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Abstract
Semantic  and  syntactic  features  found  in  text  can  be  used  in 
combination  to  statistically  predict  linguistic  devices  such  as 
hedges in online chat.  Some features are better indicators than 
others,  and  there  are  cases  when multiple  features  need  to  be 
considered  together  to  be  useful.    Once  the  features  are 
identified,  it  becomes an optimization problem to find the best 
division of data.

We  have  devised  a  genetic  algorithm  approach  towards 
detecting hedges in online multi-party chat discourse.  A system 
was created using rewards and penalties for matching features in 
tokenized text, so optimizing the reward and penalty amounts are 
the main challenge.  Genetic algorithms, a subset of Evolutionary 
Algorithms,  are  great  for  optimization;  as  they  are  massively 
parallel directed searches, and therefore suited to finding the best 
ratio of integer rewards and penalties.   “Evolutionary algorithms 
(EAs) utilize principles of natural
 selection and are robust adaptive search schemes suitable
 for  searching  nonlinear,  discontinuous,  and  high-dimensional 
spaces. This class of algorithms is being increasingly applied to 
obtain optimal or near-optimal solutions to many complex real-
world optimization problems” (Bonissone, et. al. 2006)

We show results using 10-fold cross validation as commonly 
used  in  traditional  machine  learning.   The  best  performance 
without  further  fine  tuning  is  79%  in  classifying  whether  an 
utterance in chat contains a hedge or not.

1 Introduction

A hedge is a mitigating device used to qualify or lessen the 
impact  of  an  utterance.   Writers  reduce  the  “degree  of 
liability”  or  responsibility  that  they  might  face  in 
expressing  referential  information  (Crismore  &  Van 
Kopple, 1988).  In situation where a person is attempting to 
convince another of an assertion, especially if the other is 
of higher status (or a stranger) or if the message is counter-
attitudinal, it is seen as polite to give the person the feeling 
that the assertion is not a command.  Hedges used in this 
way  provide  the  listener  the  opportunity  to  reject  or 
disagree  with  the  assertion  (Durik,  Britt,  Reynolds  & 
Storey, 2008).

As indicators,  hedges  are  thought  to  help determine a 
person's gender,  age, and leadership qualities (Martey et. 
al. 2010).  An example of a hedge:
“It might rain later.”

As opposed to:
“I will rain later.”
Might,  in  the  example  above,  is  a  hedge  conveying  an 
element of uncertainty. 

Hedges are thought to be indicators used in predicting 
real  life  characteristics  of  online  game  players.   When 
tasked  with  finding  hedges,  we  originally  tried  using  a 
hedge  lexicon  and  doing  string  matches.   However,  the 
performance was unacceptable.  Machine learning worked 
fairly  well  in  specific  corpora  such  as  Wikipedia  and 
biological  datasets  (Chen,  Eugenio,  2010),  but  in  a  chat 
context, grammar and spelling have a more unpredictable 
nature.  Using rewards and penalties, it is possible to create 
a  system  related  to  machine  learning  based  on  feature 
matching while having many alternate solutions and being 
able to fine tune weights and feature evaluations.

The  features  to  identify  hedges  are  based  on  tokens 
created by the Stanford Part of Speech tagger.  Each token 
has a word or punctuation value as well as a part of speech 
tag; which are used as features.  In addition the previous 
two tokens as well as the subsequent two tokens (if they 
exist) provide features.  This combination of features take 
into account repetitions of exact use, grammatical context, 
and rough position in a sentence.

2 Comparison with Related Works

Various methods of machine learning have been applied to 
the problem of identifying hedges in text.  Many of these 
systems perform between 0.6 and 0.8 (f-score), such as the 
Lucene  and  Maximum  Entropy  Model  based  hedge 
detection  system  (Chen,  Eugenio,  2010)  and  RelHunter 
approach  (Fernandes,  Crestana,  Milidiú,  2011).   These 
systems  depend  on  generating  features  such  as  relations 
and hedge cues and utilize very complicated systems.

We were interested in achieving good performance, but 
with a system that can adapt its evaluation strategy on the 
fly as well as being able to export the best solution as  a  
tagger to be used in other projects.   In addition, using a 
collection  of  individuals  provides  a  variety  of  solutions 
which  may  not  be  optimal  for  the  current  data  but 
potentially transferable to other  data sets.  Trends in the 
solutions  also  show  how  feature  combinations  work 
together as indicators in hedge identification.



3 Corpora

Training  and  testing  were  done  using  two  annotated 
corpora.  One corpus consists of 47 chat sessions in Second 
Life  with  38807  lines  (Small  et.  al.  2011).   The  other 
consists of 5 chat sessions in World of Warcraft with 2041 
lines.  The Second Life corpus had 1786 lines containing 1 
or more hedge.   The World of Warcraft  corpus had 128 
lines  containing  1  or  more  hedges.   Both  corpora  had 
similar  density  of  hedges  at  approximately  5%  of  all 
utterances.

