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M Ap ReDUCe is  A  programming model for processing 
and generating large data sets.4 Users specify a 
map function that processes a key/value pair to 
generate a set of intermediate key/value pairs and 
a reduce function that merges all intermediate 
values associated with the same intermediate key. 
We built a system around this programming model 
in 2003 to simplify construction of the inverted 
index for handling searches at Google.com. Since 
then, more than 10,000 distinct programs have been 
implemented  using MapReduce at Google, including 
algorithms for large-scale graph processing, text 
processing, machine learning, and statistical machine 
translation. the Hadoop open source implementation 
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of MapReduce has been used exten-
sively outside of Google by a number of 
organizations.10,11 

To help illustrate the MapReduce 
programming model, consider the 
problem of counting the number of 
occurrences of each word in a large col-
lection of documents. The user would 
write code like the following pseudo-
code: 

map(String key, String value): 
  // key: document name 
  // value: document contents 
  for each word w in value: 
    EmitIntermediate(w, “1”); 

reduce(String key, Iterator values):
  // key: a word 
  // values: a list of counts 
  int result = 0; 
  for each v in values: 
    result += ParseInt(v); 
  Emit(AsString(result)); 

The map function emits each word 
plus an associated count of occurrences 
(just `1' in this simple example). The re-
duce function sums together all counts 
emitted for a particular word. 

MapReduce automatically paral-
lelizes and executes the program on a 
large cluster of commodity machines. 
The runtime system takes care of the 
details of partitioning the input data, 
scheduling the program’s execution 
across a set of machines, handling 
machine failures, and managing re-
quired inter-machine communication. 
MapReduce allows programmers with 
no experience with parallel and dis-
tributed systems to easily utilize the re-
sources of a large distributed system. A 
typical MapReduce computation pro-
cesses many terabytes of data on hun-
dreds or thousands of machines. Pro-
grammers find the system easy to use, 
and more than 100,000 MapReduce 
jobs are executed on Google’s clusters 
every day. 

compared to Parallel Databases 
The query languages built into paral-
lel database systems are also used to 
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would need to read only that sub-range 
instead of scanning the entire Bigtable. 
Furthermore, like Vertica and other col-
umn-store databases, we will read data 
only from the columns needed for this 
analysis, since Bigtable can store data 
segregated by columns. 

Yet another example is the process-
ing of log data within a certain date 
range; see the Join task discussion in 
the comparison paper, where the Ha-
doop benchmark reads through 155 
million records to process the 134,000 
records that fall within the date range 
of interest. Nearly every logging sys-
tem we are familiar with rolls over to 
a new log file periodically and embeds 
the rollover time in the name of each 
log file. Therefore, we can easily run a 
MapReduce operation over just the log 
files that may potentially overlap the 
specified date range, instead of reading 
all log files. 

complex functions 
Map and Reduce functions are often 
fairly simple and have straightforward 
SQL equivalents. However, in many 
cases, especially for Map functions, the 
function is too complicated to be ex-
pressed easily in a SQL query, as in the 
following examples: 

Extracting the set of outgoing links  ˲

from a collection of HTML documents 
and aggregating by target document; 

Stitching together overlapping sat- ˲

ellite images to remove seams and to 
select high-quality imagery for Google 
Earth; 

Generating a collection of inverted  ˲

index files using a compression scheme 
tuned for efficient support of Google 
search queries; 

Processing all road segments in the  ˲

world and rendering map tile images 
that display these segments for Google 
Maps; and 

Fault-tolerant parallel execution of  ˲

programs written in higher-level lan-
guages (such as Sawzall14 and Pig Lat-
in12) across a collection of input data. 

Conceptually, such user defined 
functions (UDFs) can be combined 
with SQL queries, but the experience 
reported in the comparison paper indi-
cates that UDF support is either buggy 
(in DBMS-X) or missing (in Vertica). 
These concerns may go away over the 
long term, but for now, MapReduce is a 
better framework for doing more com-

express the type of computations sup-
ported by MapReduce. A 2009 paper 
by Andrew Pavlo et al. (referred to here 
as the “comparison paper”13) com-
pared the performance of MapReduce 
and parallel databases. It evaluated 
the open source Hadoop implementa-
tion10 of the MapReduce programming 
model, DBMS-X (an unidentified com-
mercial database system), and Vertica 
(a column-store database system from 
a company co-founded by one of the 
authors of the comparison paper). Ear-
lier blog posts by some of the paper’s 
authors characterized MapReduce as 
“a major step backwards.”5,6 In this 
article, we address several misconcep-
tions about MapReduce in these three 
publications: 

