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Abstract

Model construction is one of the key scienti�c activ-
ities. In distinction to the majority of the previous
machine discovery systems, model formation applies
in theory-rich context. Our long term goal is au-
tomation of model construction. This paper reports
on exploratory work towards that goal. We start
from the distinction between models and theories,
which is critical to the presented approach. We also
distinguish between modeling and two scienti�c ac-
tivities, which are di�erent but which support mod-
eling: construction of operational de�nitions and ex-
perimentation. Then we present the basic steps of
scienti�c model construction, outlining data struc-
tures and an algorithm which, using a number of
feedback loops, incrementally develops a model of
a natural phenomenon. A walk through example is
used to present the algorithm: motion of a cylinder
that rolls downwards on an inclined plane.

Modeling: a walk-through example

Scienti�c modeling aims at detailed understanding of
concrete classes of physical structures or processes.
On one end of the spectrum, modeling is construc-
tion of empirical equations from data about the mod-
eled situation. Automated discovery systems such
as BACON (Langley Simon, Bradshaw and Zytkow,
1987) and FAHRENHEIT (Zytkow, 1996) generate
such models by making experiments and by induc-
tion of equations from data. But models can be
constructed in theory-rich situations, using the ap-
propriate pieces of theoretical knowledge and con-
ducting experiments in order to verify the theoreti-
cal explanation. In this paper we analyze the main
steps of theory-based model construction on a walk-
through example. It is based on a famous experiment
of Galileo. We describe work in progress, far from be-
ing complete.

Galileo's experiment

Galileo investigated the motion of objects rolling
down an inclined plane. A ball, released at height
h on the inclined plane, depicted in Figure 1a, rolled
down and �nally reached the bottom of the inclined
plane above the point marked as Q. Galileo was not

able to measure the accurate time at which the ball
reached the bottom, but he could indirectly measure
the �nal velocity. He attached a \jumping board"
to the bottom of the inclined plane. Reaching the
bottom, the ball assumed horizontal velocity at the
jumping board and then fell through the air to hit
the 
oor at point P . Galileo measured the distance
PQ and used this distance to calculate the velocity of
the ball at the bottom of the slope. After a sequence
of experiments in which he varied the height h from
which the ball started to roll, he derived an empirical
equation for velocity v at the bottom of the inclined
plane:

v =
p
ah ; a = constant (1)
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Figure 1: Motion on the inclined plane. (a) Galileo's
experiment. A ball is rolling down the inclined plane.
The experimenter controls height h. When the ball
reaches the bottom of the ramp directly above point
Q, it assumes horizontal direction and falls to the

oor at point P. The distance PQ is proportional to
velocity. (b) Our experiment. A cylinder is rolling
down. It covers a �xed distance between a sensor
at the top of the ramp and a sensor installed at the
bottom. Di�erent cylinders and di�erent angles have
been used for data collection.



Modeling the motion on inclined plane

In this paper we use the knowledge of mechanics
as well as data that come from a robotic version of
Galileo experiment to develop a model of motion on
the inclined plane. We do not pay attention to cog-
nitive modeling and historical accuracy. We focus on
the main steps of modeling and on empirical accuracy
of a model.
To make it easier to trace the modeling process, let

us brie
y describe some of the main steps that we will
later examine in detail. As a body of mass m rolls
down, its kinetic energy grows from zero to mv2=2,
where v is the �nal velocity. At the same time, its
potential energy decreases from gmh to zero, where g
is Earth acceleration. Both energy terms can be used
jointly in the law of energy conservation to produce
the equation mv2=2 � mgh = 0. Solved for v, this
equation is transformed into

v =
p
2gh (2)

Velocity can be predicted from equation (2). The
model can be veri�ed by comparing the predicted val-
ues against the measured velocity values.
In this paper we will expand this brief description,

analyzing details of many steps with an eye on au-
tomation of modeling.

Modeling: a major scienti�c activity

We can divide scienti�c activities into discovery of
basic theories, discovery of structure, construction of
operational de�nitions, construction of experiments,
and model construction. In machine discovery, they
have been treated in isolation, but in real science each
requires the support of others. In this paper, while
we focus on model construction, we must take those
other activities and their results into account.

