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We argue that autonomous robots who discover knowledge about their environ-
ment are paradigmatic intelligent agents. According to a demanding de�nition,
intelligence is agent's ability to be successful in new situations. Successful oper-
ation in a new situation requires new knowledge and e�ective application of that
knowledge. Since an ability to generate new knowledge is characteristic to discov-
erers, it is clear that intelligent agents must be discoverers. We compare human
and robotic discovery and we clarify the notion of robotic agent and the mean-
ing of autonomous pursuit of knowledge. Then we show on several examples how
robotic discoverers examine new situations and discover new knowledge. Our ex-
amples include exploration of o�ce environment by a mobile robot, experiments
made by robot arms, and a robot-scientist who makes chemistry experiments. In
these examples we demonstrate the use of the same methods and striking similar-
ity of knowledge discovered in each case. Walking through examples we describe
the basic components of machine discoverers, distinguishing (1) a general purpose
discovery mechanism, applicable in many domains, and (2) various ways of linking
that algorithm with the physical world through robot's sensors and manipulators.

An extended abstract follows:

1 Discovery

A person who is the �rst to propose and justify a new piece of knowledge K
is considered the discoverer of K. Being the �rst means acting autonomously,
without reliance on external authority. This often starts from exploring new
situations and recognizing what is new about them. Throughout the history,
human were considered discoverers when they did not follow on external au-
thority. Either there was none at the time when the discovery has been made,
or the discovery contradicted the accepted beliefs.

Intelligence involves not only discovery of new knowledge but also e�ective
knowledge application. A discoverer must be able to apply knowledge in many
ways. As discovery is rarely a one-time event, this process continues through
many steps and knowledge available at a given time guides the future steps.
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2 Cognitive autonomy of a machine discoverer

Machine discoverers can be viewed as computer systems who autonomously
pursue knowledge. Let us clarify the notion of cognitive autonomy to make it
useful in machine discovery. Suppose that agent A discovers piece of knowl-
edge K which has been known to others. We can still consider that A dis-
covered K, if A did not know K before making the discovery and was not
guided towards K by any external authority. It is relatively easy to trace the
external guidance received by a machine discoverer as all details of software
are available for inspection. In particular, the initial knowledge and method
are available for inspection.

The existing systems would not reach success in making discoveries if
we humans did not provide help. However, they are autonomous to some
degree, and future research in machine discovery will increase their cognitive
autonomy. The agent is more autonomous if it has more means and methods,
for instance more sensors and manipulators, more goals and capabilities to
achieve them. It is also more autonomous if it can modify its operation
so that rather than executing pre-programmed steps, new results can drive
further exploration.

One way to satisfy an expanded range of goals is to implement new com-
ponents of the discovery process. The mere accumulation of new components,
however, would not su�ce. The components must be strongly integrated and
the integration must be supported by the autonomous evaluation of results,
so that the next step is selected automatically. As a result, more discovery
steps in succession can be performed without external intervention, leading
to greater autonomy. A single step rarely permits a sound judgement about
the results. A combination of steps provides a more informed feedback on the
reasons for acceptance.

3 Applications of a robot-discoverer

We show that the same discovery mechanism can be applied in seemingly
di�erent domains. We consider several case studies that result in similar
knowledge structures: (1) a discovery in the domain of chemistry, (2) robot
arm that discovers physical properties of objects, and (3) exploration of o�ce
space by a mobile robot.
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3.1 Discovery in a science laboratory

We consider FAHRENHEIT ( _Zytkow, 1996) application in the domain of di�er-
ential pulse voltammetry ( _Zytkow, Zhu, & Hussam 1990) and in exploration of
state transition between ice and water. These applications help us to illustrate
the repertoire of discovery methods. Experiments involved collection of many
thousands data points, detection of maxima in data and the discovery of many
regularities on the heights and locations of those maxima. Theory formation
tasks involved piecemeal generalization of empirical equations, detection of
phase boundaries and understanding of phase space properties.

3.2 Robot arm repeats Galileo's experiment

We set-up a robot arm experiment similar to Galileo's experiments with the in-
clined plane. The robotic system placed di�erent cylindrical objects, di�ering
by the diameter of an inner cylindrical hole, on the top of an inclined plane
and measured the time in which they rolled and reached the bottom. The
system collected data, determined empirical error, found empirical equations
acceptable within error and generalized them to di�erent angles and di�erent
radius of the inner hole (Huang & _Zytkow, 1997). By confronting empiri-
cal equations developed by FAHRENHEIT with theoretical models based on
classical mechanics, two systematic deviations between data and a theoretical
model hint at extra processes not captured by the model but accounted for
in empirical equations. Possible phase transitions should be con�rmed by the
continued discovery process.

