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Abstract

This paper studies the use of pushing actions to orient and trans-
late objects in the plane. The authors use linear normal pushes,
which are straight-line pushes in a direction normal to the pushing
fence. These pushes are specified by the fence orientation and push
distance. The authors show that a set of linear normal pushes can
always be found to move any polygonal object from any initial con-
figuration to any goal configuration in the obstacle-free plane. The
object configuration is specified by its pose; that is, its position and
orientation. The authors formulate the search for such a sequence
of pushes as a linear programming problem. They then describe an
implemented pose planner that uses this formulation to identify a
sequence of linear normal pushes given any polygonal object, any
initial pose, and any goal pose. This planner is proven to be com-
plete and to have polynomial time complexity. The planner, which
uses an analysis of the méchanics of pushing an object, generates
open-loop plans that do not require sensing. The authors describe
experiments that demonstrate the validity of the generated plans.

1. Introduction

Robots usually grasp objects rigidly to move them. Robots
can also move objects without grasping them by a vari-
ety of nonprehensile techniques such as pushing, throw-
ing, and striking. Pushing is a form of nonprehensile ma-
nipulation useful for planar manipulation of objects, par-
ticularly when the object cannot be grasped or when it is
more efficient to move the object along the support sur-
face. An example is planar parts transfer for assembly,
where parts are to be moved from one position to another
in the plane, often with a change in orientation. If a part
is too heavy or too large for the gripper to grasp, it can be
moved to different locations by a sequence of pushes. An-
other example is movement of large containers and pallets
on a floor by a mobile robot. In these and similar cases,
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pushing actions are a suitable means to manipulate the ob-
jects.

In tasks involving contact between the robot and the en-
vironment, the mechanics of the task determine the nature
of the interaction between the robot and the environment.
Understanding the task mechanics helps us achieve the de-
sired outcome. This typically involves identification of a
set of actions, a description of the results of these actions,
and knowledge of the conditions under which these actions
are successful. Often, the task is impossible with a single
action. In such cases, it is necessary to determine how
to chain a sequence of actions together to accomplish the
task.

The work reported in this paper is concerned with the
automatic synthesis of sequences of linear pushing actions
to position and orient an object, given knowledge of the
mechanics of a single pushing action. Previous work in
the domain of pushing provides a basis for understanding
the mechanics of such pushing actions (Mason 1986; Brost
1988; Peshkin and Sanderson 1988b). Sequences of such
actions have been used primarily to orient parts (Mani and
Wilson 1985; Peshkin and Sanderson 1988a). Here, we de-
velop a method to find plans to move a polygonal object
from a known initial position and orientation to a goal po-
sition and orientation using linear normal pushes executed
by a fence. These plans are open loop—they do not require
sensing. A linear normal push is a straight-line push in a
direction normal to the pushing fence and is specified by
the fence orientation and push distance. We formulate the
search for a sequence of pushes as a linear programming
problem whose feasible solutions provide valid plans. We
have used this formulation to implement a polynomial-time
pose planner and have proven the planner complete; it is
guaranteed to generate open-loop plans to move an arbi-
trary polygonal object from an arbitrary start position and
orientation to an arbitrary goal position and orientation in the
obstacle-free plane. We further describe experiments that
demonstrate the validity of the generated plans. Henceforth,
we refer to the combined position and orientation of the ob-
ject as the pose of the object. See Figure 1 for an example
plan.

This paper focuses on three issues:



start pose is (20.0 -20.0 -40.0)
goal pose is (170.0 20.0 -30.0)
plan type is CCW

push distance is 176.46
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Fig. 1. A plan generated by the pose planner to move the triangle. The arrows indicate push directions.

. Generating sequences of linear normal pushes for the
problem of simultaneously orienting and positioning
polygonal objects.

Proving that the set of linear normal pushes is complete
for this task. That is, there always exists a sequence of
linear normal pushes to move any polygon from any
start pose to any goal pose in the obstacle-free plane.
Showing that the pose planner that generates the push
sequences for this task is complete. That is, the pose
planner always generates a push sequence guaranteed
to move any polygon from any start pose to any goal

pose.

The paper is organized as follows. Section 2 discusses
related work, primarily in the areas of pushing and non-
prehensile manipulation. Section 3 states the problem and
outlines the solution. Section 4 discusses the relevant results
on the mechanics of pushing an object. Section 5 describes
the selection of a feasible set of pushes using a linear pro-
gramming formulation. Section 6 outlines the pose planner,
and Section 7 describes experimental validation of the gen-
erated plans. The final section concludes with a summary of
our results and suggestions for future work.

2. Related Work

The use of task mechanics is a powerful solution technique
in robotic manipulation tasks; we list a few early examples.

Inoue (1974) used force information to achieve peg insertion
despite inaccuracies in manipulator positioning that exceeded
assembly tolerances. Simunovic (1975) analyzed the contact
forces during the insertion of a peg in a hole and identified
conditions under which jamming occurs. Whitney (1982)
and colleagues studied assembly operations and developed
the remote center compliance to overcome uncertainties dur-
ing assembly insertions. Erdmann and Mason (1988) ana-
lyzed the mechanics of the sliding motion of a planar object
in a tiltable tray and developed a planner to find a sensorless
sequence of tilts to orient the object. Our work in this paper
builds on previous work on the mechanics and planning of
pushing operations, which we discuss next.