Models and theories are developed in
response to opposite tasks.

Theory is a product of analysis. It describes simple
elements of nature, their states and their interaction
viewed from a particular singular perspective of grav-
ity, electromagnetism, and the like. In our example,
theory includes (1) terms that describe two types of
energy: potential and kinetic, (2) the principle of
energy summation: energy of a state is the total of
individual energy terms (the summation applies sep-
arately to the initial state and the �nal state), and
(3) the principle of energy conservation from state to
state. Each form of energy describes a simple aspect
of physical states, characterized by a single property
of individual bodies, such as height, velocity or tem-
perature.
Model is a product of synthesis and describes a

complex structure and interactions between elements
of that structure. In the majority of situations, sev-
eral theories and many interactions must be used to

build an adequate model. While physicists are in-
terested in elementary objects and interactions, and
look for particularly simple situations, researchers in
other domains are occupied with complex objects.
Analytical chemists work on chemical samples, geol-
ogists investigate the structure of Earth, biologists
study organisms. They investigate complex struc-
tures which can be understood through their mod-
els. In the �eld of automated scienti�c discovery,
early attempts at computational theory of model con-
struction include Sleeman, Stacey, Edwards, & Gray
(1989) and Gordon, Sleeman, and Edwards (1995).

Empirical data

Model predictions must be veri�ed against empiri-
cal data, collected by observation or experiment. It
is rare that model construction is successful at the
�rst attempt. Mismatch between model predictions
and empirical data can be detected and analyzed in
search for model improvements that would reduced
the mismatch.
For the sake of model veri�cation we used empir-

ical data generated in a robotic experiment (Huang
and Zytkow, 1996). In our experiment we used the
inclined plane, but precise time measurement turned
out easier for us than measurements of velocity. Two
touch sensors, that signal the beginning and the end
of the process have been placed at �xed points at the
top and bottom of the inclined plane at distance D
(cf. Figure 1b) and attached to the parallel port of
a PC. The equivalent of Galileo's equation (2) ex-
pressed in terms of time t, angle � and Earth accel-
eration g is

t =

s
2D

gsin(�)
(3)

Instead of a ball, we used nine cylinders of equal ex-
ternal radius, with holes of di�erent radius drilled
symmetrically through the axis of each cylinder.
Since the �xed locations of touch sensors determined
the scope of motion, instead of various locations on
the �xed board that Galileo used as his initial states,
we varied the angle of the inclined plane. Altogether
we used �ve angles.
Experiment design and experimentation strategies

have been the focus of earlier work on automation
of scienti�c discovery, such as Langley, Simon, Brad-
shaw and Zytkow (1987), Kulkarni and Simon (1987),
Nordhausen and Langley (1993), Rajamoney (1993)
and Zytkow (1996).

Galileo's operational de�nition

Consider the way in which Galileo measured the ve-
locity reached by the ball at the bottom of the in-
clined plane. A jumping board mounted at the bot-
tom of the plane changed the direction of motion to
horizontal, without a�ecting the velocity. Galileo



decomposed the parabolic motion in the air into
free vertical fall and horizontal motion with constant
speed. Since he knew that all bodies fall the same ver-
tical distance in the same time, he could infer that
the horizontal distance covered before reaching the

oor at point P is proportional to the velocity at the
bottom of the inclined plane.
This is an example of an operational de�nition of

velocity and at the same time an example of model
application. Galileo used an earlier con�rmed model
of motion between the end of the inclined plane above
Q and P . The model combined free vertical fall
with uniform horizontal motion, for which he already
knew the theories su�cient for computing the ve-
locity needed in his inclined plane experiment. The
model yields the computation of velocity, as propor-
tional to the distance PQ.
Operational de�nitions have been studied by physi-

cists and philosophers of science (Bridgman, 1927;
Carnap, 1936). Research on automation of scienti�c
discovery includes attempts at operational de�nitions
such as Kulkarni and Simon (1987), Zytkow, Zhu and
Zembowicz (1992).

