-
ever, are rather restricted in scope and quite complex. This
greatly impedes the ability of protocol verification tools to
detect intricate attacks.

In this paper, we establish a faithful view of the attacker
based on rigorous, yet intuitive, interpretations of exchanged
messages. This gives us a new way to look at attacks and
protocol implementations. Specifically, we identify two types
of attacks that can be thawed through adjusting the protocol
implementation; and show that such an ideal implementa-
tion does not always exist. Overall, the obtained attacker’s
view provides a path to more secure protocol designs and
implementations.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; D.2.4 [Software]: Soft-
ware/Program Verification—Formal methods

General Terms
Security

1. INTRODUCTION
Although protocol narrations are widely used in security

literature to describe security protocols, different groups of
people view the informal description rather differently. Such
a discrepancy among them makes it extremely difficult to
evaluate security properties of a protocol.

First, the designer’s view of protocol narrations is often
“optimistic”, because the expected protocol execution natu-
rally leads designers to ignore other possible protocol execu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’12, May 2–4, 2012, Seoul, Korea.
Copyright 2012 ACM 978-1-4503-1303-2/12/05 ...$10.00.

tions. As an example, let us consider the following Otway-
Rees protocol [32].

1. A→ B : M,A,B, {Na,M,A,B}Kas

2. B → S : M,A,B, {Na,M,A,B}Kas , {Nb,M,A,B}Kbs

3. S → B : M, {Na,Kab}Kas , {Nb,Kab}Kbs

4. B → A : M, {Na,Kab}Kas

Here, A, B, and S denote different roles of the protocol, and
the sequence of message exchanges illustrates the intended
execution trace of the protocol. It is expected that at the
last step A would receive a symmetric key Kab, whereas A
could be cheated to accept (M,A,B) as the symmetric key
in a well-known type flaw attack [14].

Second, the implementor’s view of protocol narrations can
be“pessimistic”, because how principals check incoming mes-
sages is often neglected in protocol narrations [1]. That is
to say, implementors may unnecessarily treat some incom-
ing messages as “black-boxes” and thus allow protocol exe-
cutions that are not in compliance with the protocol narra-
tions [13]. For example, Ceelen et al. [12] show that Lowe’s
modified KSL protocol [27] is subject to the selected-name
attack. This attack arises because the implementation fails
to check an agent’s name, which could have been implied by
the protocol narration.

There is little point in pretending that a protocol will only
execute in accordance with the designer’s view. If we adopt
the optimistic view in our analysis, attacks that are not in
accordance with this view will never be found, such as the
type flaw attack on the Otway-Rees protocol. On the con-
trary, if we adopt the pessimistic view, spurious attacks may
be detected due to the absence of some necessary condition
checks.

In this paper, we address this discrepancy by establishing
a faithful attacker’s view of protocol narrations. The view
is “faithful” in a sense that all, and only, protocol executions
in compliance with a given protocol narration are identified,
as shown in Figure 1. Unlike most previous work which
has focused on formalization or compilation [11, 10, 9, 30],
we aim at a semantics that accounts for the most minute
aspects of the protocol in the same manner of an attacker.
Such a view coincides with a realistic designer’s view and a
proactive implementor’s view.

Overview.
The main challenge of recovering the attacker’s view is to

determine exactly to what extent an incoming message can
be interpreted by a protocol participant. This task relates
closely to specifying a participant’s internal action(s) (i.e.,
condition check), which is an essential but largely neglected

Figure 1: Sets of possible protocol execution traces
under different views of a protocol narration

part of protocol specification [1]. Although efforts have been
devoted to make such checks explicit, it is far from clear that
all necessary checks are found. Besides, most of the ap-
proaches are specialized for the Dolev-Yao style primitives,
and rely on exhaustive case-by-case analysis, without intu-
itive justifications. To identify all necessary internal actions,
we provide an intuitive, yet rigorous, justification for checks
performed by a principal. Specifically, we extend the notion
of recognizability [23] to ascertain the extent to which mes-
sage(s) could be understood. Consequently, we reduce the
problem of extraction of semantics from a protocol narration
to that of deciding recognizability, of which the decision pro-
cedure under Dolev-Yao model is implemented in [24].

We then use this ideal semantics to guide protocol imple-
mentation by deriving all necessary equality checks. Similar
to [13], such implementations are said to be prudent. Re-
markably, an attack scenario may be useful to refine a proto-
col implementation; we include additional inequality checks
in a refined implementation to prevent the attack. For ex-
ample, the type flaw attack on the Otway-Reese protocol
is infeasible if A checks whether or not the last incoming
message is the same as M, {Na,M,A,B}Kas .

Contributions.
The main contributions of this paper are the following:

• We establish a faithful view of the attacker by rig-
orously examining each participant’s ability or inabil-
ity to cope with potentially ambiguous incoming mes-
sages.

• Independent of the attacker model, we present a pro-
cedure to extract from a given protocol narration its
ideal semantics. This procedure boils down to decid-
ing recognizability, for which decidability results are
known under the standard Dolev-Yao model [24].

• We propose a novel classification of protocol implemen-
tations and attacks according to the attacker’s view.
Specifically, we prove that an ideal implementation
does not always exist, and thereby design a proce-
dure to derive a prudent implementation to approach
it, which performs all necessary equality checks.

• In light of the new classification, we propose a semi-
automated implementation refinement paradigm that
highlights inequality checks to thwart type-II attacks

(defined in Section 5.3). As the new implementation
cannot be achieved either by the protocol designers or
by the protocol verifiers alone, we motivate the inter-
play between protocol design and verification via the
semi-automated refinement process.

Organization.
The remainder of this paper is organized as follows: Sec-

tion 2 introduces background materials. Section 3 is dedi-
cated to the interpretations of exchanged messages in pro-
tocol narrations. Section 4 gives the ideal semantics of pro-
tocol narrations based on interpretations of the exchanged
messages. In light of this semantics, Section 5 presents our
classification of protocol implementations and attacks. Sec-
tion 6 discusses related work. Section 7 concludes the paper
and outlines the future work.

2. PRELIMINARIES
In this section, we briefly review the basic definitions of

term algebra, equational theory, and deducibility.
A signature is a finite set of function symbols F and a

possibly infinite set of constants A. Each function symbol
has an associated arity. We discriminate public and pri-
vate function symbols, respectively denoted by F+ and F−.
We define the term algebra T (F ,A,X) as the smallest set
containing X and A such that f(t1, · · · , tn) ∈ T (F ,A,X)
whenever f ∈ F with arity n, and t1, · · · , tn ∈ T (F ,A,X).
Elements of the set T (F ,A,X) are called terms. To avoid
confusion, syntactic equality of two terms t1 and t2 will be
denoted by t1 =s t2. As usual, fv(t) is defined as the set of
variables that occur in term t. A term is ground if fv(t) = ∅.
We tend to use the words “term” and “message” interchange-
ably in the rest of this paper.

An equation is a pair of terms, written s = t and an equa-
tional theory E is presented by a finite set of equations. We
write t1 =E t2 when equation t1 = t2 is a logical consequence
of E. A substitution is a finite tuple [t1/x1, ..., tn/xn] map-
ping from variables xi to terms ti. The domain and range of

a substitution σ are defined by Dom(σ)
def
= {x|xσ 6=s x} and

Ran(σ)
def
=

⋃
x∈Dom(σ){xσ}, respectively. We write σ = θ if

Dom(σ) = Dom(θ) and xσ =s xθ for all x. We define the
composition of substitutions σ and θ as a new substitution
σ ◦θ such that tσ ◦θ =s (tσ)θ. We use ε to denote an empty
substitution, that is Dom(ε) = ∅.

