
Prioritized Robotic Exploration with Deadlines: A Comparison of
Greedy, Orienteering, and Profitable Tour Approaches

Sayantan Datta and Srinivas Akella

Abstract—This paper addresses the problem of robotic explo-
ration of unknown indoor environments with deadlines. Indoor
exploration using mobile robots has typically focused on ex-
ploring the entire environment without considering deadlines.
The objective of the prioritized exploration in this paper is to
rapidly compute the geometric layout of an initially unknown
environment by exploring key regions of the environment and
returning to the home location within a deadline. This pri-
oritized exploration is useful for time-critical and dangerous
environments where rapid robot exploration can provide vital
information for subsequent operations. For example, firefighters,
for whom time is of the essence, can utilize the map generated
by this robotic exploration to navigate a building on fire. In our
previous work, we showed that a priority-based greedy algorithm
can outperform a cost-based greedy algorithm for exploration
under deadlines. This paper models the prioritized exploration
problem as an Orienteering Problem (OP) and a Profitable Tour
Problem (PTP) in an attempt to generate exploration strategies
that can explore a greater percentage of the environment in a
given amount of time. The paper presents simulation results on
multiple graph-based and Gazebo environments. We found that
in many cases the priority-based greedy algorithm performs on
par or better than the OP and PTP-based algorithms. We analyze
the potential reasons for this counterintuitive result.

I. INRODUCTION

A significant research area in robotics and computer vision
is 3D data acquisition and reconstruction to create a map
of an initially unknown environment. A challenging problem
is to select the locations in the partially observed map that
the robot must visit to explore and map the environment
further. The speed and extent of exploration by the robot is
constrained by its limited knowledge of the environment, and
constraints on the available time and energy of the robot. The
prioritized exploration problem’s objective is to identify the
layout of the environment within a deadline [1]. For example,
such a deadline may be imposed by excessive radiation in an
environment, where the robot has to explore quickly to avoid
long term damage to its hardware, or by a need to return safely
despite a rapidly depleting battery.

A commonly used technique is to iteratively compute a
target position for the robot to visit, in the partially known
map. The map is updated as the robot moves to the target
position. To explore the environment quickly and efficiently,
the robot should ideally visit each target location at most once.
In practice, with limited knowledge of the environment, the
robot should minimize revisiting locations that it has already
visited. This connects our problem to the Hamiltonian Path

The authors are with the Department of Computer Science, University
of North Carolina at Charlotte, NC 28223, USA. This work was partially
supported by NSF Award IIP-1919233.
sdatta3@uncc.edu, sakella@uncc.edu

Problem and node routing problems such as the Traveling
Salesperson Problem (TSP). These well known problems have
been used to model coverage problems where each vertex
needs to be visited only once [2], [3].

The prioritized exploration problem is a variant of the
exploration problem where the robot must explore an initially
unknown environment to compute its layout (i.e., connectivity)
maximally while returning to the home location within a
deadline. It attempts to do so by creating a path that visits
high priority regions while ensuring the robot returns to the
home location within the deadline. The prioritized exploration
problem can be modeled as the problem of visiting a sequence
of the most rewarding vertices within the limited exploration
time. Vertices with higher rewards provide better views of
the unknown environment. This paper considers the following
question: Would using a Orienteering Problem (OP) formula-
tion or a Profitable Tour Problem (PTP) formulation to explore
the environment improve performance?

The OP and PTP are NP-complete problems [4] and require
time exponential in the number of vertices to solve optimally.
In this paper, when needed we reduce the number of candi-
date vertices to a feasible size so the prioritized exploration
problem can be solved rapidly.

The paper discusses the relevant literature in Section II,
and describes adaptation of the Orienteering Problem and
Profitable Tour Problem for the prioritized exploration problem
in Section III. Results of simulation experiments are presented
in Section IV, followed by a discussion of the behavior of the
exploration algorithms in Section V.

II. RELATED WORK

The problem of robotic exploration has been studied from
multiple perspectives. The work described in this paper builds
on previous work on robot exploration, mapping techniques,
and path planning.

Cost-based frontier exploration techniques that have been
used for single-robot exploration [5] and multi-robot explo-
ration [6] have laid the groundwork for robotic exploration.
Next-best-view [7] approaches such as receding horizon next-
best-view [8] have also been used for 3D mapping of envi-
ronments. Robotic exploration has been modeled as different
problems such as target searching, mapping, and coverage in
unknown or partially observed environments [9], [10], [11],
[12], [3].

