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Abstract

The paper is concerned with autonomous intelligent robots who discover knowledge about their
environment. First, we compare human and robotic discovery and we clarify the notion of robotic
agent and the meaning of autonomous pursuit of knowledge by a robotic system. Then we de-
scribe the basic components of machine discoverers, distinguishing (1) a general purpose discovery
mechanism, applicable in many domains, and (2) various ways of linking that algorithm with the
physical world through robot's sensors and manipulators. We discuss the ways in which di�erent
concrete robotic discoverers explore and represent their environment, including the exploration of
o�ce environment with a mobile robot, experiments made by robot arms, and a robot-scientist
that makes simple chemistry experiments.

1 Introduction

Autonomous intelligent robots and machine discovery systems which discover knowledge in di�erent
domains have been developed by di�erent research communities. Both communities work indepen-
dently, but they should feedback each other. It has been a widespread belief that autonomous
intelligent agents will receive a big boost when they will be able to explore their environment and
build autonomously their own knowledge bases the way humans can do. The cognitive skills needed
in autonomous knowledge acquisition are the goal in the �eld of machine discovery. Machine dis-
coverers can be de�ned as computer systems that autonomously pursue knowledge. We describe
the architecture of a robotic system which can interact with the real world and use empirical data
to develop theories of its environment. Then we present robotic applications that employ chemical
laboratory equipment, robot arm and a mobile robot. In each application the same software system
has been linked to speci�c sensors and manipulators, controlled by speci�c device drivers.

Our robot-discoverer shares many techniques with other discovery systems. Some systems
get their data in a simulation, for instance BACON (Langley, Simon, Bradshaw, and Zytkow,
1987). BACON 's experiments consist in selecting a combination of values of independent variables
followed by reading the response value of the dependent variable from keyboard or from a simulator.
Simulated experiments and simulated data are idealized and shield us from challenges of real world
interaction.
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Still a larger group of systems work on knowledge discovery in databases (KDD: Piatetsky-
Shapiro, 1991; Piatetsky-Shapiro & Frawley, 1991; Fayyad, Piatetsky-Shapiro, Smyth & Uthu-
rusamy, 1996). KDD systems share with robotic discovery challenges of real data. But theories
developed in the area of KDD are not as sophisticated. Not available are experiments which pro-
vide �ne and organized data. For instance, a sequence of experiments can use �xed values of many
parameters, while a few others are varied systematically. Robotic experiments can be done in
feedback between theory formation and experimentation strategies. This leads to data that are
immediately relevant to problems in the current focus of discoverer.

2 Cognitive autonomy of a machine discoverer

Throughout the history, human discoverers did not rely on external authority, because there was
none at the time when the discovery has been made, or even worse, the discovery contradicted
the accepted beliefs. To be considered a discoverer, both an individual human discoverer and the
mankind as a collective discoverer must seek autonomously new knowledge, applying their own
control to the repertoirs of discovery techniques and values. Machine discoverers are a new class of
agents who share the same characteristic.

Machine discoverers can be viewed as computer systems that autonomously pursue knowledge.
Let us clarify the notion of cognitive autonomy to make it useful in machine discovery. Suppose
that agent A discovers piece of knowledge K which has been known to others. We can be consider
that A discovered K, if A did know K before making the discovery and was not guided towards K
by an external authorities. It is relatively easy to trace the external guidance received by a machine
discoverer. All details of software are available for inspection, so that the initial knowledge and
method can be analyzed.

The existing systems would not reach success in making discoveries if we humans did not provide
help. However, they are autonomous to some degree, and future research in machine discovery will
increase their cognitive autonomy. Autonomy of an agent can be increased in two directions. The
agent is more autonomous if it has more means to interact with the environment, for instance more
sensors and manipulators. Within the same means, the agent is more autonomous if it can make
more choices, satisfy more values and investigate a broader range of goals. One way to expand the
range of goals is to implement new components of the discovery process. The mere accumulation
of new components, however, would not su�ce. The components must be strongly integrated and
the integration must support the autonomous evaluation of results. As a result, more discovery
steps in succession can be performed without external intervention, leading to greater autonomy.
A single step rarely permits a sound judgement about the results. A combination of steps provides
a more informed feedback on the reasons for acceptance.