Let E be an equational theory and X a set of variables.
We say that substitution σ is more general modulo E on X
than the substitution θ, and write σ •≤XE θ, if there exists a
substitution λ such that xθ =E xσλ for all x ∈ X.

The most straightforward way to model a principal’s knowl-
edge is in terms of message deducibility [18, 26]. That is,
given an equational system E and some messages T one
might be able to compute another message t from T under
equational theory E. Formally,

` (R1)
t ∈ T
T ` t

(R2)
T ` t1 · · ·T ` tk
T ` f(t1, · · · , tk)

f ∈ F+

`E (R3)
T ` s s =E t

T `E t

We use the following equational theory Edy to model the
standard Dolev-Yao intruder [18].

F+
dy pair, senc, penc, hash

fst, snd, sdec, pdec
F−dy pk, sk

Edy fst(pair(x, y)) = x
snd(pair(x, y)) = y
sdec(senc(x, y), y) = x
pdec(penc(x, pk(y)), sk(y)) = x
pdec(penc(x, sk(y)), pk(y)) = x

To reduce notational clutter, we use K+
a , K−a , and s · t as

shorthands for pk(A), sk(A), and pair(s, t), respectively.
Besides, we use t1 · t2 · t3 · · · · · tn to denote (((t1 · t2) · t3) ·
· · · · tn). Additionally, {s}t denotes penc(s, t) if t is either a
public/private key, and senc(s, t) otherwise.

Proposition 2.1. Let T be a term set and σ be a substitu-
tion. Then, Tσ `E t if and only if T ` t′ for some t′ such
that t′σ =E t. Such a term t′ is called a recipe of t.

3. INTERPRETING INCOMING MESSAGES
In this section we show how to interpret exchanged mes-

sages in protocol narrations. The presentation proceeds in
three steps. First, we introduce a new knowledge represen-
tation markup term set to account for uncertainty. Then, we
present an operational equivalence relation to capture one’s
inability to distinguish two interpretations of a message. Fi-
nally, we use recognizability to precisely characterize one’s
ability to interpret an incoming message.

3.1 Accounting For Uncertainty
In a hostile protocol execution environment, an incoming

message almost always has some part(s) being ambiguous.
For example, in the Otway-Rees protocol after exchanging
the first three messages, principal A is expecting KAB from
the trusted third party S. However, since KAB is dynami-
cally generated, A is uncertain about its value, and thus will
accept any bit string of the same length.

To account for uncertainty, we introduce the following no-
tion to encapsulate one’s epistemic state.

Definition 3.1 (Markup Term Set). A markup term set,

notated as ~T , is a pair 〈T, σ〉, where σ is a substitution such
that Dom(σ) ⊆ fv(T).

Here, a variable stands for an ambiguous (part of) message,
and a ground substitution corresponds to one possible inter-
pretation. This definition accords with the possible worlds
semantics for knowledge [21], in which the principal’s actual
epistemic state resides in one of many possible states, and
all possible states are indistinguishable to the principal. We
will write ~T ↓ts and ~T ↓subs for the term set and substitution
in ~T , respectively.

Example 1. Let us use markup term sets to model a princi-
pals’ knowledge after completion of the Otway-Rees protocol.
The initial knowledge of A, B, and C is given by Ta0, Tb0,
and Ts0, respectively, where

Ta0 = {M,A,B, S,Na,Kas}
Tb0 = {A,B, S,Nb,Kbs}
Ts0 = {A,B, S,Kas,Kbs}

Upon completion of the protocol, the knowledge of each
principal becomes

~Ta =〈Ta0 ∪ {x4}, [{Na ·Kab}Kas/x4]〉
~Tb =〈Tb0 ∪ {x1, x3},

[(M ·A ·B · {Na ·M ·A ·B}Kas)/x1, {Nb ·Kab}Kbs
)/x3]〉

~Ts =〈Ts0 ∪ {x2},
[(A ·B · {Na ·M ·A ·B}Kas , {Nb ·M ·A ·B}Kbs

)/x2]〉

where x1 to x4 indicate the four incoming messages.

3.2 Operational Equivalence
We have used a markup term set to represent a principal’s

epistemic state. Now, we introduce an indistinguishability
relation to capture one’s inability to discriminate two epis-
temic states.

Definition 3.2 (Operational Equivalence). Let T be a term
set and σ1 and σ2 be two substitutions such that Dom(σ1),
Dom(σ2) ⊆ fv(T). They are operationally equivalent in
equational theory E w.r.t. term set T , written as σ1 ≈E,T
σ2, if for all terms u and v such that T ` {u, v} we have
uσ1 =E vσ1 ⇔ uσ2 =E vσ2.

Example 2. Consider again the Otway-Rees protocol. As
in Example 1, the initial knowledge of each principal is given
by Ta0, Tb0, and Ts0, respectively. After receiving the first
message, the knowledge of B becomes Tb1 = Tb0 ∪ {x, y} =
{A,B, S,Nb,Kbs, x, y}, where x and y denote M and {Na ·
M ·A ·B}Kas , respectively.

Although it appears to be a black box to B due to the lack
of decryption key Kas, the message {Na ·M ·A·B}Kas cannot
be interpreted as an arbitrary message. To see this, we let
σ3 = [Na ·Na/y], u =s fst(y), and v =s snd(y). Note that
Tb1 ` {u, v}, uσ3 =Edy vσ3 =Edy Na, and

uσ1 =s fst({Na ·M ·A ·B}Kas)

vσ1 =s snd({Na ·M ·A ·B}Kas)

Clearly, uσ1 6=Edy vσ1 and uσ3 =Edy vσ3. Thus, σ1 6≈Edy,Tb1

σ3 follows immediately from Definition 3.2.

3.3 Recognizability
Our work is built upon the concept of recognizablity [23],

which is proposed to formalize the idea of “verifying a mes-
sage”. Roughly speaking, a principal “recognizes” a message
if he or she has certain expectation about its binary rep-
resentation, or in other words, the message has an unam-
biguous interpretation. For instance, if Alice knows Na and
{Na}K+

b
, she is able to“recognize”K+

b , because she can con-

struct {Na}K+
b

and compare it with her current knowledge.

Definition 3.3 (E-solver). Let ~T = 〈T, σ0〉 be a markup
term set and let X = fv(T). We say that substitution θ is

an E-solver for ~T iff the following conditions hold

(i). θ ≈E,T σ0 and

(ii). if σ ≈E,T σ0 and σ •≤XE θ, then σ =X
E θ.

We define a minimum complete set of E-solvers (MCS) Θ

for ~T and write ~T E Θ iff the following condition holds: σ
is an E-solver of ~T iff there exists one and only one θ ∈ Θ
such that θ =X

E σ.

Intuitively, an E-solver for ~T is a “most general” substitu-
tion that satisfies the operational equivalence imposed by ~T .
Since we are using relation •≤XE to characterize “generality”,
the “most general” one may not be unique (modulo E) up
to renaming.

