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Abstract

This paper studies the use of pushing actions with
a fence to orient and translate objects in the plane. It
describes a planner which is guaranteed to construct a
sequence of pushing actions to move any polygonal ob-
ject from any initial configuration to any final configu-
ration. This planner, which utilizes an analysis of the
mechanics of pushing an object, generates open-loop
plans which do not require feedback sensing. These
plans are guaranteed to succeed provided certain phys-
ical assumptions are met. We present resulls of ezper-
iments conducted to demonstrate the generated plans.

1 Introduction

The manipulation of objects restricted to motions
in the plane is important in cases where the object
cannot be grasped or it is more efficient to move the
object in the plane. An example is planar parts trans-
fer, where parts are to be moved from one position to
another in the plane, often with a change in orienta-
tion.

In this paper, we develop a method to find open-
loop plans, which do not require sensory feedback, to
move a polygonal object from a known initial position
and orientation to a goal position and orientation using
linear pushing actions with a fence. We have imple-
mented the method in a Pose Planner, and proven it
complete; it is guaranteed to generate open-loop plans
to move an arbitrary convex polygon from an arbitrary
start position and orientation to an arbitrary goal posi-
tion and orientation. We further describe experiments
conducted to test the generated plans. Henceforth we
refer to the combined position and orientation of the
object as the pose of the object.

1.1 Related Work

Although the problem of simultaneously orienting
and positioning an object has not been treated, there
has been work on various aspects of orienting and
positioning objects in the plane; see [Balorda, 1990,
Mani and Wilson, 1985, Peshkin and Sanderson,
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1988a). [Mason, 1986] derived rules for the qualitative
behavior of an object when subject to pushing actions.
[Brost, 1988] utilized these results to develop an anal-
ysis of grasping actions with a parallel-jaw gripper. As
an intermediate result, he analyzed the possible mo-
tions of an object being pushed by a fence to obtain
the Push Stability Diagram. [Mani and Wilson, 1985]
independently used Mason’s rules to derive an Edge
Stability Map, which was used to develop a planner
to orient polygonal objects. [Peshkin and Sanderson,
1988b] contains bounds on the rate of rotation of an
object being pushed, and the locus of the possible cen-
ters of rotation of the object. These are used to calcu-
late the push distance guaranteed to orient an object.
[Goldberg and Mason, 1990] simplified Brost’s model
for grasping by using only pushes normal to the face
of the gripper.

2 The Problem

Given a polygonal object on a horizontal table at a
known initial position and orientation (the start pose),
we are to find a pushing plan to move it to a specified
goal position and orientation (the goal pose). We call
this the Planar Pose Problem. The pushing actions
are executed by means of a fence, a flat edge used as
a pusher. The pose is described by the orientation of
the el-edge, and position of the center of mass of the
object. The start and goal poses may be arbitrary.

2.1 Outline of the Approach

To make the analysis tractable, we partially decou-
ple the problem of achieving the desired orientation
from that of achieving the desired position. We first
consider the required change in orientation, and select
a sequence of intermediate orientations, achieved by
using Reorientation pushes. The intermediate orien-
tations are selected based on an analysis of the me-
chanics of pushing an object with a fence. The re-
orientation pushes do not usually combine to move
the object to the goal position. So we need a set of
Translation pushes that can translate the object with-
out changing its orientation. These can occur at the
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Figure 1: An example pose plan for a triangle. The
zeroth and fourth poses are the start and goal poses
respectively. The straight edges represent the fence.

initial, intermediate, and final orientations of the ob-
ject. The lengths of the reorientation and translation
pushes are determined so the net translation of the
object is equal to the translation from the start posi-
tion to the goal position. Thus the plans generated by
the Pose Planner consist of a sequence of reorientation
and translation pushes to be executed by the fence to
achieve the required pose transformation. An example
plan is depicted in Figure 1.

For our analysis to be valid, we assume:

1. Knowledge of the object’s geometry and the loca-
tion of its center of mass.

. All objects are convex polygons. Non-convex
polygons are equivalent to their convex hulls.

. All motions are in the horizontal plane, which is
assumed infinite in extent.

. The fence is of sufficient length that the object
does not roll off it.

. All motions are quasi-static. That is, inertial
forces are assumed negligible compared to fric-
tional and applied forces.

. Coulomb’s law of friction describes all frictional
interactions.

. There is no slip between the object and the fence.

. Support friction has a uniform friction coefficient.
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We make no assumptions about the distribution of
contact forces between the object and support plane.