2.1. Pushing

The motion of a pushed object depends on its geometry, the
pressure distribution between the object and the support sur-
face, the nature of contact between the pusher and the object,
and the motion of the pusher. Mason (1982, 1986) analyzed
the mechanics of robotic pushing operations. He developed a
procedure to determine the instantaneous motion of a pushed
object with a known support pressure distribution, and de-
rived rules to predict the rotation direction of a pushed object
with an unknown pressure distribution. Mani and Wilson
(1985) used the pushing rules of Mason (1982) to derive an
edge stability map for straight-line pushes and developed a



72 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 1998

system to orient parts with a sequence of fence pushes at dif-
ferent angles. Brost (1988) developed an algorithm to plan
grasps with a parallel-jaw gripper that are robust to bounded
uncertainties in object orientation. As an intermediate result,
using the pushing rules of Mason (1982), he developed the
push-stability diagram to describe the possible motions of
an object being pushed by a fence. Peshkin and Sanderson
(1988b) found the locus of centers of rotation of a pushed ob-
ject for all possible pressure distributions over an enclosing
circle centered at the object center of mass. These centers of
rotation provide bounds on the rate of rotation of an object
being pushed. From the center of rotation corresponding to
the slowest rotation, they calculated the minimum push dis-
tance guaranteed to align the object with the fence. Using
these results, Peshkin and Sanderson (1988a) described the
orienting effect of a fence in terms of its configuration map,
which maps all initial orientations of the object to all possible
resulting orientations. They used these configuration maps
to find a sequence of fences to automatically orient a sliding
part. Brokowski, Peshkin, and Goldberg (1993) designed
curved fence sections to eliminate uncertainty in the orien-
tations of parts being oriented by the fence. Pham, Cheung,
and Yeo (1990) analyzed the initial motion of a rectangular
object being pushed or pulled and its dependence on the mag-
nitude of the exerted force. Goyal, Ruina, and Papadopoulos
(1991a, 1991b) assumed a known support pressure distribu-
tion and developed a limit surface description of the relation
between the frictional forces and object motion. Alexander
and Maddocks (1993) derived bounds on the center of ro-
tation locus over all possible support friction distributions
for objects with known support regions. Balorda and Bajd
(1994) used a two-finger tool to reduce the positional un-
certainty of an object by pushing it. They discussed the ef-
fect of finger configurations on accurate positioning of the
object. Goldberg and Mason (1990) described a Bayesian
framework for planning multistep grasps with a frictionless
parallel-jaw gripper to orient objects. In subsequent work,
Goldberg (1993) developed a backchaining algorithm to gen-
erate sensorless orienting plans for polygonal objects using
the frictionless gripper. This algorithm is guaranteed to re-
turn the shortest plan to orient any object up to symmetry. In
their grasping work, Goldberg and Mason simplified Brost’s
(1988) model for parallel-jaw grasping by using only pushes
normal to the face of the gripper. In the work reported in this
paper, we use linear normal pushes to orient and translate the
object. This work was reported earlier in Akella and Mason
(1992).

Work by Lynch and Mason (Lynch 1992; Lynch and Ma-
son 1995b) is most closely related to our work. Lynch (1992)
studied the kinematic constraints on object motion consis-
tent with a pusher-object contact configuration, and the force
constraints on object motion to ensure the resulting frictional
forces could be balanced by the contact forces. He combined
these constraints to define a new manipulation primitive, the

stable rotational push, which guarantees that no relative mo-
tion between the pusher and the object occurs during a push.
Lynch and Mason (1995b) discussed issues of controllabil-
ity and planning in the use of stable pushes. They described
a pushing path planner, based on the nonholonomic motion
planner of Barraquand and Latombe (1993), that uses sta-
ble pushing motions to synthesize paths in the presence of
obstacles. Our planner differs from this planner in several
ways, the most obvious being the class of pushes used. Our
planner assumes an obstacle-free plane, whereas Lynch and
Mason’s planner can generate plans in the presence of ob-
stacles. Interestingly, the presence of obstacles can reduce
the search space and speed up plan generation, whereas the
absence of obstacles can slow it down. Lynch and Mason’s
planner is not exact in that it finds a path to a neighborhood of
the goal configuration; the linear programming formulation
of our planner provides a computationally efficient method
to find exact solutions. Brost (1992) presented a numerical
integration procedure that returns the initial configurations
that guarantee the linear pushing motion of a polygon will
bring a contacting polygon to a goal equilibrium configura-
tion. Kurisu and Yoshikawa (1994) used an optimal control
formulation to generate trajectories to push an object to a goal
configuration with a point contact pusher in the presence of
obstacles. Jia and Erdmann (1996) included dynamics in
their analysis of the motion of an object pushed by a finger.
By sensing contact positions of the object on the finger, they
determined the initial pose of the object.

Work on pushing by mobile robots dates back to work by
Nilsson (1969). Okawa and Yokoyama (1992) described a
mobile robot for pushing a box to a goal position through a
specified set of via points. When the object mass and size are
greater than that of the robot, multiple robots may be required
to push the object. Donald, Jennings, and Rus (1995) used
a team of mobile robots to reorient furniture by pushing and
analyzed the information requirements of the task. They pre-
sented several algorithms that differ in the amounts of global
control, communication, and synchronization. Brown and
Jennings (1995) presented a two-robot system to manipulate
objects by pushing. One robot steers while the other robot
pushes the object and the steering robot; there is no explicit
communication between the robots.

2.2. Nonprehensile Manipulation

Nonprehensile manipulation, where an object is manipulated
without being rigidly grasped, takes several forms including
pushing, whole-arm manipulation, juggling, throwing, and
striking. Much of the work cited above can be viewed as
examples of nonprehensile manipulation. Salisbury (1988)
discussed whole-arm manipulation, where manipulator link
surfaces can contact objects to manipulate them. Nonprehen-
sile manipulation occurs during a grasp when the object slips
orrolls relative to the gripper. Trinkle, Abel, and Paul (1988)