Definition 3.4 (Recognizability). Let ~T = 〈T, σ0〉 be a
markup term set and t be a ground term. We say that t is
recognized as t′ by ~T under equational theory E if there ex-
ists an E-solver θ for 〈T ∪{x}, σ0◦ [t/x]〉 such that xθ =E t′,
where x is a fresh variable. Moreover, we say that t is rec-
ognizable by ~T under equational theory E and write ~T �E t
if t is recognized as itself by ~T under E.

At this point, we can use recognizability to define the
interpretation(s) of an incoming message. Let ~T denote a
principal’s knowledge. An incoming message t is interpreted
as t′ if and only if t is recognized as t′ by ~T under E.

Example 3. Let us consider the following ASW protocol,
which is proposed by Asokan et. al. [6] for fair exchange
and contract signing.

1. A→ B : {K+
a ,K

+
b ,M, hash(Na)}

K−
a

2. B → A : {{K+
a ,K

+
b ,M, hash(Na)}

K−
a
, hash(Nb)}K−

b

3. A→ B : Na
4. B → A : Nb

We assume that the initial knowledge of A and B as follows.

Ta0 = {M,A,B,K+
a ,K

+
b ,K

−
a , Na}

Tb0 = {A,B,K+
a ,K

+
b ,K

−
b , Nb}

Let σa0 and σb0 be the intended interpretations of the mes-
sages received by A and B, respectively. After the protocol
run is completed, the knowledge of each principal becomes

~Ta = 〈Ta0 ∪ {x2, x4}, σa0〉
~Tb = 〈Tb0 ∪ {x1, x3}, σb0〉

where x1 to x4 signify the four incoming messages, and

σa0 = [{{K+
a ·K

+
b ·M · hash(Na)}K−

a
· hash(Nb)}K−

b
/x2, Nb/x4]

σb0 = [{K+
a ·K

+
b ·M · hash(Na)}K−

a
/x1, Na/x3]

Let u1 =s fst(pdec(x2,K
+
b))

u2 =s {K+
a ·K+

b ·M · hash(Na)}
K−

a

u3 =s snd(pdec(x2,K
+
b))

u4 =s hash(x4)

Then, from A’s point of view, u1σa0 =Edy u2σa0 and u3σa0 =Edy

u4σa0. Note that A knows u1, · · · , u4 and σa0 ≈Edy,Ta0∪{x2,x4}
σa.

Let σa and σb be possible interpretations of ambiguous
messages received by A and B, respectively. By operational
equivalence, we have u1σa =Edy u2σa and u3σa =Edy u4σa,
which hold iff

x2σa =Edy {{K
+
a ·K+

b ·M · hash(Na)}
K−

a
· hash(x4)σa}K−

b

Now, it is not hard to see that substitution

θa = [{{K+
a ·K+

b ·M · hash(Na)}
K−

a
· hash(x4)}

K−
b
/x2]

is an Edy-solver for ~Ta. In fact, θa is the only Edy-solver

for ~Ta up to variable renaming and term rewriting. So, the

two messages received by A should be interpreted as {{K+
a ·

K+
b ·M · hash(Na)}

K−
a
· hash(x4)}

K−
b

and x4, respectively.

A similar analysis shows that substitution

θb = [{K+
a ·K+

b · y · hash(x3)}
K−

a
/x1]

is the only Edy-solver for ~Ta up to variable renaming and
term rewriting. So, the two messages received by B should be
interpreted as {K+

a ·K+
b ·y·hash(x3)}

K−
a

and x3, respectively.

Now, we discuss how to obtain a MCS for a given markup
term set. To determine E-solvers, we first construct condi-
tions imposed by operational equivalence, such as u1σa0 =Edy

u2σa0 and u3σa0 =Edy u4σa0 in the previous example, and
then update substitutions by solving those equations. This
is reminiscent of the constraint solving approach proposed
by Millen and Shmatikov [29]. Here, we apply the constraint
solving methodology to find a MCS.

A constraint of a markup term set 〈T, σ〉 under equational
theory E is an unordered pair (u, v) of terms such that T `
{u, v}, uσ =E vσ, and u 6=E v. We say that θ is an E-unifier
of a constraint set C and write θ �E C if uθ =E vθ for every
(u, v) ∈ C. Substitution set Θ is a minimal complete set of
E-unifier (MCU) of C, written as C E Θ, if the following
conditions hold:

• θ �E C for each θ ∈ Θ,

• there exists a θ ∈ Θ such that θ •≤XE σ whenever σ �E C,

• two distinct elements of Θ are incomparable w.r.t. •≤XE .

Definition 3.5 (Constraint Base). Let ~T be a markup term
set and E an equational theory. Suppose that C is the set of
all constraints of ~T under E and C E Θ. Then, we say
that C′ is a constraint base of ~T under E if C′ is the smallest
constraint set satisfying that C′ E Θ and C′ is finite.

This is analogous to the definition “finite basis property”
given in [13]. In Example 3, we see {(u1, u2), (u3, u4)} is a

constraint base of ~Ta.

Proposition 3.6. Let ~T = 〈T, σ〉 be a markup term set.

Suppose that C is a constraint base of ~T . Then, ~T E Θ iff
C E Θ.

In view of Proposition 3.6, we reduce the problem of ob-
taining a MCS to that of finding and solving a constraint
base. This problem is undecidable in general, because E-
unification is undecidable [33, Chapter 8]. Nonetheless, re-
stricting ourselves to some specific equational theories is
likely to yield decidable results. Notably, a procedure is
given in [24] to decide recognizability under the standard
Dolev-Yao model. Due to space limit, we do not pursue
these further here. Henceforth, let us assume that constraint
bases are obtained.

4. THE IDEAL SEMANTICS
Having discussed the interpretation(s) of a message, we

now discuss how to extract ideal semantics from protocol
narrations. We avoid introducing new formalism and base
the semantics on strand space model [20], a widely-used for-
malism in modeling and verifying security protocols [22, 34,
29]. In this paper, strands serve three purposes: (a) describ-
ing a real protocol execution trace; (b) providing protocol
semantics; and (c) specifying a protocol implementation (in
the next section).

4.1 Strands
In the strand space model, an event is a signed term +t or
−t that indicates the sending (+) or receiving (-) of a mes-
sage. A strand ~s is a finite sequence of nodes that describe
the events happening at a legitimate party or an intruder;
the i-th node of the strand is denoted by ~s[i]. Nodes within
the same strand and among different strands are linked by
the relationships ⇒ and →, respectively. More specifically,
⇒ is used to indicate a protocol role’s execution sequence;
and → is used to specify the communication between dif-
ferent principals. A bundle is a finite subgraph of strand
spaces that can be viewed as a snapshot of a protocol execu-
tion. Figure 2 shows a bundle that illustrates the expected
execution of the ASW protocol.

Figure 2: ASW protocol: a bundle.

