
Assignment 3

ITCS-4010/5010: Cloud Computing for Data Analysis
Due by 11:59:59pm on Tuesday, March 24, 2009

This assignment is based on a similar assignment developed at the University of Washington.

Running PageRank on Wikipedia

The goal of this programming assignment is to compute the PageRanks of an input set of hy-
perlinked Wikipedia documents using Hadoop. The PageRank score of a web page serves as an
indicator of the importance of the page. Many web search engines (e.g., Google) use PageRank
scores in some form to rank user-submitted queries. The goals of this assignment are to:

1. Understand the PageRank algorithm and how it works in MapReduce.

2. Implement PageRank and execute it on a large corpus of data.

3. Examine the output from running PageRank on Wikipedia to measure the relative importance
of pages in the corpus.

To run your program on the full Wikipedia archive, you will need to run it on the Linux cluster
in Woodward 335.

PageRank: The Algorithm

For the PageRank algorithm itself, refer to the Class 7 notes, or see
Section 2.1.1 of http://infolab.stanford.edu/~backrub/google.html .

This assignment is more involved than the first two assignments, and will involve several
different MapReduce passes used sequentially. The inputs to the program are pages from the
English-language edition of Wikipedia. You will compute the “importance” of various Wikipedia
pages/articles as determined by the PageRank metric.

The English-language Wikipedia corpus is about 20 GB, spread across 2 million files – one per
page. However, the Hadoop DFS, like the Google File System, is designed to operate efficiently
on a small number of large files rather than on a large number of small files. If we were to load
the Wikipedia files into Hadoop DFS individually and then run a MapReduce process on this,
Hadoop would need to perform 2 million file open–seek-read–close operations – which is very time
consuming. Instead, you will be using a pre-processed version of the Wikipedia corpus in which the
pages are stored in an XML format, with many thousands of pages per file. This has been further

1



preprocessed such that all the data for a single page is on the same line. This makes it easy to use
the default InputFormat, which performs one map() call per line of each file it reads. The mapper
will still perform a separate map() for each page of Wikipedia, but since it is sequentially scanning
through a small number of very large files, performance is much better than in the separate-file
case.

Each page of Wikipedia is represented in XML as follows:

<page>
<title> Page_Name </title>
(other fields we do not care about)
<revision optionalAttr="val">
<text optionalAttr2="val2"> (Page body goes here)
</text>
</revision>
</page>

As mentioned before, the pages have been “flattened” to be represented on a single line. So this
will be laid out on a single line like:

<title>Page Name</title>(other fields)<revision optionalAttr="val"><text
optionalAttr="val2">(body)</text></revision>

The body text of the page also has all newlines converted to spaces to ensure it stays on one line in
this representation. Links to other Wikipedia articles are of the form “[[Name of other article]]”.

MapReduce Steps

This presents the high-level requirements of what each phase of the program should do. (While
there may be other, equivalent implementations of PageRank, this suggests one such method that
can be implemented in this assignment.)

1. Step 1: Create Link Graph: Process individual lines of the input corpus, one at a time.
These lines contain the XML representations of individual pages of Wikipedia. Turn this into
a link graph and initial page rank values. (Use 1 − d as your initial PageRank value, where
d is the damping factor. Assume d = 0.85.)

Think: What output key do you need to use? What data needs to be in the output value?

2. Step 2: Process PageRank: This is the component which will be run in your main loop.
The output of this phase should be directly readable as the input of this same step, so that
you can run it multiple times.

In this phase, you should divide fragments of the input PageRank up among the links on
a page, and then recombine all the fragments received by a page into the next iteration of
PageRank.

3. Step 3: Cleanup and Sorting: The goal of this step is to understand which pages on
Wikipedia have a high PageRank value. Therefore, we use one more “cleanup” pass to extract

2



this data into a form we can inspect. Strip away any data that you were using during the
repetitions of Step 2 so that the output is just a mapping between page names and PageRank
values. We would like the output data sorted by PageRank value.

Hint: Use only 1 reducer to sort everything. What should your key and value be to sort
things by PageRank?

At this point, the data can be inspected and the most highly-ranked pages can be determined.

Implementation Recommendations and Suggestions

Implement the PageRank algorithm described above. You will need a driver class to run this
process, which should run the link graph generator, calculate PageRank for 10 iterations, and then
run the cleanup pass. Run PageRank, and find out what the top ten highest-PageRank pages are.