presented a planner that uses both the palm surface and fin-
gers of a frictionless gripper to achieve an enveloping grasp of
an object. Brock (1988) analyzed the permissible motions of
an object grasped in a robot hand and used changes in forces
to cause controlled slip of the object. Kao and Cutkosky
(1992) explicitly considered sliding of robot fingers on an
object and planned finger motions so the object follows a
desired trajectory. Sawasaki, Inaba, and Inoue (1989) used
stand-up and tumbling operations with fingers to manipulate
objects in contact with a support surface. Aiyama, Inaba, and
Inoue (1993) used pivoting operations, where they manipu-
late an object supported on a surface by rotating the object
about its vertices. Nagata (1994) developed a parallel-jaw
gripper with a turntable on each jaw and used it to per-
form operations such as sliding a block on a plane. Terasaki
and Hasegawa (1994) described a manipulation system that
slides and rotates an object to enable subsequent grasping.
Farahat, Stiller, and Trinkle (1995) analytically determined
the position and orientation of a polygon moving in slid-
ing and rolling contact with two or three position-controlled
robots. Trinkle, Farahat, and Stiller (1995) analyzed systems
of multiple objects and manipulators in contact and deter-
mined contact states that are stable to small variations in
forces. When the contact state causes the object velocity to
be uniquely determined from the manipulator velocity, these
first-order stability cells can be used to plan whole-arm ma-
nipulation tasks. Abell and Erdmann (1995) analyzed the
use of two frictionless fingers to stably support and rotate a
polygonal object in a gravitational field. Akella et al. (1996)
described a planar manipulation system consisting of a one-
joint actuator positioned over a conveyor belt. They showed
that, using the conveyor drift field and pushing motions of
the actuator, the robot can feed any polygonal part to some
selected goal position and orientation. Erdmann (1996) de-
veloped a two-palm manipulation system that uses a sequence
of nonprehensile operations such as sliding to rotate an ob-
ject. Zumel and Erdmann (1996) used two frictionless palms
to manipulate an object in a gravitational field and presented
a planner that uses stable and unstable transitions to reorient
the object.

Objects can be also be manipulated using a very large num-
ber of manipulators or by subjecting them to force fields.
Bohringer et al. (1994) used arrays of microelectromechan-
ical actuators to perform sensorless manipulation of parts.
By controlling the motions of the actuators in the array,
they generated vector fields that produced desired part mo-
tions. Liu and Will (1995) simulated a parts manipulation
surface consisting of microelectromechanical actuators and
described various parts manipulation strategies. Bohringer,
Bhatt, and Goldberg (1995) used a vibrating plate to posi-
tion and orient parts sensorlessly. The vibrations generate a
force field, and parts move to nodes of the vibratory force
field. Swanson, Burridge, and Koditschek (1995) analyzed
the motion of a part subjected to a vibratory juggling motion
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and indicated conditions under which all initial orientations
of the part acquire a unique stable motion.

Juggling, throwing, and striking provide dramatic exam-
ples of nonprehensile manipulation. Aboaf, Drucker, and
Atkeson (1989) developed a robot system that juggles a ten-
nis ball in three dimensions and uses learning to improve its
performance. Buehler, Koditschek, and Kindlmann (1994)
described “mirror” algorithms to control a one-degree-of-
freedom robot system that can stably juggle one or two pucks
simultaneously in a vertical plane. Rizzi and Koditschek
(1993) developed a paddle juggler that performs spatial jug-
gling of two balls. Zumel and Erdmann (1994) analyzed
the juggling of a polygon and identified conditions under
which the polygon can be brought to a stable trajectory. Ma-
son and Lynch (1993) presented a taxonomy of manipulation
models and analyzed the throwing of a club as an example
of dynamic manipulation. Acceleration forces during the
carry phase are used to hold the club in a dynamic grasp.
Arai and Khatib (1994) rotated a cube on a paddle and con-
trolled its rotation rate by accelerating the paddle using a
Puma robot. Lynch (1996) explored dynamic nonprehensile
manipulation and demonstrated control of an object using a
one-degree-of-freedom robot by sequencing phases of dy-
namic grasp, rolling, and free flight. Higuchi (1985) used
impulsive forces generated by electromagnetic means to mi-
croposition objects. Huang, Krotkov, and Mason (1995)
explored the use of striking to move a rotationally sym-
metric object to a desired position and orientation in the
plane.

2.3. Completeness

For a given task, we select a set of actions and try to de-
termine what combination of the actions, if any, can solve
instances of the task. One interesting aspect of the problem
described in this paper is that for the selected class of linear
normal pushing actions, a solution always exists, and further,
we can always find a solution to the problem. Such problems,
which always have a solution for any instance of the problem,
have been termed solution-complete by Goldberg (1995). He
gives examples of other solution-complete problems such as
sensorless orienting of parts (Goldberg 1993) and controlla-
bility and motion planning for nonholonomic mobile robots
in the obstacle-free plane (Barraquand and Latombe 1993).
He describes a modular fixturing problem for polygonal parts
(Zhuang, Wong, and Goldberg 1994) that is not solution-
complete, but for which a complete algorithm, an algorithm
guaranteed to return a solution if it exists and report failure
otherwise, exists (Brost and Goldberg 1994). Characterizing
problems in this manner and developing complete algorithms
to solve them enables us to identify and guarantee capabilities
of our robot systems.
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3. The Planar Pose Problem

Given a polygonal object on a horizontal table at a known
start position and orientation (the start pose), we are to find
a pushing plan to move it to a specified goal position and
orientation (the goal pose). We call this the planar pose
problem. The pushing actions are executed by means of a
fence, a flat edge used as a pusher. The pose is described by
the orientation of the object and the position of the center of
mass of the object. The start and goal poses may be arbitrary.

3.1. Outline of the Approach

To make the analysis tractable, we partially decouple the
problems of orienting and positioning the object. We first
consider the required change in orientation and select a se-
quence of intermediate orientations, achieved by using reori-
ent pushes to rotate the object. The intermediate orientations
depend on whether the rotation is clockwise or counterclock-
wise and are selected based on an analysis of the mechanics
of pushing an object with a fence. The reorient pushes do
not usually combine to move the object to the goal position,
so we need a set of translation pushes to translate the object
without changing its orientation. These pushes can occur at
the start, intermediate, and goal orientations of the object.
The reorient and translation pushes produce a net translation
of the object; the lengths of the pushes are chosen so this
translation is equal to the desired translation from the start
position to the goal position. Thus, the plans generated by the
pose planner consist of a sequence of reorient and translation
pushes to accomplish the required pose transformation. An
example plan is depicted in Figure 2.
We make the following assumptions for our analysis:

1. The object geometry and the location of its center of
mass (COM) are known. The center of mass is in the
interior of the object.