Each strand in a bundle describing an expected protocol
execution is associated with a role of the protocol. For in-
stance, the two strands in Figure 2 correspond to the roles
A and B in the ASW protocol. We have seen that mes-
sages exchanged between principals (taking some roles) can
be interpreted considerably differently; and an unrecogniz-
able (part of) message is often treated as a free variable. For
example, role A in the ASW protocol should be specified by

A[M,A,B,Na, x]

〈+ {K+
a ·K+

b ·M · hash(Na)}
K−

a
,

− {{K+
a ·K+

b ·M · hash(Na)}
K−

a
, hash(x)}

K−
b
,

+Na,−x〉

where x is instantiated to Nb in a normal protocol run.
We associate strand ~s with a ground term set ~s[0] to de-

scribe its initial knowledge, and use Ki(~s) to denote the
knowledge of a principal (at step i) taking the role specified
by ~s. That is,

Ki(~s) =

~s[0] if i = 0

Ki−1(~s) ∪ {t} if i > 0 and ~s[i] = −t
Ki−1(~s) otherwise

To account for ambiguous messages, we inductively define
~Ki(~s) as follows

~Ki(~s) =

〈~s[0], []〉 if i = 0

〈~Ki−1(~s) ↓ts ∪{x}, ~Ki−1(~s) ↓subs ◦[t/x]〉
where x is a fresh variable, if i > 0 and ~s[i] = −t

~Ki−1(~s) otherwise

The subscript i will be omitted if i = length(~s).

4.2 Execution Traces
In this subsection, we use execution traces to describe real

protocol executions and formalize the meaning of“a protocol
execution is in compliance with the protocol narration”.

An execution trace or simply a trace tr is a strand contain-
ing no variable (i.e., ground strand). Clearly, every protocol
execution can be described by a set of execution traces. It is
natural to parse a protocol narration into a set of traces; we
will always assume that such traces are obtained, and refer
to those traces as narrative traces.

We say that two strands ~s1 and ~s2 are isomorphic iff
~K(~s1) ↓ts and ~K(~s2) ↓ts are identical up to variable renam-
ing, that is, there exists a variable renaming substitution η
that ~K(~s1) ↓ts η = ~K(~s2) ↓ts. For simplicity, we assume that
~K(~s1) ↓ts= ~K(~s2) ↓ts whenever they are isomorphic. We say
that ~s1 and ~s2 are operationally equivalent in equational the-
ory E, written as ~s1 ≈E ~s2, iff ~K(~s1) ↓subs≈E,T ~K(~s2) ↓subs
where T = ~K(~s1) ↓ts= ~K(~s2) ↓ts.

Definition 4.1. Given an equational theory E, we say that
an execution trace tr is in compliance with a set of strands
~S, written as ~S E tr, iff tr ≈E ~s for some ~s ∈ ~S. Two
sets of strands ~S1 and ~S2 are equivalent, written ~S1 ≈E ~S2,
if all, and only, execution traces in compliance with ~S1 are
in compliance with ~S2.

4.3 Semantics
To obtain an ideal semantics of a protocol narration, it is

essential to capture all possible execution traces that are in
compliance with the narration.

Definition 4.2 (Ideal Semantics). Let ~S be a set of strands
and TR0 be a set of narrative traces. Given an equational
theory E, we say that ~S is an ideal semantics of TR0 iff
~S ≈E TR0.

Unfortunately, there is often an infinite number of execu-
tion traces that are in compliance with the set of narrative
traces TR0. So, it is preferable to use “patterns” to capture
those execution traces thanks to fully fledged interpretations
of incoming messages. For example, in an arbitrary success-
ful run of the Otway-Reese protocol the last message should
look like {Na, x}Kas , because Kab is recognized as ε and is
thus replaced by a free variable x. This approach resem-
bles the “pattern-matching” technique widely-used in formal
protocol analysis [34, 10, 16, 7].

Our definition of “recognized as” (Definition 3.4) fits the
intuitive understanding of “patterns”. Given a narrative
trace tr0, we can use the MCS of ~K(tr0) to characterize
all possible incoming messages in a succesful protocol run.

Altogether, we obtain Algorithm 1 to extract an ideal se-
mantics from a protocol narration. The algorithm takes an
input set of narrative traces TR0 and an equational theory
E, and produces an ideal semantics of TR0.

The main loop of the algorithm selects an arbitrary nar-
rative trace tr and obtain a set of operationally equivalent
strands. It has two stages. In the first stage, from line 3
to line 9, it construct an abstract strand by replacing each
incoming message with a fresh variable and replacing each
outgoing message with its corresponding recipe. In the sec-
ond stage, it first computes a MCS Θ of ~K(tr) in line 10.
We see that each θ ∈ Θ corresponds to an interpretation
of the incoming messages, because, by Definition 3.3, it is
operationally equivalent to ~K(tr) and is in its most general

Algorithm 1 Extract-Ideal-Semantics

Input: a set of narrative traces TR0, equational theory E

Output: a set of strands ~S

1: ~S ← ∅
2: for each tr0 ∈ TR0

3: ~sp ← 〈〉, S← ∅
/* specify initial knowledge */

4: append strand ~sp with tr0[0]
/* obtain a markup term set representing the

principal’s knowledge upon protocol completion */
5: for j = 1 to length(tr0)
6: if tr0[j] = +t for some term t then
7: append strand ~sp with node +t′

where t′ is a recipe of t
8: if tr0[j] = −t for some term t then
9: append strand ~sp with node −x

where x is a fresh variable

10: obtain a MCS Θ of ~K(tr0)
11: S← S ∪ {~spθ} for each θ ∈ Θ

12: ~S ← ~S ∪ S
13: return ~S

form. So, in line 11, we include all strands associated with
those interpretations in output ideal semantics.

Theorem 4.3. Let TR0 be a set of narrative traces. Then,
Extract-Ideal-Semantics(TR0, E) returns an ideal seman-
tics of TR0.

Proof. Let ~SI = Extract-Ideal-Semantics(TR0, E). It

suffices to show that ~SI ≈E TR0. That is, an arbitrary
execution trace tr is in compliance with ~SI if and only if it
is in compliance with TR0.

(“If” part) By TR0 E tr, there exists a trace tr0 ∈ TR0

such that tr ≈E tr0. That is, ~K(tr) ↓subs≈E,T ~K(tr0) ↓subs
where T = ~K(tr) ↓ts= ~K(tr0) ↓ts. By Definition 3.3, there

exists a θ ∈ Θ such that θ •≤XE ~K(tr) ↓subs and θ ≈E,T
~K(tr0) ↓subs, where Θ is a MCS of ~K(tr0) and X = fv(T).

We note from Algorithm 1 that ~K(~spθ) ↓ts= T and ~K(~spθ) ↓subs
= θ. So, tr ≈E ~spθ ∈ ~S, that is, ~SI E tr.

(“Only if” part) By ~SI E tr, we see from Algorithm 1

that there exists a strand ~spθ ∈ ~S such that tr ≈E ~spθ. That

is, ~K(tr) ↓subs≈E,T ~K(~spθ) ↓subs= θ where T = ~K(tr) ↓ts=
~K(~spθ) ↓ts. On the other hand, we notice that there exists a

trace tr0 ∈ TR0 such that ~K(tr0) ↓ts= ~K(~spθ) ↓ts. Besides,

since θ is an E-solver of ~K(tr0), we have ~K(tr0) ↓subs≈E,T θ.
Consequently, we obtain tr ≈E tr0 for some tr0 ∈ TR0 and
thus TR0 E tr.

We stress that a protocol could be executed in a hostile
environment. A principal may intentionally abort a protocol
before completion. So, in Algorithm 1 the narrative traces
must include all partial protocol runs [15]. To highlight the
effect of partial runs on the ideal semantics, let us consider
an example.