Another approach for robot exploration is Active SLAM,
a variant of the Simultaneous Localization and Mapping
problem (SLAM). Active SLAM is the task of actively plan-
ning robot paths while simultaneously building a map and

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 5737

localizing within it [13], [12], [14]. Such techniques generate
a consistent map that is essential for 3D inspection tasks,
sometimes at the cost of slower exploration.

The task of robot exploration can be viewed as a variant of
the Traveling Salesperson Problem (TSP) as the robot must
compute a Hamiltonian path to visit the possible frontier
locations to explore the map. Similarly, the Team Orienteering
Problem and Orienteering Problem with Neighborhoods, vari-
ants of the prize-collecting TSP with budget constraints, have
been used to address the multi-robot exploration problem [15],
[16].

Prior work has focused on exploration with goals such as
finding a specific target, or consistent mapping at the cost of
slower exploration. Most approaches consider the exploration
to be complete when either the entire environment is mapped
or the target is found in the unknown location. The prior-
itized exploration problem that we previously addressed [1]
considers partial exploration of the environment, within a
changing deadline. A similar problem is addressed by using
a Multi-Robot Team Orienteering formulation in [15], where
the environment is explored using heterogeneous robots with
different energy limits. We are not aware of a single-robot
exploration approach that addresses the prioritized exploration
problem using the Orienteering Problem or Profitable Tour
Problem formulations.

The Orienteering Problem (OP) [17], [18], [19] belongs
to the class of Traveling Salesperson Problems with profits,
where it is not necessary to visit all vertices. The input to the
OP is a complete graph, a time budget, a start and an end
vertex. Each graph vertex has an associated positive prize pi.
The goal of OP is to determine a path from the start to end
vertex within the time budget, while selecting vertices to visit
to maximize the total collected prize. The travel time between
any two vertices is assumed to be non-zero. OP is suited to
address problems where the time budget is limited compared
to the time required to visit all vertices. When the time budget
exceeds the time to visit all the vertices, the path generated
by solving the OP formulation might not provide the shortest
path to visit the vertices.

The Profitable Tour Problem also belongs to the class
of TSPs with profits. To address the cost of the path, the
Profitable Tour Problem (PTP) [20], [21] seeks to maximize
the net profit, the total prize collected along the path minus the
path cost. This formulation provides the shortest path when the
time budget exceeds the time required to visit all the vertices.

The next section discusses modeling the prioritized robot
exploration problem using the OP and PTP formulations.

III. PROBLEM FORMULATION

A single robot explores an unknown environment, senses
and maps the area, and models the map as an exploration
graph, Ge = (Ve,Ee). Ve is the set of explored vertices and each
vertex vi ∈Ve represents a physical location in the exploration
environment. Each vertex vi has a non-negative prize pi that
represents its priority. The vertices are labeled based on the
building structure they are located in, such as Corridor, Large

Room, or Small Room. The set of vertices Ve is divided into
two subsets: Vd , the set of discovered vertices in unvisited
frontier regions, and Vvis, the set of vertices visited by the
robot. Ee is the set of edges, where each edge ei j ∈Ee connects
two vertices vi and v j. An edge represents a collision-free path
between the two vertices. The estimated time to traverse the
path along an edge is ci j.

The exploration algorithm selects a target vertex vt ∈ Vd
for the robot to visit. The exploration map is updated based
on sensor data from the robot enroute to vt . Once the robot
reaches vt , a new exploration graph Ge is computed based on
the updated map. Once vertex vt is visited, Vd is updated as
Vd =Vd \ vt , and Vvis is updated as Vvis ∪ vt . The robot should
return to the home vertex h, from where it originally began
exploration, by the deadline tr. The value of tr is reduced to
reflect the current time remaining, as the robot explores the
environment.