3 The Mechanics of Pushing

3.1 Pushing Actions

Of the possible types of pushing actions, we restrict
ourselves to linear pushing actions, where the fence
starts moving from a point, with a specific orientation,
in a constant direction for a specified distance. The
result of a linear push depends on the angle between
the fence and contact edge of the object, the distance
the fence moves in contact with the object, and the
direction of the push relative to the fence. Here we
consider only pushes that are normal, or perpendicu-
lar, to the fence. Given the object’s orientation, the
orientation of the fence and the length of the push are
then sufficient to describe a push.

3.2 The relation between pushing actions
and polygon edges

When a fence lined up along a polygon edge exe-
cutes a push, the polygon edge will either remain lined
up with the fence or will rotate away. If the edge re-
mains lined up with the fence, it is called a Stable edge.
If it rotates away, it is an Unstable edge. To avoid un-
certainty in the orientation of the object, the planner
chooses pushes on only stable edges. Pushes with a
fence along a stable edge of an object can be classified
as follows (see Figure 2):

1. Translational push: The fence and object edge are
always parallel and there is no change in the ori-
entation of the object as the fence translates.

. Complete Reorientation push: The push begins
with an initial relative angle between the fence
and object edge. By the end of the push, the ob-
ject edge lines up with the fence. This results in a
known change in object orientation. We refer to
the minimum push distance guaranteed to align
the object edge with the fence for a given relative
angle as the Peshkin distance for that reorienta-
tion; it is obtained from [Peshkin and Sanderson,
1988b].

. Incomplete Reorientation push: Here, unlike the
complete reorientation push, the object edge does
not line up with the fence by the end of the push.
So the final orientation of the object is not known.



Figure 2: The different types of pushes (a) Transla-
tion push (b) Complete Reorient push {c) Incomplete
Reorient push.

To avoid uncertainty in the object orientation, the
planner uses only Complete reorientation pushes, here-
after referred to as reorient or reorientation pushes,
and Translation pushes.

3.3 Object Classification

If the object is in the goal orientation, but not at the
goal pose, it has to be translated to the goal position.
So it is necessary that the goal orientation be attained
in the translation preimage of the object at the goal
pose, defined as the region from which the object can
be translated to the goal pose without a change in
orientation. The translation preimage, located at the
center of mass, is obtained by finding the convex cone
of the outward normals to the stable edges. It leads to
the following classification of polygonal objects subject
to pushing actions (see Figure 3):

1. Uni-stables: These are objects with only one
stable edge, and hence their translation preimage
is a ray extending to infinity in one direction from
their center of mass.

. Biplus-stables: These objects have more than
one stable edge such that the normals to the stable
edges do not span %2, the plane. The translation
preimage of a biplus-stable is a cone centered at
its center of mass.

. Nice-stables: These objects have at least three
stable edges such that the normals to the stable
edges span R2. Therefore the translation preim-
age of these objects is the entire plane.

This analysis implies that uni-stables and biplus-
stables cannot always be translated between any two
positions without a change in orientation. (See Fig-
ure 4 for an example.)
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Figure 3: Examples of the three object types with
their translation preimages shown shaded. (a) Uni-
stable (b) Biplus-stable (c) Nice-stable.

3.4 Stable edges and the Angle-eating
heuristic

We can derive the Push Stability Diagram (PSD) for
a convex polygonal object [Brost, 1988]. The PSD in-
dicates the stable edges of the polygon, and gives, for a
particular rotation direction, the maximum angle be-
tween a stable edge and the fence for which the edge
can be stably reoriented onto the fence. Since we per-
mit only pushes involving stable edges, the mazimum
reorient angle (defined in Figure 6) is the maximum
allowable angle between the fence and edge. Thus, for
each stable edge, we find the maximum reorient angles
permitted for Clockwise (CW) and Counterclockwise
(CCW) rotations. The maximum reorient angle is al-
ways less than 90 degrees.

Using the maximum reorient angle can result in
large Peshkin distances and sometimes, failure of the
reorient push; a reorient push is a failure when it does
not result in the stable edge lining up with the fence.
To avoid this, we use the maximum reorient angle less
a margin angle, which provides a safety margin. This
is the magnitude of the reorientation achieved by each
reorient push, and is called the step-angle. The step-
angle is also always less than 90 degrees.