Example 4. We consider the following contrived protocol:

1. A→ B : M1

2. B → A : M2

3. A→ B : M3

4. B → A : M4

We assume that the initial knowledge of A and B as follows.

Ta0 = {M1,M3}
Tb0 = {M2,M4, {M1}M3}

The narrative trace of role B is

~s1 = 〈{M2,M4, {M1}M3},−M1,+M2,−M3,+M4〉

It is not hard to see that another possible partial run is

~s2 = 〈{M2,M4, {M1}M3},−M1,+M2〉

At first, for both strands we get

~K4(~s1) = 〈{M2,M4, {M1}M3 , x1, x3}, [M1/x1,M3/x3]〉
~K2(~s2) = 〈{M2,M4, {M1}M3 , x1}, [M1/x1]〉

Let Θ1 and Θ2 be the MCS for ~K4(~s1) and ~K2(~s2), re-
spectively. Note that {x1}x3 [M1/x1,M3/x3] =Edy {M1}M3 .
Then, it can be shown that

Θ1 = {[M1/x1,M3/x3]}, Θ2 = {[]}

Thus, in a normal protocol run the first and third messages
are interpreted as M1 and M3, respectively, whereas in a
partial protocol run the first message is interpreted as free
variable x1. That is to say, if the protocol execution suc-
ceeds, B only accepts M1 as the first message, otherwise
any message will be accepted.

For now, it is not hard to see the ideal semantics (of role
B) contains the following two strands:

~s′1 = {M2,M4, {M1}M3},−M1,+M2,−M3,+M4〉
~s′2 = {M2,M4, {M1}M3},−x1,+M2〉

5. FROM IDEAL IMPLEMENTATION TO
REFINED IMPLEMENTATION

In this section, we turn our attention to protocol imple-
mentations. First, we extend the definition of a strand to
allow for specifying internal actions. Next, we define an ideal
implementation according to the ideal semantics of a proto-
col. Since the ideal implementation may not exist, we then
use prudent and refined implementations to approximate it.

Unlike the ideal semantics where messages are regarded as
symbolic expressions, in real protocol implementation every
message is merely a bit string which has potentially ambigu-
ous interpretations. That’s why an ideal semantics high-
lights external patterns of an incoming message, whereas an
implementation emphasizes the internal actions of protocol
participants. Initially, in a protocol implementation, every
incoming message is ambiguous and thus should be indicated
by a fresh variable. Only after performing some condition
checks on messages, the recipient would gain some certainty.
For example, in the ASW protocol (see Example 3) A ought
to check whether fst(pdec(x2,K

+
b)) equals to the first sent

message, where x2 signifies the received message.
To specify internal actions, we define a check event as

check(u = v) or check(u 6= v), where both u and v are
terms. We will use“equality check”and“inequality check”to
discriminate them. An implementation strand ~p is a strand
that allows check events, and all receive events contain only
free variables that are pairwise distinct. We say that an
implementation strand ~p is feasible under equational theory
E iff the following conditions hold:

(i). Ki(~p) `E t whenever ~p[i] = +t, and

(ii). Ki(~p) `E {u, v} whenever ~p[i] is check(u = v) or
check(u 6= v).

This coincides with the definitions of executability and fea-
sibility in [10].

Since an implementation strand makes internal checks ex-
plicit, it can be easily mapped to a practical implementation.
For this reason, we define protocol implementation P as a set
of implementation strands; each corresponds to a role of the
protocol. For convenience, we use ~p ↓ to denote a strand
obtained from ~p by removing all nodes representing check
events.

Definition 5.1 (In Compliance with). An execution trace tr
is in compliance with a protocol implementation P iff there
exists an implementation ~p ∈ P and a substitution θ such
that tr = ~p ↓ θ and for each check(u = v) (resp. check(u 6=
v)) event in ~p we have uθ =E vθ (resp. uθ 6=E vθ).

Let P1 and P2 be two protocol implementations. We say
that P1 encompasses P2, and write P1 ⊆E P2, if all exe-
cution traces in compliance with P2 are also in compliance
with P1; and P1 and P2 are equivalent, written P1 ≈E P2,
iff P1 ⊆E P2 and vice versa. As usual, we write P1 ⊂E P2

for P1 ⊆E P2 and P1 6≈E P2. These notations are extended
in the obvious way to sets of strands.

5.1 Ideal Implementation

Definition 5.2 (Ideal Implementation). Let ~S be an ideal

protocol semantics. An ideal implementation of ~S is defined
as a protocol implementation P such that P ≈E ~S.

Theorem 5.3. Let ~S be an ideal protocol semantics of pro-
tocol narration TR0. The ideal implementation of ~S exists
if and only if ~S does not contain any free variable.

Proof. (Sketch) (“If” part) As we will see in the next sub-
section, Algorithm 2 gives an implementation P. To prove
P ≈E ~S, by Definition 4.2 it suffices to show that P ≈E
TR0. That is, P E tr ⇔ ~S E tr.

We begin with the “⇒” direction. By P E tr, we have
tr = ~p ↓ σ for some implementation ~p and substitution σ.
Let C be the set of constraints checked in ~p and C E Θ.
We see from Definition 5.1 that θ •≤XE σ for some θ ∈ Θ and

X = fv(~K(tr) ↓ts). Notice that there exists a narrative

trace tr0 ∈ TR0 such that C is a constraint base of ~K(tr0).

It follows from Proposition 3.6 that ~K(tr0) E Θ. By Def-

inition 3.3, we get θ ≈E,T ~K(tr0) ↓subs. Moreover, since
~S does not contain any free variable, we know Θ contains
only ground substitutions and thus σ =X

E θ. Consider now
~K(tr) ↓ts= ~K(tr0) ↓ts= T and ~K(tr) ↓subs= σ =X

E θ ≈E,T
~K(tr0) ↓subs, we have tr ≈E tr0 and thus TR0 E tr. The
reverse direction can be shown in a similar way.

(“Only if” part) We will show that if ~S contains free vari-
able(s), then the ideal implementation does not exist. The
main reason is that, when an ideal semantics contains free
variable(s), it is impossible to use even an infinite set of
equality and/or inequality checks to establish operational
equivalence.

For equality check, we note that constraints are implied
by operational equivalence σ0 ≈E,T σ. They, however, do
not suffice to characterize operational equivalence. In other

words, we cannot base operational equivalence on a possibly
infinite set of equations. Here is an example to show why.
Let T = {Nb, x} and σ0 = [{Nb}Kas/x], and suppose that
σ0 ≈Edy,T σ. It is clear that there is no constraint of 〈T, σ0〉.
However, it does not follow that σ0 ≈Edy,T σ holds for an
arbitrary substitution σ. For instance, by letting σ = [Nc ·
Nc/x], we get fst(x)σ =Edy snd(x)σ and fst(x)σ0 6=Edy

snd(x)σ0. So, σ0 6≈Edy σ.
Incorporating inequality checks may not help either. As

an example, let us we consider a substitution σ that satis-
fies σ ≈

Edy,{Na,K
+
a ,x}

[Nb/x]. To establish the operational

equivalence, we have to check xσ 6=Edy tσ for every term t

such that {Na,K+
a , x} ` t.

5.2 Coarse and Prudent Implementations
A coarse implementation of an ideal protocol semantics ~S

is a protocol implementation P such that ~S ⊆E P.