A. Orienteering Problem Formulation

The objective of the OP is to maximize the prize collected
while traversing a path on the exploration graph. A path here
is the sequence of vertices the robot takes from the start to
the end vertex. If the start and end vertices are the same, the
path is called a tour. The prize pi at each vertex is based on
the priority of the vertex. For our formulation, we have set the
corridor vertices to have the highest prize, followed by large
rooms, and finally small rooms. Once the robot visits a target
vertex, a new path is computed accommodating the newly
discovered vertices from the previously unexplored region.
The objective function is shown in Equation 1, where s is the
start vertex. The binary variable yi is 1 if vertex i is visited
and 0 otherwise. The exploration graph is represented as a
weighted adjacency matrix M. As the formulation requires a
fully-connected graph, an all-pairs shortest path algorithm is
used to create a fully connected distance matrix Mc. As the
robot needs to visit only the discovered vertices, we create
distance matrix Mcd , from Mc, to include only s, h and the
discovered vertices. The number of vertices in Mcd is N.

The robot’s exploration is constrained by the deadline
imposed (Equation 2). The binary variable xi j is 1 when the
path contains the edge ei j and 0 otherwise. To ensure that
each of the discovered vertices is visited at most once, we
have a set of inbound and outbound constraints for all the
vertices (Equations 3.1 — 3.3). Equations 3.1 enforce a single
inbound edge to h and a single outbound edge from s to make
the robot return to h at the end of path and start from s at the
start. Equations 3.2 ensure that there are no edges inbound to
s and there are no outbound edges from h if s ̸= h. For every
vertex in the path that is not s or h, Equations 3.3 ensure that it
has one inbound edge and one outbound edge. A set of subtour
elimination constraints (Equation 4), based on the Miller-
Tucker-Zemlin (MTZ) constraints [22], prevents independent
subtours and ensures that all vertices in the solution are in a
single path. This introduces a variable ui ∈R for each vertex i
to compute the sequence of vertices in the generated solution.

5738

Maximize
N

∑
i=1

i̸=s,h

pi yi (1)

N

∑
i=1
i̸=h

Nt

∑
j=1
j ̸=i,s

ci j xi j ≤ tr (2)

N

∑
i=1
i̸=h

xih = 1,
N

∑
i=1
i ̸=s

xsi = 1 (3.1)

N

∑
i=1
i ̸=s

xis = 0,
N

∑
i=1
i̸=h

xhi = 0 s ̸= h (3.2)

N

∑
i=1
i̸= j

xi j = y j,
N

∑
i=1
i̸= j

x ji = y j j ∈ {1, . . . ,N}, j ̸= {s,h} (3.3)

ui −u j +1 ≤(N −1)(1− xi j) ∀i, j = 2, . . . ,N; i ̸= j (4)
2 ≤ ui ≤ N, ui ∈ R ∀i = 2, . . . ,N
yi ∈ {0,1}, xi j ∈ {0,1} ∀i, j = 1, . . . ,N; i ̸= j

B. Profitable Tour Formulation

The Profitable Tour Problem (PTP) [20], [21] is a variant
of OP. Its objective is to maximize the difference between the
total collected prize and the cost incurred. For our single-robot
indoor exploration problem, the PTP objective function is the
sum of prizes over all the visited vertices minus the total cost
(Equation 5), where m is a multiplier that scales the vertex
prizes. The PTP formulation has the same constraints as the
OP, including the deadlines constraint.

Maximize m
Nt

∑
i=1

i̸=s,h

pi yi −
Nt

∑
i=1
i ̸=h

Nt

∑
j=1
j ̸=i,s

ci j xi j (5)

For both the OP and PTP formulations, the first vertex
in the path generated from the optimization solution is the
target vertex, the vertex to be visited next by the robot. This
first vertex plays an important role during exploration because
it determines the set of new discovered vertices, including
any high priority vertices. The graph Ge is updated with the
new vertices after visiting the first vertex and a new path is
recomputed. Visiting a high priority vertex (i.e., with a large
prize) as the first vertex is likely to enable the exploration
algorithm to scan a larger portion of the environment before
the path is recomputed. Both the OP and PTP objective
functions do not require the first vertex to be a high priority
vertex. Consequently, the paths generated by the OP and PTP
formulations are not guaranteed to have a high priority vertex
as the first vertex. (This is in contrast to the prioritized greedy
algorithm, where the first vertex is always the highest priority
vertex [1].) When a high priority vertex is visited later in the
path, multiple computed paths may exist with the same total
prize along the path. In such instances, we swap vertices in
the computed path when feasible without increasing the cost,
so the robot can first visit the high priority vertex.