The Angle-eating heuristic, used to generate reori-
ent sequences, seeks to minimize the number of pushes.
The reorientation strategy requires that the object go
through a sequence of intermediate orientations to at-

A A
Pose 1 Pose 2
Figure 4: The triangle can be translated from pose 1

to pose 2 since pose 1 lies in its translation preimage
at pose 2. The converse is not true.
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Figure 5: The notation used in the Push Stability
Diagram.
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Figure 6: The Push Stability Diagram for the trian-
gle. The horizontal axis and vertical axis represent the
pushing direction and polygon el-edge orientation rel-
ative to the fence pushing surface. For normal pushes,
the points of interest are on the dotted vertical line
at 90 degrees. The figure wraps around vertically at
0/360 degrees. Convergent lines, which correspond to
stable edges, are indicated by double bold lines. Diver-
gent lines are represented by single bold lines. Since
this PSD has only two distinct convergent lines, the
triangle is a Biplus-stable. CW rotations correspond
to moving downwards along the diagram, and CCW
rotations correspond to moving upwards. The maz-
imum CW reorient angle for a given stable edge is
found by moving downwards along the PSD to the
edge from the nearest divergent line or (stable or un-
stable) edge. The mazimum CCW reorient angle is
found similarly by moving upwards. The CW and
CCW reorient angles for edge e3 are indicated. From
[Brost, 1988].
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tain the goal orientation. These intermediate orienta-
tions depend on the magnitude of the step-angle. The
heuristic assumes that the larger the step-angle, the
fewer the pushes required to get the object to the goal
orientation, and hence to the goal pose. To obtain the
largest step-angle, we perform reorient pushes on the
stable edge which permits the largest maximum re-
orient angle for the chosen direction sense. Then the
orientation change is divided into an integer number
of step-angle reorientations, and if necessary, a final
smaller reorientation.

4 Determining the pushes

A pushing plan to pose an object consists of a
sequence of Reorient and Translation pushes. The
Angle-eating heuristic provides a sequence of fence ori-
entation angles, which define a corresponding sequence
of reorient push directions. For the the reorientations
to be complete, the pushes need to have a minimum
magnitude (the Peshkin distance). These constraints
coupled with the push directions partially determine
the reorient pushes. At this stage, we need to select
translation pushes and determine the magnitudes of
the reorient pushes to ensure that the object reaches
the goal position in the desired goal orientation.

4.1 The Pose vector equation

To determine the magnitudes of the pushes, we
treat them as vectors in the plane. At a given ori-
entation of the object, translation pushes can occur
only in the directions of the unit normals into the sta-
ble edges. Let this set of unit normal push vectors be
denoted by {#;;}, where the subscripts refer to the ith
orientation and jth stable edge. Let a;; represent the
length of the push along the normal #;;; magnitude
a;; is non-negative. Let the set of unit reorient push
vectors be denoted by {p;}, and let b; be the length of
the push along p;. The minimum magnitude of b; is
the Peshkin distance for the ith reorientation.

The push vector diagram is a graphical representa-
tion of the unit push vectors. It is defined, for a given
reorient sequence, as the union of the p; vectors of the
chosen stable edge and the #;; vectors of all stable
edges at all orientations in the sequence. See Figure 8
for examples.

We have assumed that the object does not slide
relative to the fence. So during a reorient push, the
object rotates about a fixed point on the fence as the
fence translates. As the object rotates, its center of
mass moves relative to the fence. The Center of Mass
vector ¢; describes this relative motion, and for a given
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Figure 7: Illustrating two sequences to reorient an
object. The arrows indicate the reorient push direc-
tions. (a) Start orientation (b) Goal orientation (c)
Net change in orientation for CCW and CW rotations
(d) CCW Reorient push sequence (¢) CW Reorient
push sequence.

initial and final orientation is determined by the geom-
etry.

The magnitudes of the push vectors, {a;;} and {5;},
are to be determined so that all the vectors combine
to obtain the Translation vector T, which is the vec-
tor from the start center of mass position to the goal
center of mass position. The equation relating all the
relevant vectors is the Pose vector equation

Yico Ljes Gijfii + S bibi+ T G =T

where ris the number of reorientations required to
reach the goal orientation and S is the set of stable
edges of the object.

A solution to this equation is to be found which
satisfies the Non-negativity constraints

ai; >0, ¥i=0,...,r, VjES

and the Peshkin constraints

b >m;,Vi=1,...,r

where m; is the Peshkin distance for the éth reori-
entation.

The next section describes a method to determine
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Figure 8: (a) The start and goal orientations. (b)
CW push vector diagram. (¢) CCW push vector dia-
gram.

the magnitude terms a;; and b; of the corresponding
vectors fi;; and P;.

