
Hedge Detection using a Rewards and Penalties Approach

Ken Stahl1, Samira Shaikh1, Tomek Strzalkowski1,2

1State University of New York - University at Albany
2Polish Academy of Sciences

Abstract
Semantic and syntactic features found in text can be used in
combination to statistically predict linguistic devices such as
hedges in online chat. Some features are better indicators than
others, and there are cases when multiple features need to be
considered together to be useful. Once the features are
identified, it becomes an optimization problem to find the best
division of data.

We have devised a genetic algorithm approach towards
detecting hedges in online multi-party chat discourse. A system
was created using rewards and penalties for matching features in
tokenized text, so optimizing the reward and penalty amounts are
the main challenge. Genetic algorithms, a subset of Evolutionary
Algorithms, are great for optimization; as they are massively
parallel directed searches, and therefore suited to finding the best
ratio of integer rewards and penalties. “Evolutionary algorithms
(EAs) utilize principles of natural
 selection and are robust adaptive search schemes suitable
 for searching nonlinear, discontinuous, and high-dimensional
spaces. This class of algorithms is being increasingly applied to
obtain optimal or near-optimal solutions to many complex real-
world optimization problems” (Bonissone, et. al. 2006)

We show results using 10-fold cross validation as commonly
used in traditional machine learning. The best performance
without further fine tuning is 79% in classifying whether an
utterance in chat contains a hedge or not.

1 Introduction

A hedge is a mitigating device used to qualify or lessen the
impact of an utterance. Writers reduce the “degree of
liability” or responsibility that they might face in
expressing referential information (Crismore & Van
Kopple, 1988). In situation where a person is attempting to
convince another of an assertion, especially if the other is
of higher status (or a stranger) or if the message is counter-
attitudinal, it is seen as polite to give the person the feeling
that the assertion is not a command. Hedges used in this
way provide the listener the opportunity to reject or
disagree with the assertion (Durik, Britt, Reynolds &
Storey, 2008).

As indicators, hedges are thought to help determine a
person's gender, age, and leadership qualities (Martey et.
al. 2010). An example of a hedge:
“It might rain later.”

As opposed to:
“I will rain later.”
Might, in the example above, is a hedge conveying an
element of uncertainty.

Hedges are thought to be indicators used in predicting
real life characteristics of online game players. When
tasked with finding hedges, we originally tried using a
hedge lexicon and doing string matches. However, the
performance was unacceptable. Machine learning worked
fairly well in specific corpora such as Wikipedia and
biological datasets (Chen, Eugenio, 2010), but in a chat
context, grammar and spelling have a more unpredictable
nature. Using rewards and penalties, it is possible to create
a system related to machine learning based on feature
matching while having many alternate solutions and being
able to fine tune weights and feature evaluations.

The features to identify hedges are based on tokens
created by the Stanford Part of Speech tagger. Each token
has a word or punctuation value as well as a part of speech
tag; which are used as features. In addition the previous
two tokens as well as the subsequent two tokens (if they
exist) provide features. This combination of features take
into account repetitions of exact use, grammatical context,
and rough position in a sentence.

2 Comparison with Related Works

Various methods of machine learning have been applied to
the problem of identifying hedges in text. Many of these
systems perform between 0.6 and 0.8 (f-score), such as the
Lucene and Maximum Entropy Model based hedge
detection system (Chen, Eugenio, 2010) and RelHunter
approach (Fernandes, Crestana, Milidiú, 2011). These
systems depend on generating features such as relations
and hedge cues and utilize very complicated systems.

We were interested in achieving good performance, but
with a system that can adapt its evaluation strategy on the
fly as well as being able to export the best solution as a
tagger to be used in other projects. In addition, using a
collection of individuals provides a variety of solutions
which may not be optimal for the current data but
potentially transferable to other data sets. Trends in the
solutions also show how feature combinations work
together as indicators in hedge identification.

3 Corpora

Training and testing were done using two annotated
corpora. One corpus consists of 47 chat sessions in Second
Life with 38807 lines (Small et. al. 2011). The other
consists of 5 chat sessions in World of Warcraft with 2041
lines. The Second Life corpus had 1786 lines containing 1
or more hedge. The World of Warcraft corpus had 128
lines containing 1 or more hedges. Both corpora had
similar density of hedges at approximately 5% of all
utterances.

The annotators underwent training until they reached an
80% agreement (Krippendorff's alpha) among each other
and then the corpora were split into sessions and annotated
by one of three annotators each. The annotation was a
count of hedges in the utterance as well as beginning and
end word positions of the hedge phrase.

4 Representation

Text is tokenized using Stanford's Part of Speech Tagger.
Each token consists of its text value and part of speech. In
order to identify a token as being inside a hedge, these two
values are checked for whether they appear in hedges that
were identified by a human annotator before. If a match is
made, then a reward is added to a point total for that token.
If no match is made, then a penalty is removed from the
token's total.