(a) (b) (c)

(d) (e)

(f)

Fig. 1: Graph environments for testing exploration algorithms with
small rooms (light green), large rooms (dark green), and corridors
(pink). The first row consists of elementary environments: (a) Straight
Corridor, (b) Looped Corridor, and (c) Branched Corridor. The second
row consists of two environments with different connectivity: (d)
Large Home, which has no corridors, and (e) Research Lab, which
has two looped corridors. The third row illustrates the (f) Office
environment, which is the largest. The black vertex shows the starting
vertex for exploration. All environments are drawn to scale.

C. Implementation in Graph Environments

Graph environments are simulated environments represented
as graphs, which are initially unknown. As the robot visits
a vertex, adjacent vertices along the path are discovered.
Example graph environments are shown in Figure 1. Each
vertex has a pre-defined label: Small Room, Large Room, or
Corridor, and an associated prize. In an office building, as a
corridor connects other parts of the environment, the Corridor
vertices have the highest prizes, followed by the Large Room
vertices, and then the Small Room vertices. If the number of
discovered vertices exceeds 15, they are clustered using the k-
medoids algorithm into 10 clusters to ensure fast optimization
solve times. The prize of a vertex cluster is the average prize
of each vertex in the cluster.

D. Implementation in Gazebo Environments

Gazebo environments are 3D environments to simulate real-
world environments. Here, the robot runs a SLAM algorithm
to create an occupancy grid map. This map is skeletonized
to a skeleton image and converted to a skeleton graph. The
skeleton graph is used as the exploration graph Ge. This
skeleton graph has discovered vertices generated along the
frontier of the explored region. The home vertex is the vertex
closest to the original start position of the exploration, and the
start vertex is the vertex closest to the current robot position.
The vertices are labeled as Corridors, Large Room, and Small
Room based on the geometry of the obstacles (e.g., walls)

5739

(a) (b) (c)

Fig. 2: Three Gazebo environments from [1]: (a) Straight Corridor (b)
Looped Corridor (c) Branched Corridor. The figures show occupancy
grid maps of the environments, where yellow lines represent edges
and black points represent vertices. The environments are drawn to
scale.

visible from the emulated Lidar scans. The three types of
vertices have prizes similar to the graph environments. For
each vertex, if multiple rays of the emulated Lidar scan overlap
the exploration frontier, the vertex is marked as a discovered
vertex. The discovered vertices are clustered if required, as
described in Section III-C. The robot moves along the edges
of the skeleton graph to reach the target vertex, to ensure a
collision-free path.

IV. EXPERIMENTS

We ran simulation experiments on a set of graph envi-
ronments and a set of 3D environments in Gazebo. The
graph environments are used to test the performance of
the algorithms without the mapping, localization, and robot
navigation components affecting the evaluation. The Gazebo
environments enable repeatable robot exploration experiments
in realistic environments. The experiments were run on an
Intel Core i7 9800X with 64 GB of RAM, using the Python
(v3.6.8) wrapper of Gurobi Optimizer (v9.5.1).

Graph Environments: These are a set of six simulated
environments represented as graphs, as shown in Figure 1.
Three are elementary corridor layouts from [1] and three
environments are a combination of the elementary layouts.
The Large Home (Figure 1(d)) has no corridors and consists
of a large room with small rooms connected to it. The
Research Lab (Figure 1(e)) has two looped corridors, and
Office (Figure 1(f)), the largest environment, has multiple
corridors with multiple intersections.

Gazebo Environments: A set of three environments,
Straight Corridor, Looped Corridor, and Branched Corridor
from [1] has been used to simulate real-world exploration (Fig-
ure 2). Using the Gazebo [23] simulator, these environments
are explored using a simulated TurtleBot3 robot equipped with
a single scan 360◦ Lidar with a range of 6 meters, simulating
the Slamtec RPLidar A1M8 sensor. The GMapping SLAM
algorithm [24] is used to create an occupancy grid map from
the sensor data. This occupancy grid map is converted to the
skeleton graph as mentioned in Section III-D.