MapReduce cannot use indices and  ˲

implies a full scan of all input data; 
MapReduce input and outputs are  ˲

always simple files in a file system; and 
MapReduce requires the use of in- ˲

efficient textual data formats. 
We also discuss other important is-

sues: 
MapReduce is storage-system inde- ˲

pendent and can process data without 
first requiring it to be loaded into a da-
tabase. In many cases, it is possible to 
run 50 or more separate MapReduce 
analyses in complete passes over the 
data before it is possible to load the data 
into a database and complete a single 
analysis; 

Complicated transformations are  ˲

often easier to express in MapReduce 
than in SQL; and 

Many conclusions in the compari- ˲

son paper were based on implementa-
tion and evaluation shortcomings not 
fundamental to the MapReduce model; 
we discuss these shortcomings later in 
this article. 

We encourage readers to read the 
original MapReduce paper4 and the 
comparison paper13 for more context. 

Heterogenous systems 
Many production environments con-
tain a mix of storage systems. Customer 
data may be stored in a relational data-
base, and user requests may be logged 
to a file system. Furthermore, as such 
environments evolve, data may migrate 
to new storage systems. MapReduce 
provides a simple model for analyzing 
data in such heterogenous systems. 
End users can extend MapReduce to 

support a new storage system by de-
fining simple reader and writer imple-
mentations that operate on the storage 
system. Examples of supported storage 
systems are files stored in distributed 
file systems,7 database query results,2,9 
data stored in Bigtable,3 and structured 
input files (such as B-trees). A single 
MapReduce operation easily processes 
and combines data from a variety of 
storage systems. 

Now consider a system in which a 
parallel DBMS is used to perform all 
data analysis. The input to such analy-
sis must first be copied into the parallel 
DBMS. This loading phase is inconve-
nient. It may also be unacceptably slow, 
especially if the data will be analyzed 
only once or twice after being loaded. 
For example, consider a batch-oriented 
Web-crawling-and-indexing system 
that fetches a set of Web pages and 
generates an inverted index. It seems 
awkward and inefficient to load the set 
of fetched pages into a database just so 
they can be read through once to gener-
ate an inverted index. Even if the cost of 
loading the input into a parallel DBMS 
is acceptable, we still need an appropri-
ate loading tool. Here is another place 
MapReduce can be used; instead of 
writing a custom loader with its own ad 
hoc parallelization and fault-tolerance 
support, a simple MapReduce program 
can be written to load the data into the 
parallel DBMS. 

indices 
The comparison paper incorrectly said 
that MapReduce cannot take advan-
tage of pregenerated indices, leading 
to skewed benchmark results in the 
paper. For example, consider a large 
data set partitioned into a collection 
of nondistributed databases, perhaps 
using a hash function. An index can 
be added to each database, and the 
result of running a database query us-
ing this index can be used as an input 
to MapReduce. If the data is stored in 
D database partitions, we will run D 
database queries that will become the 
D inputs to the MapReduce execution. 
Indeed, some of the authors of Pavlo et 
al. have pursued this approach in their 
more recent work.11 

Another example of the use of in-
dices is a MapReduce that reads from 
Bigtable. If the data needed maps to a 
sub-range of the Bigtable row space, we 
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plicated tasks (such as those listed ear-
lier) than the selection and aggregation 
that are SQL’s forte. 

structured Data and schemas 
Pavlo et al. did raise a good point that 
schemas are helpful in allowing multi-
ple applications to share the same data. 
For example, consider the following 
schema from the comparison paper: 

CREATE TABLE Rankings ( 
  pageURL VARCHAR(100) 

PRIMARY KEY, 
  pageRank INT, 
  avgDuration INT ); 

The corresponding Hadoop bench-
marks in the comparison paper used 
an inefficient and fragile textual for-
mat with different attributes separated 
by vertical bar characters: 