Our operational de�nition for time
measurement

In our experiment, two touch sensors have been at-
tached to the inclined plane and their wires connected
to di�erent pins at the PC's printer port. Sensor
signals triggered the time measurement process, pro-
viding it with the initial and the �nal event. Time
measurement proceeds by counting �xed time units
between two events.
When the cylinder starts to roll, the top sensor

is released, creating an interrupt at the printer port,
and causing the timer to start up. When the cylinder
engages the bottom sensor, the di�erence in time is
measured and recorded:

If interrupt-1 then read time-1

if interrupt-2 then read time-2

time := time-2 - time-1

After our system made a sequence of experiments,
we realized that the PC system clock can only be read
from a running program very inaccurately, at 18.2
readings per second. This means that one readable
clock tick is about 0.055 seconds. Since the cylinders
take between 1.6 and 0.5 seconds to roll from the top
to the bottom, the inaccuracy of time reading leads
to large error at the order of 10%.
Could we �nd a more precise time measurement

process on the computer? Our immediate choice has
been a loop which counts the number of repetitions
of a simple constant computation. This works �ne
on a PC, because it runs a single process. At a time-
sharing workstation it would introduce a considerable
error.

If interrupt-1 then start loop

if interrupt-2 then terminate loop

return the number of cycles

The number of cycles c gives the time measure-
ment. We could use time c to derive empirical equa-
tions, but since we wanted to compare empirical and
theoretical equations, we calibrated in seconds time
measured by c. Calibration is a discovery process,
too, simple only when it returns a desired constant.

To calibrate the loop, we run it for many seconds,
triggering it by releasing the top touch sensors and
then depressing the bottom sensor at the inclined
plane. The second process has been system clock
between the same two events. Sample data obtained
in �ve experiments out of thirty are shown in Table
1:

Table 1. Sample data taken for the timer

calibration and calibration results

Time Number Average for

in seconds of Cycles one cycle

32.42 14426343 2.247e-06

41.04 18244828 2.250e-06

69.23 30784135 2.249e-06

99.45 44237041 2.248e-06

138.90 61806238 2.247e-06

Mean from 30 experiments: 2.2487e-06

Standard deviation: 0.0018e-06

The calibration procedure reads the PC clock, but
now the error of clock reading averages over the pe-
riod of many seconds, so that calibration can be very
accurate. The results show that error has been re-
duced 40 times. Standard deviation (0.5 error) for
the loop has been 0.0007 second, while for direct read-
ing of the PC clock it was 0.028 second.

Model construction: a multi-layer task

The construction of each model is oriented on a con-
crete goal, such as the explanation of an interesting
phenomenon. A successful model uses enough of the
modeled structure to provide an adequate explana-
tion of the phenomenon, but is simple enough to en-
sure mathematical representation and solvability, so
that empirical predictions can be reached. Given an
object (phenomenon, process, structure) O, we dis-
tinguish the following modeling steps:

a. make a listing of objects, properties and processes
present in O; decide which empirical parameters P
of O we want to explain and which we can measure
in O; a modeling task depends on how much of the
modeled objects we want to represent in the model;



b. create a model-diagram that captures interaction
and structure of objects, properties, and processes
recognized in O;

c. construct a model-formalism that consists of equa-
tions corresponding to the model-diagram;

d. simplify and augment the equations until solvable;
use the right number of equations needed to elim-
inate non-measurable terms. Solve the equations
for parameters P ;

e. verify the solution against empirical data for P
measured for O. Empirical data can take on the
form of an empirical equation generated from raw
data. In that case, compare empirical equation
with model equation. For instance, Kepler Laws
have been derived as empirical equations. They
can be used to verify Newtonian model of planet
motion around the Sun.

A walk-through example in details

We will analyze the details of modeling the motion
on the inclined plane and draw a number of general
conclusions about modeling.

Modeling task

Only one object changes its properties: the body that
rolls down the inclined plane; it undergoes several
processes in which body location and velocity change.
We want to explain the velocity and time at which
the body reaches the bottom of the plane. As two
alternatives, we can measure either velocity or time.
Intro-1: brief description of the situation. Inclined

plane: the object under study is a ball. The behavior
is motion from the top to the bottom of the plane.
This is a change of state: Change of h and change of
v.