The annotators underwent training until they reached an 
80% agreement  (Krippendorff's  alpha) among each other 
and then the corpora were split into sessions and annotated 
by one  of  three  annotators  each.   The annotation was  a 
count of hedges in the utterance as well as beginning and 
end word positions of the hedge phrase.

4 Representation

Text is tokenized using Stanford's Part of Speech Tagger. 
Each token consists of its text value and part of speech.  In 
order to identify a token as being inside a hedge, these two 
values are checked for whether they appear in hedges that 
were identified by a human annotator before.  If a match is 
made, then a reward is added to a point total for that token. 
If no match is made, then a penalty is removed from the 
token's total.

In addition to a token's part of speech and text value, the 
previous two tokens as well as the subsequent two tokens 
are considered.  The evaluation of surrounding tokens as 
context  adds  or  subtracts  from  the  token's  total  points. 
After the total is added up for a token, it is compared with 
a threshold which determines its classification as a hedge.

The  problem  of  finding  appropriate  rewards  and 
penalties  is  then  represented  by twenty integers.   These 
twenty integers represent a reward and penalty for each of 
ten  features  associated  with  a  token.   The token's  word 
value as well as its part of speech, as well as the previous 
and subsequent tokens' word values and parts of speech are 
the  features  being  examined.   The  optimization  of  the 
rewards and penalties is  done using a genetic  algorithm, 
with  integer  values  for  rewards  and  penalties  being  the 
genome of an individual in the population.

Example of an individual:
Rewards: 1 0 0 1 1 7 0 2 8 6        
Penalties: 0 0 0 2 0 0 0 0 0 0 

The first column represents a the token's word value; if 
there  is  a  match  then  the  reward  value  is  added  to  the 
token's point sum.  If it doesn't match, then the penalty is 
subtracted from the sum.

The second and third column represent the two previous 

tokens'  word  values.   The  fourth  and  fifth  columns 
represent the subsequent tokens' word values.

The next five columns represent the same tokens in the 
same  order  as  word  values,  except  they  are  for  part  of 
speech.

5 Genetic Algorithm Fitness

Chat text annotated with hedges was used as the ground 
truth  for  evaluation.   Using  the  rewards  and  penalties 
contained in the genome in an individual, all the tokens in 
the ground truth corpus are evaluated and then compared 
with the human annotation.  Hits, false alarms, and misses 
are tallied, and then precision and recall  were computed. 
The harmonic mean of the precision and recall  was then 
computed (f-score) and used as the fitness of an individual. 
Using the f-score fitness value, the entire population was 
then sorted in descending order.

Various  methods  of  comparing  tokens  with  annotated 
hedge  tokens  were  tried.   Examples  of  these  methods 
included  lists  of  encountered  attributes  were  made 
disregarding  frequency,  weighted  lists  containing 
frequency information, and finding the token with closest 
match  were  all  used.   Weighted  lists  and  closest  match 
worked  the  best,  with  weighted  lists  having  a  slightly 
higher  recall  by  being  tolerant  of  misspells  and  closest 
match  having  a  slightly  higher  precision  with  the  right 
threshold.

6 Genetic Algorithm Population

A  population  of  5000  individuals  was  used,  with  each 
individual containing a solution of 20 integers representing 
rewards and penalties.  After the fitness was determined, 
the population was sorted and the top 1% formed an elite 
group to carry over to the next generation unmodified.  The 
25% right below the elite group used a uniform crossover 
between  two  random  members  of  the  population. 
Members  to  breed  were  chosen  by   roulette-wheel 
selection, with higher fitness increasing the chance to be 
chosen.  The  chance  for  a  crossover  to  occur  is  35%, 
meaning alleles  are copied from one parent  with a  35% 
chance  to  switch  to  the  other  parent  after  every  allele 
copied.  35% was chosen because higher values are more 
disruptive and exploratory in nature while lower values are 
too conservative.

The  lower  75%  of  the  population  was  subjected  to 
mutation  as  well.   The  chance  and  amount  of  mutation 
increased proportionally as lower ranks were reached.  The 
mutation chance for every allele was 15% with the lowest 
scoring  individual  and  maximum amount  the  allele  was 
altered was 10.

The population was initialized by setting all individuals' 
alleles to 0 and then going through a round of mutation and 
crossover.   This  forms  “generation  0”.   Often,  a  good 



solution  is  found  quickly  and  minor  improvements  will 
occur every several generations.

Using  these  methods,  it  took  approximately  20 
generations  for  the  population  to  converge,  so  25 
generations were used to confirm convergence.  A graph 
was  generated  to  show  average  fitness  and  the  highest 
scoring individual's solution.  

Graph showing the top fitness in the population (top) and the average 
fitness  of  the  entire  population (bottom).   When both the  top and 
average fitnesses converge on their own values, it is an indication that 
the top fitness is an optimal solution.  The scale is from 0 to 0.65 here 
(y-axis) over 25 generations (x-axis)

7 Pruning and Weighting

Pruning

Certain  hedges  were  removed  from  annotation  due  to 
uncertainty in intent.  For example, “I think” was removed 
because annotators were unable to determine which usages 
were  out  of  habit  as  opposed to hedge usage.   “If”  and 
modals (can/could, may/might, shall/should) were removed 
as well.