2. All objects are polygons. Nonconvex polygons are
equivalent to their convex hulls.

3. All motions are in the horizontal plane, which is as-
sumed infinite in extent and obstacle free.

4. The fence is of sufficient length that the object does not
contact the ends of the fence during pushes, and the
object does not roll off it.

. The fence is position controlled.

6. All motions are quasi-static. That is, inertial forces are
assumed negligible compared to frictional and applied
forces.

7. Coulomb’s law of friction describes all frictional
interactions.

8. Thereis noslip between the object and the fence. Lynch
and Mason (1995a) have shown that slip can occur even
with an infinite coefficient of friction. For the normal

Lh

linear pushes used here, however, the no-slip assump-
tion is consistent with an infinite coefficient of friction
at the contact,

9. Support friction is uniform over the plane, and all sup-
port points lie inside the convex hull of the object.

4. The Mechanics of Pushing

As a first step, it is necessary to understand the motion of
a pushed object. We outline the different classes of pushes
and the types of object motions that can result. We use the
class of linear normal pushes, which can effect translations
and known rotations of the object. For this class of pushes,
we determine the translational and rotational motions that
an object can undergo without introducing uncertainty in its
pose.

4.1. Types of Pushes

The pusher motion and the contact conditions between the
object and the pusher influence the motion of the pushed
object. We identify the following classes of pusher motions:

1. Linear pushes: The pusher moves with a fixed orien-
tation along a straight line in a specified direction for a
specified distance. The result of a linear push depends
on the angle between the fence and the object, the dis-
tance the fence moves in contact with the object, and
the direction of the push relative to the fence.

2. Rotational pushes: The pusher rotates about a point, its
center of rotation, through a specified angle. The result
of the rotational push deperids on the angle between the
fence and the object, the rotation angle, and the center
of rotation. A linear push may be viewed as a rotational
push with the center of rotation at infinity.

Given a pusher motion, we identify the following classes
of object motions relative to the pusher:

1. No relative motion between the object and the pusher:
Here, there is no slip or rolling at the contacts between
the pusher and the object, so the object has the same
motion as the pusher. This class of motions occurs
during the translation pushes defined in Section 4.2 and
the stable rotational pushes of Lynch (1992).

2. Known relative motion between the object and pusher:
When the pressure distribution is known, the object
motion can be predicted. The pressure distribution is
usually unknown, however, and the instantaneous rel-
ative motion between the object and the pusher cannot
be determined. In such cases, it is sometimes possible
to determine the net relative motion. An example is the
reorient push described in Section 4.2.



/A.

Akella, Mason / POSING POLYGONAL OBJECTS

start pose is (0.0 0.0 0.0)
goal pose is (100.0 40.0 70.0)
plan type is CCW

push distance is 125.09

75

— o N\

——————

70

Fig. 2. An example pose plan for a triangle. The poses are numbered in sequence; the zeroth and fourth poses are the start and
goal poses, respectively. The first and third poses are achieved by translation pushes, whereas the second and fourth poses
are achieved by reorient pushes. The bold lines represent the fence. A pose is indicated by (orientation, COM-x, COM-y).

3. Unknown relative motion between the object and
pusher: This occurs when the support pressure distri-
bution is unknown and there are insufficient constraints
on the motion of the object. The incomplete pushes de-
scribed in Section 4.2 belong to this category.

4.2. Linear Normal Pushes

The class of push actions selected for our task influences
the type and scope of the generated solutions. We use lin-
ear normal pushes, where the fence moves in a straight line
normal to its face with a fixed orientation for a specified dis-
tance. Given the object’s orientation, the orientation of the
fence and the length of the push are then sufficient to de-
scribe a push. When a fence lined up parallel to an object
edge executes a push, the object edge either remains aligned
with the fence or rotates away. If the edge remains aligned
with the fence, it is a stable edge. If it rotates away, it is
an unstable edge. The location of the center of mass de-
termines if an edge is stable or unstable; an edge is stable
if the perpendicular projection of the center of mass to the
edge lies in its interior. We permit pushes only on stable
edges to ensure that once an edge is aligned with the fence,

it does not rotate away. Linear normal pushes with a fence
along a stable edge of an object can be classified as follows
(Fig. 3):

1. Translation push: The fence and object edge are always
parallel, and there is no change in the orientation of the
object as the fence translates.

2. Reorient push: The push begins with an initial angle
between the fence and object edge, and the object ro-
tates so the edge is aligned with the fence by the end
of the push. This push reorients the object to a known
orientation. We refer to the minimum push distance
guaranteed to align the object edge with the fence for a
given initial angle as the Peshkin distance for that re-
orientation. We compute this distance from the results
of Peshkin and Sanderson (1988b) in Appendix A.

3. Incomplete push: The push begins with an initial angle
between the fence and object edge, but unlike the reori-
ent push, the object does not rotate sufficiently for the
edge to be aligned with the fence by the end of the push.
So, the final orientation of the object is not known.

To avoid uncertainty in the object orientation, we use only
translation pushes and reorient pushes.
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Fig. 3. Linear normal pushes. (a) Translation push. (b) Reorient push. (c) Incomplete push. The center of mass is indicated

by the dot.

4.3. Object Classification

The ease with which an object can be posed by linear normal
pushes depends on the ease with which the object can be
translated in a given orientation. A relevant question is: Can
an object be translated to any point in the plane without being
rotated?

The translation image of an object at a given pose is the
region of positions to which the object can be translated with-
out a change in orientation. To reach the goal pose, the object
should attain the goal orientation at a position whose transla-
tion image includes the goal position. The translation image
is defined by the convex cone of the inward normals to the
stable edges at the center of mass. It leads to the following
classification of polygonal objects subject to linear normal
pushes:

1. Unistables: These are objects with only one stable
edge, and hence their translation image is a ray ex-
tending to infinity in one direction from their center of
mass.