A. Metrics

The performance of the exploration algorithms is evaluated
using the percentage of the environment explored. For the

graph environments, we compare the performance of the
(1) Priority-based greedy exploration (P-greedy) algorithm
from [1], (2) Cost-based greedy (C-greedy) algorithm moti-
vated by [5], (3) OP-based exploration algorithm (OPE), and
(4) PTP-based exploration algorithm (PTPE). The P-greedy
algorithm visits the highest priority vertex that is feasible
given the deadline. It prioritizes in the order of corridors, large
rooms, and small rooms. For the Gazebo environments, we
compare the P-greedy, OPE, and PTPE algorithms.

For the graph environments, explored regions of the map
are represented by the set of explored vertices Ve, where
Ve = (Vd ∪Vvis). The performance metric for the graph en-
vironments is the percentage of explored vertices in the
complete environment. The performance metric for the Gazebo
environments is the percentage of the total area explored. In
the Gazebo environments, exploration time is measured in
seconds and includes computation time and the time taken
for robots to move in the environment. In all experiments, the
robots are informed of a deadline at the start of exploration.

B. Results

We compare the performance of the two algorithms OPE
and PTPE to the priority-based greedy exploration algorithm
(P-greedy) [1]. For the OPE and PTPE, the prizes of the
vertices in corridors, large rooms, and small rooms are set
to 10000, 100, and 1, respectively.

The algorithms (P-greedy, C-greedy, OPE, and PTPE with
multiplier m = 10) have been tested on the six graph environ-
ments shown in Figure 1. The results are illustrated in Figure 3.
They compare the percentage of the environment explored by
the different exploration algorithms within a deadline.

To keep Gurobi’s solve time under one second for the large
graph environments, we clustered the vertices into 10 clusters
when the number of vertices exceeded 15. Clustering the
vertices in the exploration environment reduces performance,
as shown in Figure 4. For PTPE and OPE, the difference in the
percentage of explored vertices with and without clustering is
significant when the number of discovered vertices is greater
than 2–3 times the number of clusters.

The performances of the P-greedy, OPE, and PTPE al-
gorithms on the three Gazebo environments of Figure 2
are compared in Table I. For most deadline instances, the
performances of all three algorithms are very close. For a
few instances with performance differences, the causes can
be identified. For example, the significant difference between
P-greedy and the optimization based algorithms for the 1500 s
deadline on the Straight Corridor environment stems from the
skeleton graph having multiple vertices along the direction
from the robot’s position to the frontier. See Section V-B for
details.

V. DISCUSSION

The OPE and PTPE algorithms create paths to visit the
set of vertices that maximize their objectives while ensuring
the robot satisfies the deadline. In both formulations, there
is no guarantee that the first vertex in the path will be a

5740

(a) Straight Corridor (b) Looped Corridor

(c) Branched Corridor (d) Large Home

(e) Research Lab (f) Office

Fig. 3: Plots comparing the performance of the P-greedy, C-greedy, OPE, and PTPE prioritized exploration algorithms for the graph
environments of Figure 1. The vertical axis shows the average percentage of explored vertices over five independent runs for each deadline.
The horizontal axis shows the deadlines. Note that the Office environment requires a larger time to explore due to its larger size.

(a)

(b)

Fig. 4: Impact of clustering on prioritized exploration of the Research
Lab graph environment. The horizontal axis shows the deadlines. The
plots show performance of the (a) OPE and (b) PTPE exploration
algorithms without clustering (orange) and with clustering (green).

Fig. 5: Robot exploring the Straight Corridor Gazebo environment,
moving along an edge of the skeleton graph. Skeleton graphs in
Gazebo environments generate multiple vertices along the direction
from the robot’s current position to the exploration frontier. Here the
vertices (7, 9, 8) are along the corridor. The skeleton graph shown
here will be updated using the updated map after the robot reaches
the target vertex. The frontier is the boundary between the light gray
and dark gray regions of the map.

high priority vertex. As the path is recomputed after the
robot visits a discovered vertex, the new path may again
have the same limitation. The P-greedy algorithm, in contrast,
chooses the highest priority vertex that is closest to the robot’s
current position as the target vertex, provided the robot can
explore the vertex and return home within the deadline. Given

5741

TABLE I: Exploration results for the Gazebo environments of Figure 2. P-greedy is the prioritized-greedy algorithm, OPE is the OP-based
exploration algorithm, and the PTPE is the PTP-based exploration algorithm with multiplier m = 10.