Definition 5.4 (Prudent Implementation). Given an ideal

protocol semantics ~S, we define a prudent implementation
of ~S as a protocol implementation P such that

(i). ~S ⊆E P;

(ii). P does not contain any inequality check event;

(iii). there does not exist an implementation P ′ that satis-
fies (i), (ii), and P ′ ⊂E P.

Making Checks Explicit. As we have seen, the constraint
base maximizes the chance to check non-trivial equalities im-
plied by a protocol narration. It can be used to construct
check events in strands. Suppose that C is a constraint base
of markup term set ~T , which models a principal’s knowledge
after completing a protocol. Then, whenever possible, the
principal should check each constraint (u, v) in a constraint
base and abort upon constraint violation (i.e., uσ 6=E vσ).
Note that a principal might not be able to check those con-
strains all at once. Let ~Ti = 〈Ki, σi〉 be a principal’s knowl-
edge after the i-th step of a protocol. Then, he can check a
constraint (u, v) whenever Ki ` {u, v}.

For example, at step 2 of the ASW protocol, Alice is able
to check constraint (u1, u2) but not (u3, u4), which becomes
checkable only after she receives the last message. So, the
strand of role A becomes:

A[M,A,B,Na, x2, x4]

〈{M,A,B,K+
a ,K

+
b ,K

−
a , Na},

+ {K+
a ·K+

b ·M · hash(Na)}
K−

a
, −x2,

check(fst(pdec(x2,K
+
b)) = {K+

a ·K+
b ·M · hash(Na)}

K−
a

),

+Na, −x4, check(snd(pdec(x2,K
+
b)) = hash(x4))〉

Interpreting Outgoing Messages. The above example
of the ASW protocol is too restrictive, because both terms
in the send events are deducible from the principal’s initial
knowledge and thus avoid dealing with outgoing messages,
which is not always the case. For instance, the third message
(i.e., M · {Na ·Kab}Kas · {Nb ·Kab}Kbs) in the Otway-Reese
protocol, which contains nonces generated by A and B, is
obviously not deducible from S. Consequently, we need to
be clear on the interpretation of outgoing messages as well
when specifying the implementation.

Although strands are assumed to be well-formed, how to
generate the outgoing messages is unspecified. To see this,
let us consider a narrative trace ~s. Without loss of generality,
assume that ~s[i] = +t and ~Ki(~s) = 〈Ti, σi〉. The meaning
of well-formedness is twofold. First, we get Ki(~s) `E t in
terms of the original narrative trace ~s. Second, we should
also achieve Ti ` t′ and t′σi =E t in the new compiled
strand. This accords with Proposition 2.1, as Tiσi = Ki(~s),
and t′ is a recipe of t.

The key to our interpretation is therefore to find a recipe
for each outgoing message. Unfortunately, the recipe may
not be unique, posing a major hurdle in interpreting an out-
going message.

Example 5. To make this more concrete, let us consider a
very simple protocol.

1. A→ B : {Kab}K+
b

2. B → A : {M}Kab

Suppose that the initial knowledge of B is Tb0 = {A,B,M,K+
a ,

K+
b ,K

−
b ,Kab}. The narrative trace of role B is ~s = 〈Tb0,

−{Kab}K+
b
,+{M}Kab〉 Then, K2(~s) = Tb0 ∪{{M}Kab} and

~K2(~s) = 〈Tb0∪{x1}, [{Kab}K+
b
/x1]〉. By letting t′1 =s {M}Kab

and t′2 =s penc(M, pdec(x1,K
−
b), we get Tb0∪{x1} ` {t′1, t′2}

and

t′1[{Kab}K+
b
/x1] =Edy t

′
2[{Kab}K+

b
/x1] =Edy {M}Kab

Here, both t′1 and t′2 are recipes of {M}Kab , corresponding
to two different ways of generating the message {M}Kab . If
we admit t′1 as the recipe, then the compiled strand of role
B is

~s1 = 〈Tb0,−x1, check(pdec(x1,K
−
b) = Kab),

+ {M}Kab〉
(1)

Otherwise (t′2 as the recipe), the compiled strand becomes

~s2 = 〈Tb0,−x1, check(pdec(x1,K
−
b) = Kab),

+ penc(M, pdec(x1,K
−
b)〉

(2)

Due to the check events, ~s1 and ~s2 are equivalent in a sense
that no ambiguity arises from the choice of recipe. On the
contrary, if we eliminate the check events, then the imple-
mentations defined by ~s1 and ~s2 differ significantly.

Thanks to the internal checks, we make the following
claim, which allows us to choose any recipe of an outgoing
message without affecting the result of the implementation.

Claim 5.5. The prudent implementation remains invariant
under different interpretations of outgoing messages.

Incorporating the above considerations, we obtain the fol-
lowing algorithm to derive a prudent implementation from
a set of narrative traces TR0.

The algorithm creates an implementation strand for each
narrative trace. The construction starts by using the nar-
rative trace to compute a constraint base. For a node with
receive event, from line 6 to line 9, it updates knowledge
and construct a new equality check event whenever it be-
comes feasible. For a node with send event, from line 10 to
line 11, the algorithm simply chooses an arbitrary recipe of
the outgoing message due to Claim 5.5.

Algorithm 2 Derive-Prudent-Implementation

Input: a set of narrative traces TR0, equational theory E
Output: a protocol implementation P
1: ~S ← ∅
2: for each narrative trace tr0 ∈ TR0

3: obtain a constraint base C of ~K(tr0) (under E)

/* construct an implementation strand ~p */
4: ~p← 〈tr0[0]〉
5: for i = 1 to length(tr0)

/* find all new constraints that are enabled
by the incoming message */

6: if tr0[i] = −t for some term t then

7: append strand ~p with node −xi
8: for each (u, v) ∈ C such that K(~p) ` {u, v}

and Kl−1(~p) 0 {u, v} where l = length(~p) do
9: append strand ~p with node check(u, v)

/* choose an arbitrary recipe as an interpretation
of the outgoing message */

10: if tr0[i] = +t for some term t then
11: append strand ~p with node +t′

where t′ is a recipe of t

12: ~S ← ~S ∪ {~p}
13: return ~S

Theorem 5.6. Let TR0 be a set of narrative traces and
~S be an ideal semantics of TR0. Then, Derive-Prudent-
Implementation(TR0) returns an prudent implementation

of ~S.

5.3 Refined Implementation
To illustrate the idea of implemention refinement, let us

reexamine the motivating example given in Section 1. We
recapitulate the well-known type flaw attack here.