Create model-diagram

Model-diagram consists of the initial state (state-1:
body located on the top of the inclined plane, zero
velocity), and the �nal state (state-2: body location
at the bottom of the inclined plane, positive velocity).
Both states are connected by process links for each
property whose value is being changed. Each process
consists in change of one parameter.

state-1 state-2

h1=h -------------------> h2=0

v1=0 -------------------> v2=v

In general, model-diagram includes:

� objects

� properties of each objects

� processes (one per each object and per each varied
property)

For each object included in the model, model-
diagram represents all the processes this object is
involved in.
Principle 1: consider one process per each object

involved and each parameter that changes its value
Work on qualitative process theory provides a

number of alternatives to our model-diagram (For-
bus, 1984; Rajamoney, 1993).

Add model-formalism

Principle 2: for each process and the parameter var-
ied in that process, consider a conserved quantity
(quantities) that include that parameter.
Examples of such quantities for velocity are mo-

mentum and kinetic energy. Example of such quan-
tity for height is potential energy. Each conserved
quantity q is represented by a schema:

q(state-1) = q(state-2)

The only schema that applies to both the change
of h and v is the principle of energy conservation.
The known terms available in a model determine

the schemas to be considered. For each schema un-
der consideration, we try to add to the model all
other variables that occur in that schema. Before
we do that, we must consider whether they can be
measured. If su�cient variables are available, other
variables may be removed from consideration.
In the case of the inclined plane:

� Energy term that describes the change of h is mgh.

� Energy term that describes the change of v is
mv2=2.

� Both terms are substituted into the energy conser-
vation schema. The result is: mv2=2�mgh = 0

In general, model-formalism must include a su�-
cient number of equations to eliminate all variables
that are be measured.

Infer observable predictions

The equation of energy conservation can be solved
for velocity, producing the solution in the form

v =
p
2gh (2)

The equation solving mechanism can solve that equa-
tion for time when model-formalism is augmented
by an equation which links the velocity and distance
with time.
In general, it is practical to require that the equa-

tion solving mechanism solves the equation(s) for
variables which are measured in the �nal state. Equa-
tion solving can be treated as one of the subtasks
in the category of equation transformation (Zytkow,
1990).



Confront predictions with measurements

The veri�cation of the solved equation against em-
pirical data demonstrates inadequacy of the Galileo
model represented by equation (2) and by predic-
tions of time computed from (2). Those predictions
are shown in column 6 of Table 2. According to the
model, the time should be constant for di�erent cylin-
ders represented as di�erent masses in column 2 of
Table 2, whereas the measurements (column 3) show
di�erent time for di�erent cylinders.

Table 2. Comparison of data and
predictions of theoretical models.