Deadline
(in secs.) Algorithm

Straight Corridor Looped Corridor Branched Corridor

Corridor Large Small Total Corridor Large Small Total Corridor Large Small TotalRoom Room Room Room Room Room

1500
P-greedy 99.3% 43.7% 97.0% 72.3% 99.9% 99.7 98.4 99.1% 76.3% 63.2% 57.3% 64.0%

OPE 99.9% 63.9% 98.4% 82.5% 100% 99.7% 99.1% 99.6% 76.6% 77.7% 50.3% 65.3%
PTPE 99.8% 80.0% 97.9% 89.8% 100% 99.7% 94.6% 97.2% 75.0% 60.7% 57.1% 62.8%

1000
P-greedy 99.6% 16.3% 96.4% 59.2% 100.0% 99.9% 97.2% 98.0% 66.8% 54.7% 49.2% 55.5%

OPE 99.4% 24.2% 97.4% 63.4% 100% 99.7% 90.0% 94.9% 66.1% 57.0% 36.9% 50.5%
PTPE 99.8% 28.5% 97.1% 65.3% 100% 99.5% 96.2% 98.0% 71.5% 49.9% 47.6% 59.8%

500
P-greedy 79.6% 0.0% 78.5% 41.8% 80.3% 97.9% 51.9% 68.3% 50.2% 24.2% 23.9% 30.9%

OPE 80.3% 0.0% 52.6% 31.9% 87.4% 98.8% 50.6% 69.5% 55.1% 32.8% 22.4% 34.1%
PTPE 79.3% 0.0% 51.7% 31.4% 79.9% 97.7% 49.3% 66.0% 55.1% 28.6% 27.9% 35.3%

this fundamental difference between the P-greedy algorithm
and the non-greedy PTPE and OPE algorithms, this section
discusses our observations from executing these exploration
algorithms on different types of environments.

A. Exploration in the Graph Environments
The P-greedy algorithm has the best performance for most

deadline instances, as shown in Figure 3. PTPE is second in
performance in the Straight Corridor, Looped Corridor and
Research Lab environments. For a few deadline instances,
PTPE outperforms P-greedy on the Looped Corridor and
Research Lab environments. In the Branched Corridor environ-
ment, P-greedy significantly outperforms the other algorithms.
Both P-greedy and PTPE initially explore one of the two
available corridors. Once the corridor is visited, P-greedy
chooses to visit the other corridor, while PTPE explores the
room vertices adjacent to the explored corridor instead of
visiting the other corridor, hurting its performance. In the
Large Home environment, OPE performs better than PTPE
for smaller deadline instances.

B. Exploration in the Gazebo Environments
The Gazebo environments use skeleton graphs. A skeleton

graph updated after the robot reaches a target vertex may not
have a vertex at the current robot position. As a result, the
robot spends a few seconds orienting and moving to the new
skeleton graph, impacting the exploration time. Furthermore, a
shortest path along the skeleton graph might not be the shortest
path between two points on the map. As shown in Figure 5,
the skeleton graph may generate multiple vertices between
the robot’s current position and the frontier of the explored
map. The P-greedy algorithm visits the highest priority vertex
that is closest to the robot, while OPE and PTPE may visit a
different target vertex, farther away from the robot’s current
position. This results in frequent skeleton graph updates for
the P-greedy algorithm, and each time, the robot spends a few
seconds repositioning itself in the new skeleton graph, thereby
affecting the P-greedy exploration performance.

C. Limitations of Online Methods
The exploration problem can be categorized as an online

problem [25] as the robot sequentially receives information

from the initially unknown environment. As the exploration
environment is partially observed by the robot, optimal so-
lutions for the partially known environments might not be
optimal over the entire environment. We notice that each
exploration algorithm performs differently for a given envi-
ronment. As the structure of corridors and rooms determine
the performance of the algorithm, we can consider the environ-
ment as an oblivious adversary [26]. However, if an adversary
is aware of the exploration algorithm’s priorities for visiting
different building structures, it can devise an environment
in which the algorithm would perform poorly. Although no
particular exploration algorithm is a clear winner in all types
of environments, we observe that the priority-based greedy
algorithm performs competitively in almost all environments.