4.2 A Linear Programming solution

The magnitudes of the push vectors can be deter-
mined in a simple and elegant manner by develop-
ing a Linear Programming (LP) formulation [Chvatal,
1983]. Once a reorientation sequence is chosen, the &
vectors are determined, and the Pose vector equation
can be written as the Modified Pose veclor equation

Tico Ljes Gishij + Xizy biti =T

where T = T — ¥21_, &.

We scalar-multiply this vector equation by the unit

vectors along and perpendicular to ’f“", t! and tperp
respectively, to obtain two scalar constraints. In addi-
tion, we have a set of magnitude constraints linear in
a;; and b;.

The particular push sequence obtained depends on
the optimizing criterion used. We minimize the total
push distance, which is the sum of the a;; and b; terms.
So the LP formulation of the problem is:

Minimize Y {_q Yjes @ij + Lz bi

such that

Troo Tjes aii(ig - 0) + Ticy bilpi - ) = T'
Yoo s 6 (Rij Pperp) + Liay bi(Bi - perp) = 0
a;j >0,Vi=0,...,m, VJES

b >my,Vi=1,...,r

A solution to the above LP problem minimizes the

push distance for the chosen set of intermediate orien-
tations and provides a feasible pose plan.



5 The Pose Planner

The Pose Planner looks for plans that involve only
translation pushes, CW reorient pushes and transla-
tion pushes, and CCW reorient pushes and translation
pushes. These are the Translation, CW, and CCW
pose plans respectively. The planner attempts to gen-
erate CW and CCW pose plans for each stable edge,
and a Translation pose plan when the start and goal
orientations are equal.: The “best” plan (having the
lowest value of the objective function) among all the
plans is chosen the pose plan. Infeasible solutions are
indicated by extremely large values of the objective
function.

Sometimes the above procedure does not yield a fea-
sible solution for Uni-stables. We refer to such a case
as a Singularity. When this occurs, the planner uses
the CW and CCW Singularity handlers to generate
modified CW and CCW reorient sequences. A mod-
ified reorient sequence consists of the usual reorient
sequence preceded by a reorientation in the opposite
direction. So the CW singularity plan consists of a
CCW reorient push preceding a sequence of CW re-
orient pushes; similarly for the CCW singularity plan.
This is guaranteed to result in a solution for each main
rotation direction, of which the better one is selected.

The planner can be recast to minimize the number
of pushes using a Mixed Integer Linear Programming
(MILP) formulation [Nemhauser, 1988]. The current
planner can be extended to find plans within a finite
rectangular surface. However, it is then not guaran-
teed to be complete. The planner can also be modified
to use different stable edges to perform reorient pushes
on, or to use combinations of CW, CCW, and Transla-
tion pushes, but this would increase the search space.

5.1 A Completeness Criterion

We wish to prove that the Pose Planner is com-
plete, that is, that it can find a pose plan for an arbi-
trary pose problem for an arbitrary polygon. A proof
of completeness is equivalent to a proof that for each
polygon type, at least one sequence of translation and
reorient pushes generated by the planner will satisfy
the Pose vector equation and the Non-negativity and
Peshkin constraints. Since pushes are uni-directional,
we can consider only positive linear combinations of
the unit push vectors, and need to show that at least
one set of unit push vectors positively spans the plane.
In [Davis, 1954] is a theorem we refer to as the Pos-
itie Spanning theorem: A set of vectors {dy,...,d,}
positively spans ®" if and only if, for every non-zero
vector b, there exists ani € 1,...,r, such that b-d; > 0.
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For each stable edge
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When there are no more stable
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Is this plan feasible?
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plan Py plan P
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Figure 9: An algorithmic description of the Pose
Planner. Given information on the polygon, and the
start and goal poses, it outputs the best plan, as de-
fined by the objective function.

If the unit push vectors are so arranged that at least
one of them forms an acute angle with any arbitrary
vector in the plane, they will positively span 2. Since
the step-angle is always less than 90 degrees, a reorien-
tation angle greater than 180 degrees guarantees that
the unit push vectors chosen by the planner satisfy
the conditions of the above theorem. See Appendix
for details.

6 Implementation and Experiments

The Pose Planner was implemented in Common
Lisp. The inputs to the planner are the start and
goal poses, and a geometric description of the object,
in terms of its vertices and center of mass. It utilizes
the code to generate the push stability information
described in [Brost, 1988] and a linear programming
package, LINDO [Schrage, 1981]. The planner takes
30 to 90 seconds on an IBM RT to find the best plan.