Overall advice:

• A very small test data set is posted at:
http://www.cs.uncc.edu/~sakella/cloud/assign3/wikimicro.txt.gz. Please first test
your code on your local machine using your local file system before testing in the Woodward
335 lab cluster.

• We will provide additional test data sets in specified input directories on the cluster (details
to be posted on the assignment web page). Use the data from this source as your first input
directory to test your system. Move up to the full copy when you are convinced that your
system works.

• SequenceFiles are a special binary format used by Hadoop for fast intermediate I/O. The
output of the link graph generator, the input and output of the PageRank cycle, and the
input to the cleanup pass, can all be set to org.apache.hadoop.mapred.SequenceInputFormat
and SequenceOutputFormat for faster processing, if you don’t need the intermediate values
for debugging.

• Test run a single pass of the PageRank mapper/reducer before putting it in a loop.

• Each pass will require its own input and output directory; one output directory is used as the
input directory for the next pass of the algorithm. Set the input and output directory names
in the JobConf to values that make sense for this flow.

• Create a new JobClient and JobConf object for each MapReduce pass. main() should call a
series of driver methods.

• Remember that you need to remove your intermediate/output directories between executions
of your program

• The input and output types for each of these passes should be Text. You should design a
textual representation for the data that must be passed through each phase, that you can
serialize to and parse from efficiently.

3



• Select an appropriate number of map tasks and reduce tasks.

• The PageRank for each page will be a very small floating-point number. You may want to
multiply all PageRank values by a constant 10,000 or so in the cleanup step to make these
numbers more readable.

• The final cleanup step should have 1 reduce task, to get a single list of all pages.

• Remember, this is “real” data. Tha data has been cleaned up for you in terms of formatting
the input into a presentable manner, but there might be lines that do not conform to the
layout you expect, blank lines, etc. Your code must be robust to these parsing errors. Just
ignore any lines that are illegal – but do not cause a crash!

• Start early. This project represents considerably more programming effort than Assignments
1 and 2.

• Use a small test input before moving to larger inputs.

• The Hadoop API reference is at http://hadoop.apache.org/core/docs/current/api/ –
when in doubt, look it up here first!

Testing Your Code

If you try to test your program on the cluster you’re going to waste inordinate amounts of time
shuttling code back and forth, as well as potentially waiting on other students who run long jobs.
Before you run any MapReduce code, you should unit test individual functions, calling them on
a single piece of example input data (e.g., a single line out of the data set) and seeing what
they do. After you have unit tested all your components, you should do some small integration
tests which make sure all the working parts fit together, and work on a small amount of rep-
resentative data. For this purpose, we have posted a *very* small data set on the web site at:
http://www.cs.uncc.edu/~sakella/cloud/assign3/wikimicro.txt.gz This is a 2 MB down-
load which will unzip to about 5 MB of text in the exact format you should expect to see on the
cluster.

Download the contents of this file and place it in an “input” folder on your local machine. Test
against this for your unit testing and initial debugging. After this works, then move up to the
smaller dataset on the cluster. After it works there, then and only then should you run on the
full dataset. If individual passes of your MapReduce program take too long you may have done
something wrong. You should kill your job, figure out where your bugs are, and try again. (Do not
forget to pre-test on smaller datasets again!)

Extra Credit Ideas

• Write a pass that determines whether or not PageRank has converged, rather than using a
fixed number of iterations.

• Get an inverted indexer working over the text of this XML document.

4



Maximum credit for implementing one of the above extensions is 10 points. (The required tasks
on the assignment are for a total of 100 points.)

Writeup

In your README (plain text) file, in addition to instructions for execution please include answers
to the following questions:

1. How much time did this lab take you? What was the most challenging component?

2. What are the 10 pages with the highest PageRank? Does that surprise you? Why/why not?

3. List any extensions you performed, assumptions you made about the nature of the problem,
etc.

Submission

Please submit all source code, properly commented, along with a README providing instructions
for execution. All code must compile. Compilation errors will result in a grade of “0.” Put all
your code in a directory together with your writeup and tar/gzip it up before submitting. Ad-
ditional details on data files and their formats will be available on the Assignment 3 web page
(http://www.cs.uncc.edu/~sakella/cloud/assign3/).

Assignments are due by 11:59:59pm on Tuesday, March 24, 2009. Submission will
be through Blackboard as for the previous assignments.

Assignments are to be done individually. See course syllabus for late submission
policy and academic integrity guidelines.

5