2. Biplus-stables: These objects have more than one sta-
ble edge such that the normals to the stable edges do not
positively span R?, the plane. The translation image of
a biplus-stable is a cone located at its center of mass.

3. Spanning-stables: These objects have at least three sta-
ble edges such that the normals to the stable edges pos-
itively span R2. Therefore, the translation image of
these objects is the entire plane.

The above classification is illustrated in Figure 4. Since
only the spanning-stables have a translation image that spans
the plane, unistables and biplus-stables cannot always be
translated between any two positions without a change in
orientation. Figure 5 illustrates this for a biplus-stable.

4.4. Stable Edges and the Angle-Eating Heuristic

To perform translation and reorient pushes on an object, we
need to determine the stable edges of the object. For each
stable edge, we have to find the largest angles between the
edge and the fence for clockwise (CW) and counterclock-
wise (CCW) rotations that guarantee the edge will rotate into
alignment with the fence during a reorient push. For linear
normal pushes, we follow Goldberg (1993) in obtaining this
information from the radius function of the object (Fig. 6).
The radius of a polygon is the perpendicular distance from
a reference point in the polygon to a supporting line. The
radius function r : ' — R! is a plot of the radius as the
supporting line is rotated. When the center of mass is the
reference point and the fence is the supporting line, the ra-
dius function indicates the stable edges of the object for a
linear normal push. Further, it gives the maximum angle,
for each rotation direction, between any stable edge and the
fence for which the edge will stably reorient onto the fence.
(The push-stability diagram developed by Brost (1988) gives
us the same information for the broader class of linear pushes.
In fact, we use the push-stability diagram in our implemen-
tation.) For a given rotation direction, the maximum reorient
angle for a stable edge is the maximum angle we permit be-
tween the fence and edge for a reorient (Fig. 6). To avoid
introducing uncertainty in object pose, we permit only pushes
involving stable edges and do not allow rolling from one edge
to another. The maximum reorient angle we use is therefore
always less than 90°. For each stable edge, we find the CW
and CCW maximum reorient angles permitted for CW and
CCW rotations. For a successful reorient push, we can pick
any angle less than the corresponding maximum reorient an-
gle. This step angle is the magnitude of the reorientation
achieved by each reorient push.
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(c)

Fig. 4. Examples of the three object classes with their translation images shown shaded. (a) Unistable. (b) Biplus-stable. (c)

Spanning-stable.
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Pose 1

Pose 2

Fig. 5. The triangle of Figure 4 can be translated from pose 1 to pose 2, since pose 2 lies in the translation image of pose 1.
However, the triangle cannot be translated from pose 2 to pose 1.

The angle-eating heuristic, used to generate reorient se-
quences, seeks to minimize the number of pushes. The
reorientation strategy requires that the object go through a
sequence of intermediate orientations to attain the goal ori-
entation. For each rotation direction, these intermediate ori-
entations depend on the magnitude of the corresponding step
angle. The heuristic assumes that the larger the step angle,
the smaller the number of pushes required to get the object
to the goal orientation and hence to the goal pose. The orien-
tation change is divided into an integer number of step angle
reorientations and, if necessary, a final smaller reorientation.
See Figure 7 for sample reorient sequences.

5. Determining the Pushes

A pushing plan to pose an object consists of a sequence of re-
orient and translation pushes. Once a stable edge to perform
reorient pushes on and a rotation direction are chosen, the

angle-eating heuristic provides a sequence of fence orienta-
tion angles that defines a corresponding sequence of reorient
push directions. To guarantee that the reorients proceed to
completion, the reorient pushes need to have a minimum
magnitude (the Peshkin distance). These magnitude con-
straints coupled with the push directions partially determine
the reorient pushes. At this stage, we need to select trans-
lation pushes and determine the magnitudes of the reorient
pushes to ensure that the object reaches the goal position in
the goal orientation.

5.1. The Pose Vector Equation

To determine the magnitudes of the pushes, we treat the
pushes as vectors in the plane. At a given orientation of
the object, translation pushes can occur only in the directions
of the inward unit normal vector to the stable edges. Let this
set of unit normal push vectors be denoted by {fi;;}, where
fi;; is the inward unit normal vector to the jth stable edge in
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R-d

Fig. 6. The radius function for the triangle, based on Goldberg (1993). (a) The radius r of an object at a fence orientation
¢ is the perpendicular distance from the center of mass to the fence. (b) The radius function is the plot of the object radius
as the fence orientation is varied. The orientation wraps around at 360°. The local minima of the radius function occur at
stable edges of the object. Kinks in the radius function occur at unstable edges of the object and are nonminima of the radius
function with a discontinuity in slope. This triangle is a biplus-stable because its radius function has only two minima. The
clockwise (CW) maximum reorient angle for an edge is the angle from its stable orientation to the nearest leftward local
maximum or kink orientation of the radius function. The counterclockwise (CCW) maximum reorient angle is measured
similarly in the rightward direction. The CW and CCW maximum reorient angles for edge e3 are shown.



cw

CCW Reorientation CW Reorientation

Fig. 7. Counterclockwise (CCW) and clockwise (CW) reori-
ent push sequences to rotate a triangle. The longest edge
of the triangle is the stable edge chosen for the reorient
pushes. The start and goal orientations are shown shaded.
The reorient pushes for each rotation direction are numbered
in sequence. At each orientation, the arrows on the fence
indicate the push direction to rotate the object to the next
orientation.
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start orientation goal orientation
(a)
cw cCcw

(b) (c)

Fig. 8. Push vector diagrams for a unistable. The edge closest
to the center of mass is the stable edge. (a) The start and goal
orientations. (b) Clockwise (CW) push vector diagram. (c)
Counterclockwise (CCW) push vector diagram.

the ith orientation. Let a;; represent the length of the push
along fi;;; it is nonnegative. Let the set of unit reorient push
vectors, for the stable edge on which the reorient pushes are
performed, be denoted by {,}, where p; is the unit vector
along the push direction to achieve the ith orientation. Let b;
be the length of the push along p;; the minimum magnitude
of b; is the Peshkin distance for the ith reorient.