137|http://www.somehost.com/ 
  index.html|602

In contrast to ad hoc, inefficient 
formats, virtually all MapReduce op-
erations at Google read and write data 
in the Protocol Buffer format.8 A high-
level language describes the input and 
output types, and compiler-generated 
code is used to hide the details of en-
coding/decoding from application 
code. The corresponding protocol buf-
fer description for the Rankings data 
would be: 

message Rankings {
required string pageurl = 1;
required int32 pagerank = 2;
required int32 avgduration = 3;

}

The following Map function frag-
ment processes a Rankings record: 

Rankings r = new Rankings();
r.parseFrom(value);
if (r.getPagerank() > 10) { ... }

The protocol buffer framework 
allows types to be upgraded (in con-
strained ways) without requiring exist-
ing applications to be changed (or even 
recompiled or rebuilt). This level of 
schema support has proved sufficient 
for allowing thousands of Google engi-
neers to share the same evolving data 
types. 

Furthermore, the implementation 

of protocol buffers uses an optimized 
binary representation that is more 
compact and much faster to encode 
and decode than the textual formats 
used by the Hadoop benchmarks in the 
comparison paper. For example, the 
automatically generated code to parse 
a Rankings protocol buffer record 
runs in 20 nanoseconds per record as 
compared to the 1,731 nanoseconds 
required per record to parse the tex-
tual input format used in the Hadoop 
benchmark mentioned earlier. These 
measurements were obtained on a JVM 
running on a 2.4GHz Intel Core-2 Duo. 
The Java code fragments used for the 
benchmark runs were: 

// Fragment 1: protocol buf-
fer parsing
for (int i = 0; i < numItera-
tions; i++) {

rankings.parseFrom(value);
pagerank = rankings.get-
Pagerank();

}

// Fragment 2: text for-
mat parsing (extracted from 
Benchmark1.java
// from the source code 
posted by Pavlo et al.)
for (int i = 0; i < numItera-
tions; i++) {

String data[] = value.to-
String().split(“\\|”);
pagerank = Integer.
valueOf(data[0]);

}

Given the factor of an 80-fold dif-
ference in this record-parsing bench-
mark, we suspect the absolute num-
bers for the Hadoop benchmarks in 
the comparison paper are inflated and 
cannot be used to reach conclusions 
about fundamental differences in the 
performance of MapReduce and paral-
lel DBMS. 

fault Tolerance 
The MapReduce implementation uses 
a pull model for moving data between 
mappers and reducers, as opposed to 
a push model where mappers write di-
rectly to reducers. Pavlo et al. correctly 
pointed out that the pull model can re-
sult in the creation of many small files 
and many disk seeks to move data be-
tween mappers and reducers. Imple-

mapReduce is  
a highly effective 
and efficient  
tool for large-scale 
fault-tolerant  
data analysis. 
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format for structured data (protocol 
buffers) instead of inefficient textual 
formats. 

Reading unnecessary data. The com-
parison paper says, “MR is always forced 
to start a query with a scan of the entire 
input file.” MapReduce does not require 
a full scan over the data; it requires only 
an implementation of its input inter-
face to yield a set of records that match 
some input specification. Examples of 
input specifications are: 

All records in a set of files;  ˲

All records with a visit-date in the  ˲

range [2000-01-15..2000-01-22]; and 
All data in Bigtable table T whose  ˲

“language” column is “Turkish.” 
The input may require a full scan 

over a set of files, as Pavlo et al. sug-
gested, but alternate implementations 
are often used. For example, the input 
may be a database with an index that 
provides efficient filtering or an in-
dexed file structure (such as daily log 
files used for efficient date-based fil-
tering of log data). 

This mistaken assumption about 
MapReduce affects three of the five 
benchmarks in the comparison paper 
(the selection, aggregation, and join 
tasks) and invalidates the conclusions 
in the paper about the relative perfor-
mance of MapReduce and parallel da-
tabases. 

Merging results. The measurements 
of Hadoop in all five benchmarks in the 
comparison paper included the cost 
of a final phase to merge the results of 
the initial MapReduce into one file. In 
practice, this merging is unnecessary, 
since the next consumer of MapReduce 
output is usually another MapReduce 
that can easily operate over the set of 
files produced by the first MapReduce, 
instead of requiring a single merged in-
put. Even if the consumer is not another 
MapReduce, the reducer processes in 
the initial MapReduce can write directly 
to a merged destination (such as a Big-
table or parallel database table). 

