Computer-Assisted Instruction (CAI) systems

Ancestors of ILE

- Computer-Assisted Instruction (CAI) systems

- Curriculum

- Present Problem

- Computer Answer

- Get Student Answer

- Remediation

- Compare Answers

- Present Feedback

- If correct

- If incorrect

CAI systems (cont.)

- Student’s solution process is not taken into account, only final answers

- The CAI author (instructor) must construct ahead of time all branching in the program by defining
 - All problem answers (correct and incorrect)
 - Sequencing of topics
 - Remediation actions

- Fine for drill-and-practice in simple domains, but unmanageable for more complex domains and learning strategies

Intelligent Learning Environments

- Rely on more sophisticated representations of the knowledge involved in the educational interaction to provide more adaptive, comprehensive computer-based support to

Knowledge in ILE

- Target domain (Domain or Expert Model)
 - concepts and principles
 - solutions to problems

- Student (Student Model)
 - knowledge (correct and incorrect)
 - goals
 - learning capabilities (meta-cognitive skills)
 - personality traits
 - emotional states

- Pedagogical Knowledge (Pedagogical or Tutoring Model)
 - teaching strategies
 - remediation strategies

- Communication Knowledge (Interface)
From CAI to Intelligent Learning Environments

- Linear CAI
- More complex branching CAI

Level of Flexibility/Adaptivity

- Of course, more complexity is not always worth the effort...

ILE behaving like an award-winning human tutor

Good Human Tutor

- Recognizes large variety of student’s answers.
- Diagnoses student’s understanding
- Tailors tutorial actions consequently

Basic ILE

Issues in ILE Evolution

<table>
<thead>
<tr>
<th>Issues in ILE Evolution</th>
<th>70s</th>
<th>80s</th>
<th>90s</th>
<th>2000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Generation</td>
<td>Model-tracing</td>
<td>Learner Control</td>
<td>Pedagogical Agents</td>
<td></td>
</tr>
<tr>
<td>Simple Student Modeling</td>
<td>More buggy-based systems</td>
<td>Collaborative Learning</td>
<td>Educational games</td>
<td></td>
</tr>
<tr>
<td>Knowledge Representation</td>
<td>Case-based reasoning</td>
<td>Situated Learning</td>
<td>Meta-cognitive skills</td>
<td></td>
</tr>
<tr>
<td>Skill and Strategic Knowledge</td>
<td>Discovery Worlds</td>
<td>Virtual Reality</td>
<td>More Natural Language Processing</td>
<td></td>
</tr>
<tr>
<td>Interactive learning environments</td>
<td>Progression of Mental Models</td>
<td>Probabilistic Student modeling</td>
<td>Comprehensive Student modeling</td>
<td></td>
</tr>
<tr>
<td>Expert Systems and tutors</td>
<td>Simulations</td>
<td>Web-based learning</td>
<td>More Learning Tutors</td>
<td></td>
</tr>
<tr>
<td>Huggie Library</td>
<td>Natural Language Processing</td>
<td>Learning Tutors</td>
<td>Decision-theoretic tutors</td>
<td></td>
</tr>
<tr>
<td>Overlay/Models Generic Graphs</td>
<td>Authoring Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>