Angle Mass Robot Stand. Theoret Galileo

data error predict theory
1 2 3 4 5 6

3.37 56.46 1.657 0.024 1.600 1.164
3.37 100.08 1.685 0.014 1.563 1.164

3.37 141.10 1.586 0.008 1.528 1.164
3.37 176.63 1.551 0.009 1.497 1.164

3.37 203.77 1.528 0.011 1.472 1.164
3.37 224.93 1.520 0.007 1.453 1.164

3.37 239.26 1.507 0.008 1.440 1.164
3.37 251.28 1.508 0.014 1.429 1.164

3.37 254.35 1.483 0.009 1.426 1.164
--------------------------------------------

8.25 56.46 1.004 0.008 1.024 0.745
8.25 100.08 1.002 0.008 1.001 0.745

8.25 141.10 0.981 0.007 0.978 0.745
8.25 176.63 0.948 0.003 0.958 0.745

8.25 203.77 0.955 0.009 0.942 0.745
8.25 224.93 0.950 0.007 0.930 0.745

8.25 239.26 0.935 0.008 0.922 0.745
8.25 251.28 0.927 0.011 0.914 0.745

8.25 254.35 0.910 0.008 0.913 0.745
--------------------------------------------

12.95 56.46 0.809 0.004 0.820 0.596
12.95 100.08 0.815 0.007 0.801 0.596

12.95 141.10 0.780 0.011 0.783 0.596
12.95 176.63 0.771 0.008 0.767 0.596

12.95 203.77 0.737 0.006 0.754 0.596

12.95 224.93 0.723 0.011 0.744 0.596
12.95 239.26 0.708 0.009 0.737 0.596

12.95 251.28 0.703 0.010 0.732 0.596
12.95 254.35 0.702 0.008 0.730 0.596

--------------------------------------------
17.53 56.46 0.709 0.003 0.707 0.514

17.53 100.08 0.685 0.010 0.691 0.514
17.53 141.10 0.662 0.008 0.675 0.514

17.53 176.63 0.641 0.005 0.661 0.514
17.53 203.77 0.619 0.007 0.650 0.514

17.53 224.93 0.613 0.007 0.642 0.514
17.53 239.26 0.608 0.006 0.636 0.514

17.53 251.28 0.606 0.009 0.631 0.514
17.53 254.35 0.604 0.010 0.630 0.514

--------------------------------------------
21.82 56.46 0.615 0.007 0.636 0.463

21.82 100.08 0.604 0.007 0.622 0.463
21.82 141.10 0.587 0.006 0.608 0.463

21.82 176.63 0.567 0.007 0.595 0.463
21.82 203.77 0.552 0.006 0.586 0.463

21.82 224.93 0.547 0.006 0.578 0.463
21.82 239.26 0.546 0.009 0.573 0.463

21.82 251.28 0.551 0.008 0.568 0.463
21.82 254.35 0.536 0.007 0.567 0.463

Since the predictions are clearly wrong, the model
must be improved. What went wrong? A more in-
cisive observation of the cylinders reveals that they
rotate as they roll. Thus, we add the change of an-
gular velocity as an extra process.
A new model-diagram is augmented by angular ve-

locity included both in the initial state (state-1: body
located on the top of the inclined plane, zero velocity,
zero angular velocity), and in the �nal state (state-2:
body location at the bottom of the inclined plane,
positive velocity, positive angular velocity). Both
states are connected by process links for each prop-
erty whose value is being changed:

state-1 state-2

h1=h -------------------> h2=0

v1=0 -------------------> v2=v

w1=0 -------------------> w2=w

Now, model-formalism yields an equation

t =

s
D(4M �m)

sin(�)gM
(4)

where D is the distance rolled by the cylinder, M is
mass of a solid cylinder of the same diameter as the
given cylinder (mass m), and g is Earth acceleration.
Actually, to match the experiments, we should use

equation 5 that takes into account distance d that the
cylinder covered before the top sensor was released

time =

s
D(4M �m)

sin(�)gM
�

s
d(4M �m)

sin(�)gM
(5)

In our experiment D = 50:2cm and d = 0:7cm. We
used g = 980:03cm=s2 provided by physicists in our
building.
Equation (5) is a far better �t that equation (2). It

can be seen in column 5 of Table 2, which represents
predictions derived from (5).
Even though the resultant model is more adequate,

but a �ne comparison against empirical data demon-
strates two areas of mis�t that call for further model
re�nements: for the smallest and the largest angle.
According to our background knowledge, those

small inadequacies seem to be caused by static fric-
tion (for small angles) and by rotation that may be
not complete at large angles. The directions of mis-
match con�rm these conjectures.
Further model improvements must take into ac-

count properties such as static and dynamic friction.
In our example, we merely add a known variable

(angular velocity) to the model. Other work on au-
tomation of scienti�c discovery proposed various rea-



sons for postulating new variables (Langley et al,
1987; Kocabas, 1991; Valdes-Perez, 1993).
Modeler's knowledge of hidden structure of the

phenomenon O grows until the model satis�es the
veri�cation criteria at all levels, or an impasse is
reached and modeling must stop until more back-
ground knowledge are gained or new observations are
made of the modeled phenomenon.

Feedback loops: a summary

The process of model construction meanders through
many feedback loops, as solutions to problems spe-
ci�c at a given step may require changes made to the
constructions at the earlier steps.