The push vector diagram is a graphical representation of
the unit push vectors. For a given reorient sequence, it is
formed from the union of the p; vectors of the chosen stable
edge and the f;; vectors of all stable edges at all orientations
in the sequence. See Figure 8 for examples.

We have assumed that the object does not slip relative to
the fence. So during a reorient push, the object rotates about
its fixed contact point with the fence as the fence translates.
As the object rotates, its center of mass moves relative to
the fence. The center of mass vector ¢; describes this rel-
ative motion and is determined from the (i — 1)th and ith
orientations. Thus, the motion of the center of mass due to a
reorient push is described by the combination of the reorient
push vector b;p; and the center of mass vector ¢;.

The magnitudes of the push vectors, the a;; and b; terms,
are to be determined so that all the vectors combine to ob-
tain the translation vector T, which is the vector from the
start center of mass position to the goal center of mass posi-
tion. The equation relating all the relevant vectors is the pose
vector equation

T T

r
Zzaijﬁij + Zb;f}@ + ZE" =T,
i=1

i=0 j€S i=1
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where r is the number of reorients required to reach the goal
orientation and S is the set of stable edges of the object.

A solution to this equation is to be found that satisfies the
nonnegativity constraints

aij 20 fori=0,...,r and j € S
and the Peshkin constraints
b; >m; fori=1,...,1,

where m; is the Peshkin distance for the ith reorientation (see
Appendix A for details).

5.2. A Linear Programming Solution

The magnitudes of the push vectors, the a;; and b; terms, can
be determined efficiently by developing a linear program-
ming (LP) formulation. (See the text by Chvital (1983) for
an introduction to linear programming.) Once a reorienta-
tion sequence is chosen, the ¢; vectors are determined, and
the pose vector equation reduces to

Z Zauntjr + z:bm1 =

i=0 jES

»
where T/ = T — Zé}.
i=1

From the dot product of this vector equation with the unit
vectors along and perpendicular to T, t', and ', , respec-
tively, we obtain two scalar equations linear in a;; and b;. In
addition, we have a set of magnitude constraints linear in a;;
and bi-

We minimize the total push distance, which is the sum of
the a;; and b; terms. So the LP formulation of the problem

is
Minimize Z Z aij + Z b;

i=0 jES

subject to
Zza,y(mjr t)+Zb(p, ) =1
i=0 jES
ZZG"J(H‘J tJ.)'l"Zb(pt —
i=0 jES
a;; >0 fori=0,...,r andj €S
bi>m; fori=1,...,7.

A solution to the above LP problem is a feasible pose plan
and provides a push sequence that minimizes the push dis-
tance for the chosen set of intermediate orientations.

We can in fact minimize any linear function of the push dis-
tance and the number of pushes using a linear mixed-integer
programming (MIP) formulation. See Appendix B for the
MIP formulation that minimizes the plan execution time and
an example plan.

5.3. Existence of Solutions

An object can be posed arbitrarily if there exists a sequence
of translation and reorient pushes that satisfies the pose vec-
tor equation without violating the nonnegativity and Peshkin
constraints. We now answer the question: Does a set of
pushes that can move an arbitrary object from an arbitrary
start pose to an arbitrary goal pose always exist?

The pose vector equation can be transformed to

Z Z a‘ljnlj + Z epi =

i=0 jES

S
T ]

where b; = m; + €; such thate; > 0 fori=1,...
T T
- Y- S
i=1 i=1

When this equation is satisfied by nonnegative values of
the a;; and e; terms, the corresponding pose vector equation
and nonnegativity and Peshkin constraints are satisfied. This

equation is satisfied for any value of T" if the unit push vector
sets {i;;} and {p,} positively span R?. The requirements
for a set of unit push vectors to positively span the plane are
obtained from the following theorem in Davis (1954): A set
of vectors {aj, .. a,,} positively spans R™ if and only if, for
every nonzero vector b, there exists an i € {1,...,7} such
thatb - a; > 0.

The unit push vectors positively span R? if they are orien-
ted in the push vector diagram such that for any vector in
the plane, at least one of them forms an acute angle with it.
The push vectors are chosen using the angle-eating heuristic
with a step angle that is always less than 90°. By the above
theorem, when the push vectors in the push vector diagram
sweep out an angle greater than 180°, they positively span the
plane. The angle swept out by the push vectors depends on
the required object rotation in the chosen rotation direction.
There are two cases to consider:

,r and

1. The reorientation is greater than or less than 180°:
Since an object can be reoriented by rotating in either
the CW or CCW direction, the orientation change in
one of the rotation directions is always greater than
180°, and the corresponding set of unit push vectors
positively spans the plane.

2. The reorientation is 180°; Here, the CW and CCW
reorientations are both 180°, and we examine the con-
ditions for each object class to ensure that the push
vectors do positively span the plane.



« Spanning-stables: Since the normals to the edges
{fy; } positively span R?, the pose vector equation
is always satisfied.

* Biplus-stables: Since the normal vectors of a biplus-
stable form a cone, when the desired reorientation
is exactly 180°, the unit push vector sets generated
for the CW and CCW reorientations both positively
span the plane.

« Unistables: For unistables, fi;; = P, (subscript s
refers to the single stable edge), and the pose vector
equation can be replaced by

T ™
agshios + D _(ais + bBs + Y & =T

i=l 1=1

The above vector equation is equivalent to

-
agships + Z(ais +e)p =T,

i=1

T T
where T =T — ZE,- - Zmil‘ai.
i=1 i=l1

A singularity occurs when the reorientation is 180°. Since
neither the CW nor CCW unit push vectors positively span
the plane, a solution may not exist. By making an additional
reorient push in the rotation direction opposite to the remain-
ing reorient pushes, we obtain a set of unit push vectors that
positively span the plane and guarantee existence of a feasible
solution. See Figure 9 for an example.