Data loading. The DBMS measure-
ments in the comparison paper dem-
onstrated the high cost of loading 
input data into a database before it 
is analyzed. For many of the bench-
marks in the comparison paper, the 
time needed to load the input data into 
a parallel database is five to 50 times 
the time needed to analyze the data via 
Hadoop. Put another way, for some of 

mentation tricks like batching, sorting, 
and grouping of intermediate data and 
smart scheduling of reads are used by 
Google’s MapReduce implementation 
to mitigate these costs. 

MapReduce implementations tend 
not to use a push model due to the 
fault-tolerance properties required 
by Google’s developers. Most MapRe-
duce executions over large data sets 
encounter at least a few failures; apart 
from hardware and software problems, 
Google’s cluster scheduling system can 
preempt MapReduce tasks by killing 
them to make room for higher-priority 
tasks. In a push model, failure of a re-
ducer would force re-execution of all 
Map tasks. 

We suspect that as data sets grow 
larger, analyses will require more 
computation, and fault tolerance will 
become more important. There are al-
ready more than a dozen distinct data 
sets at Google more than 1PB in size 
and dozens more hundreds of TBs 
in size that are processed daily using 
MapReduce. Outside of Google, many 
users listed on the Hadoop users list11 
are handling data sets of multiple hun-
dreds of terabytes or more. Clearly, as 
data sets continue to grow, more users 
will need a fault-tolerant system like 
MapReduce that can be used to process 
these large data sets efficiently and ef-
fectively. 

Performance 
Pavlo et al. compared the performance 
of the Hadoop MapReduce implemen-
tation to two database implementa-
tions; here, we discuss the performance 
differences of the various systems: 

Engineering considerations. Startup 
overhead and sequential scanning 
speed are indicators of maturity of im-
plementation and engineering trade-
offs, not fundamental differences in 
programming models. These differ-
ences are certainly important but can 
be addressed in a variety of ways. For 
example, startup overhead can be ad-
dressed by keeping worker processes 
live, waiting for the next MapReduce in-
vocation, an optimization added more 
than a year ago to Google’s MapReduce 
implementation. 

Google has also addressed sequen-
tial scanning performance with a variety 
of performance optimizations by, for ex-
ample, using efficient binary-encoding 
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the benchmarks, starting with data in a 
collection of files on disk, it is possible 
to run 50 separate MapReduce analy-
ses over the data before it is possible to 
load the data into a database and com-
plete a single analysis. Long load times 
may not matter if many queries will be 
run on the data after loading, but this 
is often not the case; data sets are often 
generated, processed once or twice, 
and then discarded. For example, the 
Web-search index-building system de-
scribed in the MapReduce paper4 is a 
sequence of MapReduce phases where 
the output of most phases is consumed 
by one or two subsequent MapReduce 
phases. 

conclusion 
The conclusions about performance 
in the comparison paper were based 
on flawed assumptions about MapRe-
duce and overstated the benefit of par-
allel database systems. In our experi-
ence, MapReduce is a highly effective 
and efficient tool for large-scale fault-
tolerant data analysis. However, a few 
useful lessons can be drawn from this 
discussion: 

Startup latency. MapReduce imple-
mentations should strive to reduce 
startup latency by using techniques like 
worker processes that are reused across 
different invocations; 

Data shuffling. Careful attention 
must be paid to the implementation of 
the data-shuffling phase to avoid gen-
erating O(M*R) seeks in a MapReduce 
with M map tasks and R reduce tasks; 

Textual formats. MapReduce users 
should avoid using inefficient textual 
formats; 

Natural indices. MapReduce users 
should take advantage of natural in-
dices (such as timestamps in log file 
names) whenever possible; and 

Unmerged output. Most MapReduce 
output should be left unmerged, since 
there is no benefit to merging if the 
next consumer is another MapReduce 
program. 

MapReduce provides many signifi-
cant advantages over parallel data-
bases. First and foremost, it provides 
fine-grain fault tolerance for large 
jobs; failure in the middle of a multi-
hour execution does not require re-
starting the job from scratch. Second, 
MapReduce is very useful for handling 
data processing and data loading in a 

heterogenous system with many dif-
ferent storage systems. Third, MapRe-
duce provides a good framework for 
the execution of more complicated 
functions than are supported directly 
in SQL.  
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