Objects, properties, processes

The objects observed in O become the initial compo-
nents of the model. New elements are added accord-
ing to the knowledge-base). For instance, consider
modeling a star by a steady-state model. A steady
state model means that the values of di�erent pa-
rameters that describe a single state have values that
satisfy the basic laws.
Since the star surface radiates energy, background

knowledge implies that radiation must be accompa-
nied by energy transfer to the surface. The known
mechanisms for energy transfer include internal ra-
diation and convection. Modeling a system assumes
that they occur, but it also tries to verify them by
their observed symptoms in O. Since energy is gen-
erated and released in di�erent places, we must in-
troduce an energy transfer process (from higher to
lower temperature). In that process, energy released
is equal to energy generated (not conservation of en-
ergy but steady state requirement) When empirical
data reveal the existence of absorption lines in the
star's spectrum, the star atmosphere can be added
to the list of objects. The ultimate task is to select
all objects, properties and processes which are rele-
vant to the modeled phenomenon O.

Model-diagram

But many details are reckoned not important, so that
model-diagram is an idealization of O. The observed
behavior of a physical system can be explained by a
combination of many interactions.

Model-formalism

Basic laws and interactions lead to model-formalism.
Each elementary interaction in a model-diagram cor-
responds to a speci�c mathematical expression that
can be retrieved from the knowledge-base. Those ex-
pressions are put together into equation schemes such
as conservation of mass, momentum or energy, and
term-generating schemas such as additivity for scalar
properties, vector additivity for force. When �lled
with terms speci�c to a given model, those equations

become a model-formalism, that is, a system of equa-
tions that link di�erent processes in model-diagram.

Solving the equations

Equation are re�ned to yield quantitative predictions.
Model-formalism is simpli�ed if the equations are not
solvable, by recognizing negligible in
uence of certain
components. Solved equations lead to quantitative
predictions. In step f, the predicted and the measured
values of parameters P are compared.
The process oscillates between solvability of equa-

tions and adequacy of description. An acceptable
model is simple enough so that the equations of the
model can be solved and complex enough to pro-
vide an adequate description of the investigated phe-
nomenon.

Veri�cation

Veri�cation accompanies each cycle in model con-
struction, providing feedback long before the �nal
solution is reached. The most e�cient evaluation
occurs at the levels prior to the �nal veri�cation, ac-
cording to an AI principle: \evaluate partial solutions
as early as possible".
If the equations are empirically discon�rmed, the

di�erence between facts and predictions is analyzed.
This can lead to changes in O, in model-diagram, as
well as in model-formalism.
Prior to empirical con�rmation, the consistency of

the model is checked, because equations can be inter-
nally inconsistent or inconsistent with the previous
knowledge. A solution is physically absurd when, for
instance, the value of a measured parameter grows
inde�nitely. Each component used in the equation
has a limited physical range of application. For in-
stance, a particular mechanism of energy transfer ap-
plies within certain temperature limits.
Veri�cation is not complete without demonstra-

tion that objects not included in the model do not
bear observable in
uence. One of the ways is to con-
struct a more complex model which includes addi-
tional objects and their interactions represented in
model-formalism by additional expressions. Show-
ing that those additions lead to the observationally
indistinguishable results demonstrates their irrele-
vance. This is not possible when the original model
has reached the limit of equations solvability. Still
the system can be satis�ed that it obtained a viable
model if the model �ts very well the observed data.
A model may reveal new phenomena and open new

questions. Modeling may lead to new hypotheses
about hidden structure suggested by a successful
model. We also demonstrated, on Galileo's exam-
ple, how models can be used to design new meth-
ods of measurement, that is, new operational de�-
nitions, leading to �ner measurements and new in-
struments. In the advanced sciences, the majority



of important new phenomena which lead to further
scienti�c revolutions are noticed through di�erences
between predictions of models and the observed phe-
nomena. Those di�erences can be small, such as
the part of precession of Mercury's perihelion, unex-
plained by the models based on classical mechanics.
Similar discrepancies occur in our examples, but they
may be explained by reference to the known phenom-
ena.
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