We have thus shown that a set of unit push vectors that
positively span the plane and satisfy the pose vector equation
always exist. (Note that by rotating an object through an
additional 360°, we can trivially guarantee a set of pushes that
positively span the plane.) A sequence of pushes to move any
polygon from any start pose to any goal pose always exists,
and the set of linear normal pushes is complete.

6. The Pose Planner

The pose planner must generate a set of pushes that move an
arbitrary object from an arbitrary start pose to an arbitrary
goal pose. The planner attempts to generate plans involving
CW rotation of the object; CCW rotation of the object; and,
when the start and goal orientations are identical, no rotation
of the object. These are the CW, CCW, and translation pose
plans, respectively. These plans involve CW reorient pushes
and translation pushes, CCW reorient pushes and translation
pushes, and only translation pushes, respectively. For a CW
or CCW plan, the intermediate orientations selected using the
angle-eating heuristic determine the reorient and translation
push directions. This information is used to set up the corre-
sponding linear programming problem, which is then solved;
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Fig. 9. A singularity case. (a) Start and goal orientations 180°
apart. (b) Clockwise (CW) and counterclockwise (CCW)
push vector diagrams: the push vectors do not positively
span the plane. (c) CW and CCW push vector diagrams: the
push vectors augmented by an additional reorient push in the
opposite rotation direction positively span the plane.

each feasible solution is a valid plan. The planner attempts to
generate CW and CCW pose plans for each stable edge. The
plan with the lowest value of the objective function among
all the feasible plans is selected as the best pose plan. The
organization of the planner is depicted in Figure 10.

When the required reorientation is 180° and the object is
a unistable, sometimes neither the CW nor CCW plan is fea-
sible. When such a singularity occurs, the planner uses the
CW and CCW singularity handlers to generate modified CW
and CCW reorient sequences. A modified reorient sequence
consists of the usual reorient sequence preceded by a reori-
entation in the opposite direction. The amount of rotation
in the opposite direction is chosen to be the minimum of
the CW and CCW step angles for the stable pushing edge.
So, a CW singularity plan consists of a CCW reorient push
preceding a sequence of CW reorient pushes, and similarly
for the CCW singularity plan. Since these pushes positively
span the plane, there is a guaranteed solution for each main
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Fig. 10. A flowchart describing the organization of the pose planner. Given an object description and the start and goal poses,

it outputs the best plan as defined by the objective function.

rotation direction and the better one is selected. An example
singularity plan is shown in Figure 11.

6.1. Planner Completeness

We now show that the pose planner is complete; that is, that
it can find a pose plan for an arbitrary pose problem for an
arbitrary polygonal object. A proof of completeness is equiv-
alent to a proof that for each object class, at least one sequence
of translation and reorient pushes generated by the planner
will satisfy the pose vector equation and the nonnegativity
and Peshkin constraints. That is, the planner is complete if
for each object class it generates at least one set of pushes
whose unit vectors positively span the plane. As shown in
Section 5.3, when the required reorientation is not 180°, the
unit push vectors generated using the angle-eating heuris-
tic positively span the plane in at least one of the reorient
directions. When the reorientation is 180°, the unit push vec-
tors for spanning-stables and biplus-stables positively span

the plane. For unistables, the singularity handler guarantees
two sets of unit vectors that positively span the plane when
required for a 180° reorientation. So, the pose planner is
complete.

6.2. Planner Complexity

The planner has polynomial time complexity. For an object
with n edges, the maximum reorient angles can be computed
in O(n) time. The LP formulation has s(r + 1) 4+ r variables,
two equality constraints, and s(r + 1) + r push magnitude
constraints, where s is the number of stable edges and r is
the number of reorients. This LP problem can be solved by
the simplex method in O(s*r3) time. The planner solves an
LP problem for each stable edge for each rotation direction.
There are O(s) such LP problems to be solved, and their
solutions can be compared in O(s) time. If the maximum
number of reorients is Ty, the total running time of the
planner is O(s*r32..).
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Fig. 11. A plan to handle a unistable singularity case.

7. Implementation and Experiments

The pose planner was implemented in Common Lisp. The
inputs to the planner are the start and goal poses, and a geo-
metric description of the object, in terms of its vertices and
center of mass. It uses the code to generate the push-stability
diagram described by Brost (1988) and a commercial lin-
ear programming package, LINDO (Schrage 1981). The
planner takes between 1 and 12 seconds on a SPARCsta-
tion IPX to find the best plan for the example objects in this
paper.

When executing reorient pushes, using a step angle close
to the maximum reorient angle can result in large Peshkin
distances and, sometimes, failure of the reorient push due to
orientation errors; a reorient push is a failure when it does not
result in the stable edge lining up with the fence. To avoid
this, we choose the step angle to be less than the maximum
reorient angle by a margin angle. We also use a push offset,
which is the offset distance of the fence from the object at the
start of a push. We use a margin angle of 7° and a push offset
of 30 mm to handle bounded uncertainty in the orientation
and position of the object. The calculated Peshkin distances
were sometimes observed to be insufficient to achieve reori-
entation, possibly due to inexact estimates of the center of

20

mass location. They were therefore multiplied by a safety
factor of 1.15.

With the above values of the margin angle and push offset,
six plans were executed on a Puma 560 robot for more than
80 trials. The Puma, with a fence attached to its end effector,
executes pushing actions on a horizontal table. The fence is
a piece of delrin coated with high friction sandpaper. Objects
belonging to the three classes, including those in Figure 4,
were constructed of delrin. They were made fairly small,
about 15 to 30 mm in diameter, for the plans to be inside the
Puma workspace. The plans always succeeded in bringing
the object to the goal orientation. However, position errors of
2 to 3 mm over a translation distance of 150 to 200 mm were
observed. These position errors were sometimes as large
as S mm. The observed errors were a result of slip during
reorients, motion of the object along the fence due to robot
vibration, and the positioning inaccuracy of the Puma.