When generating and executing plans, we can vary
the margin angle, and the push offset, which is the dis-
tance the fence is offset from the polygon when start-
ing a push. These are useful in handling limited un-
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Figure 10: A plan generated to handle the Uni-stable
singularity case.

certainty in the orientation and position of the object.
We currently use a margin-angle of 7 degrees and a
push offset of 3 em. Since the calculated Peshkin dis-
tances were observed insufficient to achieve reorienta-
tion, they were multiplied by a safety-factor of 1.15.

With the above values of the margin-angle and push
offset, six plans were executed on a Puma 560 robot
for a total of over 80 trials. The Puma, with a fence
attached to its end-effector, executes pushing actions
on a horizontal table. The fence is a piece of delrin
coated with high-friction sandpaper. Objects belong-
ing to the three types were constructed of delrin. They
were made fairly small, about 1.5 to 3 cm in diameter,
for the plans to be inside the Puma workspace. While
the object usually attained the goal orientation, posi-
tion errors of 2 to 3 mm over a translation distance of
15 to 20 cm were commonly observed. The observed
errors were a result of the motion of the object along
the fence due to robot vibration, and the positioning
inaccuracy of the Puma.

7 Conclusion

In this paper we have introduced a useful classifi-
cation of polygonal objects subject to linear pushing
actions, and shown that the Planar Pose problem can
be solved under certain assumptions. Further, we have
implemented a planner for this problem and proved
its completeness. Sample plans executed by a robot
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Figure 11: A singularity case. (a) Start and goal
orientations. (b) These CW and CCW push vector
diagrams do not positively span the plane. (c) The
CW and CCW push vector diagrams generated by the
singularity handler positively span the plane.

demonstrate the feasibility of this method. For a de-
tailed discussion, see [Akella and Mason, 1992].

An important aspect of our approach is the use of
a compact set of actions for the task. An alternative
approach is to use a more extensive set of actions, such
as non-normal linear pushes, or the rotational pushes
in [Lynch, 1992].

Plans using the actions described here are sensitive
to uncertainty. To generate robust plans, it is impor-
tant to model uncertainty in the initial pose of the
object, in the pushing actions of the robot, and in the
motion of the object along the fence. Determining if
“nearby” start poses behave similarly to a given plan
could be useful in obtaining bounds on the permissi-
ble pose uncertainty for the plan. An interesting issue
for future work is the coupling of empirical learning
techniques with the analytical tools developed here to
generate more robust plans.
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Appendix: Proof of completeness

Uni-stables: Since 7;; = p; (subscript s refers to
the stable edge), the Pose vector equation can be re-
placed by

agsfos + z;‘:l(ais + bi)ﬁi + E::l 51 =T.

The Peshkin distance for the #th reorientation is m;.
So m; > 0. Let a;, + b; = m; + e;, where ¢; > 0, and
is the extra distance along p;.

So, the above vector equation is equivalent to

agsfos + Ez::l ep=T"

where T =T — Y1_, & — Y1_, mifi.

If the planner always generates at least one reorien-
tation sequence such that fig, and {p;} positively span

the plane, this vector equation will always be satisfied.
Two cases can occur:

1. The reorieniation is not 180 degrees : Since the
reorientation in one of the rotation directions is
greater than 180 degrees, the Positive Spanning
theorem is satisfied. In Figure 8 for example, the
unit vectors associated with CCW rotation posi-
tively span the plane.

. The reorientation is 180 degrees or nearby: Since
neither the CW nor CCW unit push vectors pos-
itively span the plane for this case (see Figure 11
(b)), we cannot guarantee existence of a feasi-
ble pose plan. To obtain a set of unit reorient
push vectors that positively span the plane, we
first make an additional reorient push in the rota-
tion direction opposite to the remaining reorient
pushes. The amount of rotation in the opposite
direction is chosen equal to the minimum of the
CW and CCW step-angles for the chosen pushing
edge. This modified procedure always results in a
solution for each of the main rotation directions
(see Figure 11 (c)).

Biplus-stables: In the singularity case, since the
normal vectors of a biplus-stable form a cone, one of
the unit push vectors sets generated by the CW and
CCW routines satisfies the Positive Spanning theorem.

Nice-stables: Since the normals to the edges span
$2, a combination of translation vectors can always
be found to move the object in the goal orientation to
any position in the plane.