In addition to a token's part of speech and text value, the
previous two tokens as well as the subsequent two tokens
are considered. The evaluation of surrounding tokens as
context adds or subtracts from the token's total points.
After the total is added up for a token, it is compared with
a threshold which determines its classification as a hedge.

The problem of finding appropriate rewards and
penalties is then represented by twenty integers. These
twenty integers represent a reward and penalty for each of
ten features associated with a token. The token's word
value as well as its part of speech, as well as the previous
and subsequent tokens' word values and parts of speech are
the features being examined. The optimization of the
rewards and penalties is done using a genetic algorithm,
with integer values for rewards and penalties being the
genome of an individual in the population.

Example of an individual:
Rewards: 1 0 0 1 1 7 0 2 8 6
Penalties: 0 0 0 2 0 0 0 0 0 0

The first column represents a the token's word value; if
there is a match then the reward value is added to the
token's point sum. If it doesn't match, then the penalty is
subtracted from the sum.

The second and third column represent the two previous

tokens' word values. The fourth and fifth columns
represent the subsequent tokens' word values.

The next five columns represent the same tokens in the
same order as word values, except they are for part of
speech.

5 Genetic Algorithm Fitness

Chat text annotated with hedges was used as the ground
truth for evaluation. Using the rewards and penalties
contained in the genome in an individual, all the tokens in
the ground truth corpus are evaluated and then compared
with the human annotation. Hits, false alarms, and misses
are tallied, and then precision and recall were computed.
The harmonic mean of the precision and recall was then
computed (f-score) and used as the fitness of an individual.
Using the f-score fitness value, the entire population was
then sorted in descending order.

Various methods of comparing tokens with annotated
hedge tokens were tried. Examples of these methods
included lists of encountered attributes were made
disregarding frequency, weighted lists containing
frequency information, and finding the token with closest
match were all used. Weighted lists and closest match
worked the best, with weighted lists having a slightly
higher recall by being tolerant of misspells and closest
match having a slightly higher precision with the right
threshold.

6 Genetic Algorithm Population

A population of 5000 individuals was used, with each
individual containing a solution of 20 integers representing
rewards and penalties. After the fitness was determined,
the population was sorted and the top 1% formed an elite
group to carry over to the next generation unmodified. The
25% right below the elite group used a uniform crossover
between two random members of the population.
Members to breed were chosen by roulette-wheel
selection, with higher fitness increasing the chance to be
chosen. The chance for a crossover to occur is 35%,
meaning alleles are copied from one parent with a 35%
chance to switch to the other parent after every allele
copied. 35% was chosen because higher values are more
disruptive and exploratory in nature while lower values are
too conservative.

The lower 75% of the population was subjected to
mutation as well. The chance and amount of mutation
increased proportionally as lower ranks were reached. The
mutation chance for every allele was 15% with the lowest
scoring individual and maximum amount the allele was
altered was 10.

The population was initialized by setting all individuals'
alleles to 0 and then going through a round of mutation and
crossover. This forms “generation 0”. Often, a good

solution is found quickly and minor improvements will
occur every several generations.

Using these methods, it took approximately 20
generations for the population to converge, so 25
generations were used to confirm convergence. A graph
was generated to show average fitness and the highest
scoring individual's solution.

Graph showing the top fitness in the population (top) and the average
fitness of the entire population (bottom). When both the top and
average fitnesses converge on their own values, it is an indication that
the top fitness is an optimal solution. The scale is from 0 to 0.65 here
(y-axis) over 25 generations (x-axis)

7 Pruning and Weighting

Pruning

Certain hedges were removed from annotation due to
uncertainty in intent. For example, “I think” was removed
because annotators were unable to determine which usages
were out of habit as opposed to hedge usage. “If” and
modals (can/could, may/might, shall/should) were removed
as well.

Emoticons were identified with a lexicon and removed
as well. The placement of emoticons varied among the
users and threw off the context.

Examples of pruning candidates:

Weighting

Creating a list for each feature containing values
encountered in the training corpus has the problem of
treating all entries equally. If a hedge token is found only
once and is marked a hedge, then that is equivalent to

another token being marked once while occurring many
times. A weighting scheme was devised to take into
account the frequency of the tokens as well as how often
they appear as hedges. The weighting was done as
follows:

frequency: percentage of all occurrences a token is marked
as hedge
inverted utterance frequency (IUF):

log((utterance count) / (occurrence count))
weight:

1 + max(IUF) – IUF

When a match is made, the reward or penalty is
multiplied by the weight for that feature.