8. Conclusion

In this paper, we described the use of linear normal pushes
to position and orient objects in the plane. We introduced
a classification of polygonal objects subject to linear normal



84 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 1998

Fig. 12. Variables to calculate the Peshkin distance, based on
Peshkin and Sanderson (1988b).

pushes and used it to prove that the set of linear normal pushes
is complete for the planar pose problem. Using a linear pro-
gramming formulation, we have implemented a polynomial-
time planner for this problem and proved its completeness.
Sample plans executed by a robot demonstrate the feasibility
of this method.

An important aspect of our approach is the use of a com-
pact set of actions for the task coupled with an efficient search
mechanism. An alternative approach is to use a more ex-
tensive set of actions, such as nonnormal linear pushes, or
rotational pushes as in Lynch and Mason (1995b). The se-
lection of an action set should depend on the task domain; an
environment with a mobile robot equipped to turn on the spot
and move in straight lines is conducive to the use of linear
pushes, whereas one with a carlike mobile robot is conducive
to the use of rotational pushes.

The major directions for future work are to increase the ro-
bustness of the plans to uncertainty and to extend the scope of
the planner. To generate robust plans, it is important to model
uncertainty in the initial pose of the object and in the pushing
actions. Plans using the actions described here are sensitive
to uncertainty, since a single push can eliminate rotational
uncertainty, but not pose uncertainty, of an object. A combi-
nation of pushes and grasps with a parallel-jaw gripper, the
use of a specially shaped fence (Brost 1992), or a sequence of
centering operations (Mottaez and Goldberg 1993) are ways

to reduce the pose uncertainty of the object. We have made
the analysis tractable by separating object orientation from
object position to the extent possible. When treating pose
uncertainty, it may be necessary to consider the orientation
and position together. Determining if “nearby” start poses
behave similarly to a given plan could be useful in obtaining
bounds on the permissible pose uncertainty for the plan.

When generating each plan, our planner selects a single
stable edge to perform reorient pushes on and uses the angle-
eating heuristic to select intermediate orientations. The best
plan found with these conditions is not guaranteed to be glob-
ally optimal. For global optimality, we would have to extend
our formulation in two directions. First, we must allow the
intermediate orientations to be variables whose values are
determined during the optimization process. This changes
some of the linear constraints to nonlinear constraints. Sec-
ond, we must permit reorient pushes to be performed on any
of the stable edges of the object during a plan. This increases
the search space, since the planner has to enumerate all pos-
sible sequences of edges to perform reorient pushes on.

An important issue is to see if plans can be generated in the
presence of obstacles. Since the linear programming formu-
lation can have multiple solutions, we can look for solutions
that do not violate the obstacle constraints. Enlarging the set
of actions to include nonnormal linear pushes may make it
possible to find plans in the presence of obstacles.

It would be interesting to consider extensions of our
method to handle more general object shapes and to deter-
mine if multiple objects can be posed simultaneously.

Appendix A: The Peshkin Distance

The minimum distance a fence must translate in contact with
an object to ensure that an edge of the object rotates into align-
ment with the fence is determined by Peshkin and Sanderson
(1988b). Since we assume that there is no slip between the
object and the fence, this distance corresponds to the center
of rotation of the object consistent with sticking that causes
the slowest rotation. Assuming sticking-slowest behavior,
the Peshkin distance m; for the ith reorientation is

_at+ | 1 — cos B
™= (n‘l + cos fBip
where a is the radius of the smallest circle centered at the
center of mass that circumscribes the object, ¢ is the distance
from the center of mass to the point of contact, and S is the
angle between the line of motion and the line from the point
of contact to the center of mass. (3; and §;, are the initial
and final values of § at the ith reorientation (see Fig. 12).

1 — cos (B
1 + cos (3

Appendix B: Minimizing Plan Execution Time

We have also developed a linear mixed-integer programming
(MIP) formulation to minimize any linear function of the push
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Fig. 13. A plan that minimizes the execution time. The push setup time ky, is 3 secs, and for a fence speed of 40 mm/sec, kg

is 0.025 secs/mm.

distance and the number of pushes, and have implemented
this formulation in our planner. (See Nemhauser and Wolsey
(1988) for an introduction to integer programming.) The
MIP formulation shares the completeness property of the LP
formulation.

We illustrate the MIP formulation by minimizing the time
taken to execute a plan. Let the time taken to push a unit
distance be kg and the setup time for each push be k,. The
total number of pushes is the sum of the number of nonzero
translation pushes and the number of reorient pushes. So, the
MIP formulation to minimize the execution time of a plan can
be written as

T

Minimize kq Z Z aij + i bi | +kp

r

I

i=0 jES i=1 i=0 jES
subject to

T T
Z Z ai;(fii )+ Z bi(pi - t)=T"

i=0 jes i=1

T T
> > ailhy - 1) + > bipi- 1) =0
i=0 jeS i=1

aij >0 fori=0,...,r andj€S

b;>m; fori=1,...,7

Maij > a;; fori=0,...,r andj€S
Maij > a;j fori=0,...,7 andj €S
o €{0,1} fori=0,...,r andj€S,

where the o, j terms are binary variables for the corresponding
translation pushes and M is a large positive number. The
resulting plans minimize the time taken to execute a plan.
Figure 13 depicts a plan that minimizes the execution time
for the same start and goal poses as in Figure 1.

Using the MIP formulation, the planner can also generate
plans that minimize the number of pushes; a second attribute
such as the push distance is sometimes necessary to select
the best plan. We can show that no more than two translation
pushes are required in any plan that minimizes the number
of pushes, the push distance, or a nonnegative linear combi-
nation of the number of pushes and the push distance. This
property leads to a polynomial-time algorithm to generate
such plans,
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