1. A→ B : M,A,B, {Na,M,A,B}Kas

4. I(B)→ A : M, {Na,M,A,B}Kas

After initiating the first message, A is expecting from B the
message M ·{Na ·Kab}Kas , which is forged by an intruder I.
The intruder I impersonates B and then replays an inter-
cepted message to A. It is not hard to see that the narrative
trace for role A is

trA =A[M,A,B, S,Na,Kas,Kab]

〈{M,A,B, S,Na,Kas},
+M ·A ·B · {Na ·M ·A ·B}Kas ,

− {Na ·Kab}Kas〉

Likewise, we get narrative trace trI describing the attack
scenario.

trI =A[M,A,B, S,Na,Kas]

〈{M,A,B, S,Na,Kas},
+M ·A ·B · {Na ·M ·A ·B}Kas ,

− {Na ·M ·A ·B}Kas〉

Thus, trA 6≈E trI . Specifically, A can observe the following
difference {

{Na ·M ·A ·B}Kasσ0 6=Edy xσ0

{Na ·M ·A ·B}Kasσ1 =Edy xσ1

where σ0 = [{Na · Kab}Kas/x] and σ1 = [{Na · M · A ·
B}Kas/x]. This difference suggests that we can simply add
a new check event immediately after the receive event to
prevent the attack. Thus, the new implementation strand
of role A becomes

A[M,A,B, S,Na,Kas, x]

〈{M,A,B, S,Na,Kas},
+M ·A ·B · {Na ·M ·A ·B}Kas ,

− x4, check({Na ·M ·A ·B}Kas 6= x)〉

The core innovation of our refinement is to add inequal-
ity check events to disallow such execution traces in TRI
that are not in compliance with protocol narration TR0.
Nonetheless, not all attack scenarios are useful to refine a
protocol implementation, especially if the execution traces
of the attack are in compliance with the protocol narration.
For instance, the well-known man-in-the-middle attack due
to Lowe [25] on the Needham-Schroeder public-key authen-
tication protocol [31] can not be thwarted by adding any
check event(s).

In general, a known attack can be categorized into the
following three types:

• type-I attack, if all execution traces are in compliance
with the ideal implementation. From a protocol imple-
mentor’s point of view, this type of attack cannot be
detected/prevented unless the design of the protocol is
changed;

• type-II attack, if all execution traces are in compliance
with the prudent implementation, and there exists an
execution trace that is not in compliance with the ideal
implementation;

• type-III attack, if there exists an execution trace that
is in compliance with the coarse implementation, but
not in compliance with the prudent implementation;

To the end of this section, we draw a picture of the classi-
fication of protocol implementations and attacks, as shown
in Figure 3.

6. DISCUSSION AND RELATED WORK
Starting with the early work of Carlsen [11], a lot of efforts

have been made to formalize security protocol descriptions
or to devise semantics for them [10, 9, 13]. As pointed out by
Abadi [1], how principals check incoming messages is an es-
sential part of protocols, which is often neglected in protocol
narrations.

Accordingly, many approaches from this line of research
have striven to make such checks explicit. The treatments,
however, are often either ad hoc and/or made in a case-by-
case fashion, specialized for the Dolev-Yao style primitives.

Carlsen [11] defines four primitive security-relevant inter-
nal actions that can be generated from protocol narrations
in a straightforward way. Even so, the actions checkvalue,
which require accompanying type information to each word,
are not always feasible. Caleiroa et al. [10] enumerate rules
to characterize a principal’s view of a message. Checks can
be done on a message that is viewed as “reachable”. The
whole procedure is rather complex, which involves further
concepts such as analyzable position and inner facial pattern
face. Briais and Nestmann [9] identify three types of checks,

which can be reduced to normal equality tests. The core
technical innovation is to saturate a knowledge set first us-
ing Analysis rules and then compare it with the knowledge
set obtained by Synthesis rules. The procedure coincides
with the one given in [24] to decide recognizability under
Dolev-Yao model. However, since the Analysis and Synthe-
sis rules are specialized for Dolev-Yao model, it is not clear
how to generalize the results to support algebraic properties
in protocol narrations [30]. In [28, 8] checks are discussed
informally and thus they do not automate this process. Be-
sides, same as in [11] only structured data rather than bit
strings are considered, which raises implementation issues in
practice.

A major drawback of these approaches has been the lack
of an intuitive, yet general, justification for such checks in
a protocol narration. Thus, it is far from clear that all nec-
essary checks are properly found in these approaches. Even
though it is claimed in [9] that the maximum checks are
derived from protocol narrations, there is no consensus on
what are the maximum checks.

The main reason for the lack of intuitive justifications is
that, compared to one’s ability to interpret a message, a
principal’s inability to interpret a message is not well under-
stood. In [17, 28, 5, 19], messages that cannot be interpreted
with the principal’s knowledge are treated as “black-boxes”.
This simplification may fail to give a precise semantics to
a protocol, because relationship between those messages,
such as hash(Nb) and Nb in the ASW protocol, could be
missed. In [10], the notion of transparent and opaque mes-
sages resemble our notions of recognizable and unrecogniz-
able terms, respectively. However, the definition of these no-
tions is sound but not complete in a sense that a transparent
message is recognizable but not vice versa. As an example,
suppose that Alice knows {{Nb}Kbs} and she receive a mes-
sage that is intended to be Nb ·Kbs. Then, Nb ·Kbs is recog-
nizable, that is, 〈{{Nb}Kbs , x}, [Nb ·Kbs/x]〉 �Edy Nb ·Kbs.
This is because senc(fst(x), snd(x))σ =Edy {Nb}Kbs holds
iff x =Edy Nb · Kbs. This is usually referred as the “per-
fect encryption” assumption [4]. On the other hand, by the
definition of vD(M) in [10], we have v{{Nb}Kbs

}(Nb ·Kbs) =

v{{Nb}Kbs
}(Nb); v{{Nb}Kbs

}(Kbs) and hence Nb · Kbs is not

{{Nb}Kbs}-transparent.
We build our work upon the concept of recognizability

[24], which formalizes a principal’s ability/inability to verify
a message. Although it is initially proposed to understand
type flaw attacks, the problem is similar to ours from a cogni-
tive perspective. Nonetheless, for our purpose here, several
extensions are required so as to provide a more fine-grained
characterization of ambiguous terms.

It is fair to mention that the concept of static equivalence
(on frames) in the applied pi calculus [3, 2] is similar in
spirit to our operational equivalence (on markup term sets,
Definition 3.2). But there is one essential difference: we dis-
criminate unambiguous (ground term) and ambiguous (free
variable) messages, whereas in static equivalence all mes-
sages are ambiguous. Naturally, the concept observational
equivalence on processes corresponds to that of operational
equivalence on strands.

Only recently, by Chevalier and Rusinowitch [13], has
static equivalence been related to giving semantics to pro-
tocol narrations. To the best of our knowledge, this is the
first result, with a convincing justification, that ensures all
the possible checks are performed. However, since it only

Note: refined implementation = prudent implementations - type II attacks

Attacks
Type-I Type-II Type-III

Ideal implementation X × ×
Prudent implementation X X ×
Refined implementation X × ×
Coarse implementation X X X

Figure 3: Classification of protocol implementations and attacks

allows equality checks, it does not support implementation
refinement, as we do here.

7. CONCLUSION AND FUTURE WORK
In this paper, we provide a consensus view of security

protocols for each group of people that amounts to the at-
tacker’s view. Specifically, we give ideal semantics to pro-
tocol narrations, by rigorously examining a principal’s abil-
ity or inability to cope with potentially ambiguous incoming
messages. The semantics are then used to guide protocol im-
plementations in two complimentary ways. First, we derive
a prudent implementation of a protocol, which performs all
necessary equality checks and prevents type-III attacks. Sec-
ond, we use type-II attacks to further refine a prudent imple-
mentation by performing additional new inequality checks.
As such refinements are not feasible by either the protocol
designers or the protocol verifiers alone, we motivate the in-
terplay between protocol design and protocol verification via
a semi-automated refinement process.