8 Cross Validation

The two corpora were tested separately and then together
as one big corpus. The utterances were shuffled into a
random ordering and then split into 10 sections. Each
section was tested using the other 9 sections as training.
The results of each population:

Second Life
1 - top: 0.857 avg: 0.619
2 - top: 0.749 avg: 0.494
3 - top: 0.818 avg: 0.651
4 - top: 0.8 avg: 0.554
5 - top: 0.9 avg: 0.710
6 - top: 0.774 avg: 0.517
7 - top: 0.631 avg: 0.446
8 - top: 0.533 avg: 0.381
9 - top: 0.736 avg: 0.607
10- top: 0.666 avg: 0.533
Avg = 0.746

World of Warcraft
1 - top: 0.801 avg: 0.675
2 - top: 0.772 avg: 0.653
3 - top: 0.814 avg: 0.671
4 - top: 0.740 avg: 0.632
5 - top: 0.782 avg: 0.667
6 - top: 0.729 avg: 0.646
7 - top: 0.809 avg: 0.681
8 - top: 0.822 avg: 0.707
9 - top: 0.783 avg: 0.668
10- top: 0.762 avg: 0.652
Avg = 0.790

Hedge Match w/ hedge Match w/o hedge
IMO 3 18
I think 497 17
seems 169 15
perhaps 103 13

Combined Corpora
1 - top: 0.709 avg: 0.598
2 - top: 0.784 avg: 0.661
3 - top: 0.778 avg: 0.645
4 - top: 0.809 avg: 0.693
5 - top: 0.785 avg: 0.648
6 - top: 0.808 avg: 0.689
7 - top: 0.750 avg: 0.642
8 - top: 0.689 avg: 0.587
9 - top: 0.766 avg: 0.664
10- top: 0.758 avg: 0.651
Avg = 0.761

9 Examples of top individuals

Each row of integers are the values of current token then 2
previous tokens then 2 subsequent tokens, then POS in the
same order; the top score is the best performing f-score of
an individual, the average score is the average f-score of
the entire population.

Weighted lists, SL train, WoW 5 session test
Top Score: 0.806
Average Score: 0.615
Rewards: 8 2 0 2 0 0 0 2 7 0
Penalties: 0 0 0 0 0 0 10 0 0 1

Weighted lists, WoW 5 session train, SL test
Top Score: 0.734
Average Score: 0.458
Rewards: 1 0 1 1 1 10 0 0 6 4
Penalties: 13 0 0 0 1 0 5 0 0 0

10 Conclusion

Most of the highest scoring individuals appeared to have
non-zero values in the same places, although the exact
values vary somewhat. The exploratory nature of a genetic
algorithm should result in variation wherever it doesn't
detract from the fitness, so if a penalty is in the right place,
it might not matter if it higher than it needs to be.
Alternatively, consistent zero values indicate that feature
actually hurts if included in the matching algorithm.

It appears the features that matter in determining
whether a token is inside a hedge (when comparing tokens
with weighted lists) are:
1) The token's word value matching rewarded
2) The token's word value mismatch penalized
3) The token's following word value matching rewarded

4) The token's following word POS matching rewarded
5) The token's following word POS mismatch penalized

Using the top individual, a decent tagger for hedges was
developed. Further improvements have been made by
creating a “hedge stop word” list to exclude words that
aren't hedges often, and a list of hedge words can be
introduced into the training corpus with varying weights.
In further sessions of World of Warcraft, manipulating the
training data resulted in a 90% agreement with annotators.

References

Crismore, A., & Vande Kopple, W. J. (1988). Readers learning‟
from prose: The effects of hedges. Written Communication, 5,
184-202.

Piero P. Bonissone, Fellow, IEEE, Raj Subbu, Senior Member,
IEEE, Neil Eklund, Member, IEEE, and Thomas R. Kiehl 2006.
Evolutionary Algorithms + Domain Knowledge = Real-World
Evolutionary Computation: IEEE Transactions on Evolutionary
Computation Vol. 10 No. 3

Durik, A.M., Britt, M.A., Reynolds, R., & Storey, J.K. (2008).
The effects of hedges in persuasive arguments: A nuanced
analysis of language. Journal of Language and Social Psychology,
27 (3), 217-234.

Lin Chen, and Barbara Di Eugenio 2010. A Lucene and
Maximum Entropy Model Based Hedge Detection System:
Association for Computational Linguistics.

Fernandes, Crestana, and Milidiú 2010. Hedge Detection using
the RelHunter Approach: International Conference on
Computational Natural Language Learning

Rosa Mikeal Martey, Jennifer Stromer-Galley, Mia Consalvo,
Kelly Reene, Tomek Strzalkowski, Michelle Weihmann-Purcell,
Jingsi Wu, Kevin Shiflett, Jaime Banks, Sharon Small and
Michael Ferguson. (2011, forthcoming) Acting your age online:
Identifying user age from avatar chat, appearance, and behavior.
Submitted to Journal of Computer-Mediated Communication.

Small, Sharon, Jennifer Stromer-Galley and Tomek Strzalkowski
(2011) Multi-Modal Annotation of Quest Games in Second Life.
Proc. of ACL-2011, Portland.