Emoticons were identified with a lexicon and removed 
as  well.   The placement  of  emoticons varied among the 
users and threw off the context.  

Examples of pruning candidates:

Weighting

Creating  a  list  for  each  feature  containing  values 
encountered  in  the  training  corpus  has  the  problem  of 
treating all entries equally.  If a hedge token is found only 
once  and  is  marked  a  hedge,  then  that  is  equivalent  to 

another  token  being  marked  once  while occurring  many 
times.   A  weighting  scheme  was  devised  to  take  into 
account the frequency of the tokens as well as how often 
they  appear  as  hedges.   The  weighting  was  done  as 
follows:

frequency: percentage of all occurrences a token is marked 
as hedge
inverted utterance frequency (IUF): 

log((utterance count) / (occurrence count))
weight:

1 + max(IUF) – IUF

When  a  match  is  made,  the  reward  or  penalty  is 
multiplied by the weight for that feature.

8 Cross Validation

The two corpora were tested separately and then together 
as  one big corpus.   The utterances  were  shuffled  into a 
random ordering and  then   split  into 10 sections.   Each 
section was tested using the other 9 sections as training. 
The results of each population:

Second Life
1 - top: 0.857 avg: 0.619
2 - top: 0.749 avg: 0.494
3 - top: 0.818 avg: 0.651
4 - top: 0.8 avg: 0.554
5 - top: 0.9 avg: 0.710
6 - top: 0.774 avg: 0.517
7 - top: 0.631 avg: 0.446
8 - top: 0.533 avg: 0.381
9 - top: 0.736 avg: 0.607
10- top: 0.666 avg: 0.533
Avg = 0.746

World of Warcraft
1 - top: 0.801 avg: 0.675
2 - top: 0.772 avg: 0.653
3 - top: 0.814 avg: 0.671
4 - top: 0.740 avg: 0.632
5 - top: 0.782 avg: 0.667
6 - top: 0.729 avg: 0.646
7 - top: 0.809 avg: 0.681
8 - top: 0.822 avg: 0.707
9 - top: 0.783 avg: 0.668
10- top: 0.762 avg: 0.652
Avg = 0.790

Hedge Match w/ hedge Match w/o hedge
IMO 3 18
I think 497 17
seems 169 15
perhaps 103 13



Combined Corpora
1 - top: 0.709 avg: 0.598
2 - top: 0.784 avg: 0.661
3 - top: 0.778 avg: 0.645
4 - top: 0.809 avg: 0.693
5 - top: 0.785 avg: 0.648
6 - top: 0.808 avg: 0.689
7 - top: 0.750 avg: 0.642
8 - top: 0.689 avg: 0.587
9 - top: 0.766 avg: 0.664
10- top: 0.758 avg: 0.651
Avg = 0.761

9 Examples of top individuals

Each row of integers are the values of current token then 2 
previous tokens then 2 subsequent tokens, then POS in the 
same order; the top score is the best performing f-score of 
an individual, the average score is the average f-score of 
the entire population.

Weighted lists, SL train, WoW 5 session test
Top Score: 0.806
Average Score: 0.615
Rewards: 8 2 0 2 0 0 0 2 7 0
Penalties: 0 0 0 0 0 0 10 0 0 1

Weighted lists, WoW 5 session train, SL test
Top Score: 0.734
Average Score: 0.458
Rewards: 1 0 1 1 1 10 0 0 6 4
Penalties: 13 0 0 0 1 0 5 0 0 0

10 Conclusion

Most of the highest scoring individuals appeared to have 
non-zero  values  in  the  same  places,  although  the  exact 
values vary somewhat.  The exploratory nature of a genetic 
algorithm  should  result  in  variation  wherever  it  doesn't 
detract from the fitness, so if a penalty is in the right place, 
it  might  not  matter  if  it  higher  than  it  needs  to  be. 
Alternatively,  consistent  zero values indicate that  feature 
actually hurts if included in the matching algorithm.

It  appears  the  features  that  matter  in  determining 
whether a token is inside a hedge (when comparing tokens 
with weighted lists) are:
1)  The token's word value matching rewarded
2)  The token's word value mismatch penalized
3)  The token's following word value matching rewarded

4)  The token's following word POS matching rewarded
5)  The token's following word POS mismatch penalized

Using the top individual, a decent tagger for hedges was 
developed.   Further  improvements  have  been  made  by 
creating  a  “hedge  stop word”  list  to  exclude  words  that 
aren't  hedges  often,  and  a  list  of  hedge  words  can  be 
introduced into the training corpus with varying weights. 
In further sessions of World of Warcraft, manipulating the 
training data resulted in a 90% agreement with annotators.
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