There are three major limitations of this study. First,
although our results are not specialized for the Dolev-Yao
intruder model, the accuracy of the semantics depends on
how we model the principal’s deduction capabilities. Failing
to model the capabilities properly may result in unrealistic
semantics. Second, the following questions arising in Section
3.3 are not answered:

(i). Under what conditions does there exist a constraint

base of a markup term set ~T?

(ii). How to determine and solve a constraint base if it
exists?

Third, to simplify our discussion, we have treated fresh val-

ues (e.g., nonces and timestamps) as invariant data in one’s
initial knowledge. This is unrealistic in practice especially
when a protocol execution involves multiple sessions.

Our future work will be aimed at addressing these limi-
tations. In particular, we plan to investigate the problem
of finding and solving constraint bases under more general
equational theories. Besides, to overcome the inability of
coping with fresh values, we will introduce a new event/node
in extended strands; this would not affect our main results
significantly.

8. REFERENCES
[1] M. Abadi. Security protocols and their properties. In

Foundations of Secure Computation, NATO Science
Series, pages 39–60. IOS Press, 2000.

[2] M. Abadi and V. Cortier. Deciding knowledge in
security protocols under equational theories. Theor.
Comput. Sci., 367(1):2–32, 2006.

[3] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In POPL ’01: Proceedings
of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 104–115,
New York, NY, USA, 2001. ACM.

[4] M. Abadi and M. R. Tuttle. A semantics for a logic of
authentication (extended abstract). In Proceedings of
the tenth annual ACM symposium on Principles of
distributed computing, PODC ’91, pages 201–216, New
York, NY, USA, 1991. ACM.

[5] A. Armando, D. A. Basin, M. Bouallagui,
Y. Chevalier, L. Compagna, S. Mödersheim,
M. Rusinowitch, M. Turuani, L. Viganò, and
L. Vigneron. The aviss security protocol analysis tool.
In CAV ’02: Proceedings of the 14th International

Conference on Computer Aided Verification, pages
349–353, London, UK, 2002. Springer-Verlag.

[6] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. In Security and
Privacy, 1998. Proceedings. 1998 IEEE Symposium
on, pages 86 –99, May 1998.

[7] B. Blanchet. Automatic verification of
correspondences for security protocols. J. Comput.
Secur., 17(4):363–434, 2009.

[8] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and
H. R. Nielson. Static validation of security protocols.
J. Comput. Secur., 13(3):347–390, 2005.

[9] S. Briais and U. Nestmann. A formal semantics for
protocol narrations. Theor. Comput. Sci.,
389(3):484–511, 2007.

[10] C. Caleiro, L. Viganò, and D. Basin. On the semantics
of alice&bob specifications of security protocols.
Theor. Comput. Sci., 367(1):88–122, 2006.

[11] U. Carlsen. Generating formal cryptographic protocol
specifications. In Proceedings of the 1994 IEEE
Symposium on Security and Privacy, SP ’94, pages
137–146, Washington, DC, USA, 1994. IEEE
Computer Society.

[12] P. Ceelen, S. Mauw, and S. Radomirović.
Chosen-name attacks: An overlooked class of
type-flaw attacks. Electron. Notes Theor. Comput.
Sci., 197:31–43, February 2008.

[13] Y. Chevalier and M. Rusinowitch. Compiling and
securing cryptographic protocols. Inf. Process. Lett.,
110(3):116–122, 2010.

[14] J. Clark and J. Jacob. A survey of authentication
protocol literature: Version 1.0, 1997.

[15] R. Corin and S. Etalle. An improved constraint-based
system for the verification of security protocols. In
Proceedings of the 9th International Symposium on
Static Analysis, pages 326–341, London, UK, 2002.
Springer-Verlag.

[16] C. J. Cremers. Unbounded verification, falsification,
and characterization of security protocols by pattern
refinement. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security,
pages 119–128, New York, NY, USA, 2008. ACM.

[17] G. Denker and J. Millen. Capsl intermediate language.
In Proceedings of the Workshop on Formal Methods
and Security Protocols — FMSP, 1999.

[18] D. Dolev and A. Yao. On the security of public key
protocols. Information Theory, IEEE Transactions on,
29(2):198–208, Mar 1983.

[19] A. Durante, R. Focardi, and R. Gorrieri. A compiler
for analyzing cryptographic protocols using
noninterference. ACM Trans. Softw. Eng. Methodol.,
9(4):488–528, 2000.

[20] F. Fabrega, J. Herzog, and J. Guttman. Strand spaces:
why is a security protocol correct? In Security and
Privacy, 1998. Proceedings. 1998 IEEE Symposium
on, pages 160 –171, May 1998.

[21] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge, volume 1 of MIT Press
Books. The MIT Press, December 2003.

[22] J. D. Guttman and F. J. Thayer. Authentication tests
and the structure of bundles. Theor. Comput. Sci.,

283:333–380, June 2002.

[23] Z. Li and W. Wang. Rethinking about type-flaw
attacks. In GLOBECOM 2010, pages 1 –5, 2010.

[24] Z. Li and W. Wang. Deciding recognizability under
dolev-yao intruder model. In M. Burmester,
G. Tsudik, S. Magliveras, and I. Ilic, editors,
Information Security, volume 6531 of Lecture Notes in
Computer Science, pages 416–429. Springer Berlin /
Heidelberg, 2011.

[25] G. Lowe. An attack on the needham-schroeder
public-key authentication protocol. Inf. Process. Lett.,
56:131–133, November 1995.

[26] G. Lowe. Breaking and fixing the needham-schroeder
public-key protocol using fdr. In TACAs ’96, pages
147–166, 1996.

[27] G. Lowe. Some new attacks upon security protocols.
In Proceedings of the 9th IEEE workshop on Computer
Security Foundations, CSFW ’96, pages 162–,
Washington, DC, USA, 1996. IEEE Computer Society.

[28] G. Lowe. Casper: a compiler for the analysis of
security protocols. J. Comput. Secur., 6(1-2):53–84,
1998.

[29] J. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In
CCS ’01: Proceedings of the 8th ACM conference on
Computer and Communications Security, pages
166–175, New York, NY, USA, 2001. ACM.

[30] S. Modersheim. Algebraic properties in alice and bob
notation. Availability, Reliability and Security,
International Conference on, 0:433–440, 2009.

[31] R. M. Needham and M. D. Schroeder. Using
encryption for authentication in large networks of
computers. Commun. ACM, 21:993–999, December
1978.

[32] D. Otway and O. Rees. Efficient and timely mutual
authentication. SIGOPS Oper. Syst. Rev., 21(1):8–10,
1987.

[33] J. Robinson. Handbook of Automated Reasoning (2
Volume Set). MIT Press, Cambridge, MA, USA, 2001.

[34] D. X. Song, S. Berezin, and A. Perrig. Athena: a novel
approach to efficient automatic security protocol
analysis. J. Comput. Secur., 9(1-2):47–74, 2001.

	Introduction
	Preliminaries
	Interpreting Incoming Messages
	Accounting For Uncertainty
	Operational Equivalence
	Recognizability

	The Ideal Semantics
	Strands
	Execution Traces
	Semantics

	From Ideal Implementation to Refined Implementation
	Ideal Implementation
	Coarse and Prudent Implementations
	Refined Implementation

	Discussion and Related Work
	Conclusion and Future Work
	References