VI. CONCLUSION

This paper considers the prioritized exploration problem,
whose objective is to compute the geometric layout of an
initially unknown environment by rapidly exploring it and
returning to the home location within a deadline. We formu-
lated it as an Orienteering Problem and as a Profitable Tour
Problem. In the graph environments, we found that a priority-
based greedy exploration algorithm performs on par or better
than the optimization based algorithms in most instances.
In the Gazebo environments, all three exploration algorithms
perform very similarly. While no algorithm emerged a clear
winner across all exploration environments, the priority-based
greedy algorithm performed quite competitively despite its low
computational overhead.

We plan to investigate two directions in our future work. The
first is further testing of the prioritized exploration algorithms
in Gazebo and real-world environments to better understand
their performance. This includes tests over a large set of
deadlines and environments, and using a separate path planner
to compute efficient collision-free trajectories for faster robot
exploration. The second direction is to obtain the values of
the vertex priorities based on the semantic information they
provide about the building structure.

5742

REFERENCES

[1] S. Datta and S. Akella, “Prioritized indoor exploration with a dynamic
deadline,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2021, pp. 3108–3114.

[2] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126,
2001.

[3] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–
1276, 2013.

[4] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations. Springer, 1972, pp. 85–103.

[5] B. Yamauchi, “A frontier-based approach for autonomous exploration.”
in Computational Intelligence in Robotics and Automation, vol. 97,
1997, pp. 146–151.

[6] ——, “Frontier-based exploration using multiple robots,” in Interna-
tional Conference on Autonomous Agents, vol. 98, 1998, pp. 47–53.

[7] C. Connolly, “The determination of next best views,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, 1985, pp. 432–
435.

[8] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3D exploration,” in
IEEE International Conference on Robotics and Automation, 2016, pp.
1462–1468.

[9] Y. Cai, S. X. Yang, and X. Xu, “A combined hierarchical reinforcement
learning based approach for multi-robot cooperative target searching
in complex unknown environments,” in IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning, 2013, pp. 52–59.

[10] C. Robin and S. Lacroix, “Multi-robot target detection and tracking:
taxonomy and survey,” Autonomous Robots, vol. 40, no. 4, pp. 729–
760, 2016.

[11] W.-C. Lee and H.-L. Choi, “Complex semantic-spatial relation aided
indoor target-directed exploration,” IEEE Access, vol. 9, pp. 167 039–
167 053, 2021.

[12] D. G. Vutetakis and J. Xiao, “An autonomous loop-closure approach for
simultaneous exploration and coverage of unknown infrastructure using
MAVs,” in IEEE International Conference on Robotics and Automation,
2019, pp. 2988–2994.

[13] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping and robot
exploration: A survey,” Sensors, vol. 21, no. 7, 2445, 2021.

[14] D. Pittol, M. Mantelli, R. Maffei, M. Kolberg, and E. Prestes, “Loop-
aware exploration graph: A concise representation of environments for
exploration and active loop-closure,” Robotics and Autonomous Systems,
vol. 155, p. 104179, 2022.

[15] T. Sakamoto, S. Bonardi, and T. Kubota, “A routing framework for
heterogeneous multi-robot teams in exploration tasks,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6662–6669, 2020.

[16] G. Best and G. A. Hollinger, “Decentralised self-organising maps for
the online orienteering problem with neighbourhoods,” in International
Symposium on Multi-Robot and Multi-Agent Systems. IEEE, 2019, pp.
139–141.

[17] I.-M. Chao, B. L. Golden, and E. A. Wasil, “A fast and effective
heuristic for the orienteering problem,” European Journal of Operational
Research, vol. 88, no. 3, pp. 475–489, 1996.

[18] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orien-
teering problem: A survey,” European Journal of Operational Research,
vol. 209, no. 1, pp. 1–10, 2011.

[19] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[20] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[21] D. Feillet, P. Dejax, and M. Gendreau, “Traveling salesman problems
with profits,” Transportation Science, vol. 39, no. 2, pp. 188–205, 2005.

[22] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” Journal of the ACM, vol. 7,
no. 4, pp. 326–329, 1960.

[23] C. E. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. L. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside
the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster
Response,” IEEE Transactions on Automation Science and Engineering,
vol. 12, pp. 494–506, April 2015.

[24] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with Rao-Blackwellized particle filters,” IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[25] R. M. Karp, “On-line algorithms versus off-line algorithms: How much
is it worth to know the future?” in IFIP Congress, vol. 1, 1992, pp.
416–429.

[26] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 2005.

5743