3.3 Robot arm discovers how to manipulate a box

When a box is lifted at one end by a robot gripper, di�erent outcomes are
possible depending on the grasping force. For instance, the box may slip
from the gripper. It may tilt so that it is lifted only partially. As the force
increases, it can be fully lifted, but then it can be also squashed. By changing
location of the gripper and repeating the attempts to lift the box with a
various grasping force, a theory is developed that includes several areas and
boundaries between them: (1) box falls from the gripper; (2) box is lifted
partially, at one end; (3) box is fully lifted; (4) box is lifted but it is also
squashed. Each area is limited by a well de�ned boundary, beyond which the
properties of lifting change. Altogether experiments discover a phase space of
several di�erent behaviors.
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3.4 Exploration of o�ce environment with a mobile robot

Map generation by a mobile robot who explores an unknown o�ce environ-
ment, has been yet another application of FAHRENHEIT's discovery method-
ology. Consider an intersection, traversed by Nomad, and explored with the
use of its sonar sensors. Individual readings are generalized to lines that in-
dicate walls. Boundaries on those lines, such as corners and doorways are
detected according to the same methodology. A local map, di�erent for a
T-intersection, X-intersection, a hallway and other typical details in an o�ce
environment, consists of a combination of line segments. It resembles a phase
space and is discovered from individual readings by the same methodology as
in the previous examples.

Exploration goals combine knowledge discovery and application. We show
on examples that goals such as (1) �nd where I am; (2) match my current
situation against the known map; (3) build a map; (4) if I know where I am,
use the map as a theory that helps to interpret observations; are common
with discoveries made in other domains.

4 Anatomy of a robot-discoverer

We present a robotic discoverer whose architecture has been inuenced by var-
ious existing systems, primarily small FAHRENHEIT, but also LIVE (Shen,
1993), DIDO (Scott and Markovitch, 1993) and KEKADA (Kulkarni and
Simon, 1987). We summarize the basic components of a robotic agent-
discoverer, and their interaction with the physical world. The agent consists
of \mind" and \body". The mind is a software system, while the body is
hardware, which belongs to the physical world. The agent interacts, at any
given time, with a small, selected part of the world. We can call it robot's
surrounding, immediate environment or an empirical system.

Hardware of the discoverer includes the \brain" part and the \body" part.
The brain includes a computer with its processor, memory, input and output,
plus processors which drive sensors and manipulators, linked to the computer
input/output (Zytkow, Zhu i Hussam 1990). The body includes sensors and
manipulators and the platform on which they operate.

The part of the software necessary for contact with the external world
includes device drivers which control the available sensors and manipulators,
and operational de�nitions of meaningful laboratory activities and measure-
ments, expressed in terms of elementary actions of sensors and manipulators
(Zytkow, Zhu and Zembowicz, 1992). This part of software is application
speci�c. While many operational de�nitions share common generic structure,
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each concrete con�guration of sensors and manipulators as well as codes un-
derstood by their processors are speci�c, and can be viewed as a physical
interpretation of the formalism of machine discoverer.

The discovery method consists of a static, pre-programmed network of
discovery goals and plans. Each goal speci�es a generic task of discovery.
Plans specify how those goals may be accomplished. Because discovery goals
require search in di�erent spaces of hypotheses, terms, procedures, and the
like, most of the plans are algorithms that can e�ectively search the corre-
sponding spaces. The same goal can be carried by various plans. For instance,
many systems include a module which �ts data with empirical equations: BA-
CON, COPER (Kokar, 1986), small FAHRENHEIT, IDS (Nordhausen and
Langley, 1989), KEPLER (Wu and Wang, 1989). Goals and plans can be
called recursively, until plans are reached which can be carried out directly,
without reference to other goals and plans.

Knowledge representation schema contains the tools for constructing,
maintaining, and analyzing the network of knowledge emerging in the dis-
covery process. It de�nes basic types of knowledge and the ways in which
they can be connected. Systems such as DIDO (Scott and Markovitch, 1993),
FAHRENHEIT, IDS and LIVE (Shen, 1993) use graphs to represent relation-
ships between pieces of knowledge and they use frame-like structures to rep-
resent knowledge contained in individual nodes in the graphs.

Static network of goals and plans as well as the knowledge representation
schema can be treated as an abstract discoverer. It can be applied in many
domains. A concrete discoverer can be formed by augmenting the abstract
discoverer with sensors, manipulators and procedures which control their func-
tioning. This way the abstract mechanism reaches a concrete interpretation.

In a concrete application, when a machine discoverer investigates a con-
crete physical system, the elements of the discovery method are instantiated
in concrete ways, forming a run-time agent. Concrete goals and concrete plans
of actions change dynamically, following the patterns provided in the static
network of goals and plans. Similarly, concrete knowledge is represented in
a dynamically changing network (Zytkow 1991; Zytkow and Zhu 1993) which
is constructed and maintained based on the patterns taken from the static
network. As new discoveries are made, this network grows to include new
knowledge. Goals and plans can be selected dynamically, at the runtime, by
analysis of the current state of the knowledge network. When a limitation of
knowledge is detected, static network of goals and plans can provide a response
in the form of a goal and a plan which should overcome that limitation.

FAHRENHEIT's knowledge representation in the form of a knowledge
graph ( _Zytkow, 1996) allows the system to examine any given state of knowl-
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edge and seek new goals that transcend that state. Each goal corresponds
to a limitation of knowledge. Each state of knowledge can be transcended in
di�erent directions, so that goal generator typically creates many goals and is
thus supported by goal selector.
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