3 Anatomy of a robot-discoverer

Let us consider a robotic discoverer whose architecture has been inuenced by various existing sys-
tems, primarily small FAHRENHEIT, but also LIVE (Shen, 1993), DIDO (Scott and Markovitch,
1993) and KEKADA (Kulkarni and Simon, 1987). In Figure 1 we illustrate the basic components
of a robotic agent-discoverer, and their interaction with the physical world. The agent is depicted
as a darkly shaded rectangle. It consists of \mind" and \body". The mind is a software system,
while the body is hardware, which is a part of the physical world. The agent interacts with a small,
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selected part of the world, called empirical system (lightly shaded).

Hardware of the discoverer includes the \brain" part and the \body" part. The brain includes
a computer with its processor, memory, input and output, plus processors which drive sensors
and manipulators, linked to the computer input/output (Zytkow, Zhu i Hussam 1990). The body
includes sensors and manipulators. Figure 1 depicts a robotic arm as a manipulator and a camera
as a sensor, engaged in a mechanics experiment.

The part of the software necessary for the contact with the external world includes device drivers
which control the available sensors and manipulators, and operational de�nitions of meaningful
laboratory activities and measurements, expressed in terms of elementary actions of sensors and
manipulators (Zytkow, Zhu and Zembowicz, 1992). This part of software is application speci�c.
While many operational de�nitions share common generic structure, each concrete con�guration of
sensors and manipulators as well as codes understood by their processors are speci�c, and can be
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viewed as a physical interpretation of the formalism of machine discoverer.

Discovery method consists of a static, pre-programmed network of discovery goals linked to
plans which are the means by which those goals can be accomplished. Because discovery goals
require search in di�erent spaces of hypotheses, terms, procedures, and the like, most of the plans
are algorithms that can e�ectively search the corresponding spaces. The same goal can be carried
by various plans. For instance, many systems include a module which �ts data with empirical
equations: BACON, COPER (Kokar, 1986), small FAHRENHEIT, IDS (Nordhausen and Langley,
1989), KEPLER (Wu and Wang, 1989). Goals and plans can be called recursively, until plans are
reached which can be carried out directly, without reference to other goals and plans.

Knowledge representation schema contains the tools for constructing, maintaining, and analyz-
ing the network of knowledge emerging in the discovery process. It de�nes basic types of knowledge
and the ways in which they can be connected. Systems such as DIDO (Scott and Markowitch, 1993),
FAHRENHEIT, IDS and LIVE (Shen, 1993) use graphs to represent relationships between pieces of
knowledge and they use frame-like structures to represent knowledge contained in individual nodes
in the graphs.

Static network of goals and plans as well as the knowledge representation schema can be treated
as an abstract discoverer. It can be linked to many domains. A concrete discoverer can be formed
by augmenting the abstract discoverer with sensors, manipulators and procedures which control
their functioning. This is similar to interpretation of scienti�c formalisms in physics, chemistry,
and other sciences.

In a concrete application, when a machine discoverer investigates a concrete physical system,
the elements of the discovery method are instantiated in concrete ways, forming a run-time agent.
Concrete goals and concrete plans of actions change dynamically, following the patterns provided in
the static network of goals and plans. Similarly, concrete knowledge is represented in a dynamically
changing network (Zytkow 1991; Zytkow and Zhu 1993) which is constructed and maintained based
on the patterns taken from the static network. As new discoveries are made, this network grows to
include new knowledge. Goals and plans can be selected dynamically, at the runtime, by analysis
of the current state of the knowledge network. When a limitation of knowledge is detected, static
network of goals and plans can provide a response in the form of a goal and a plan which should
overcome that limitation.

4 Discovery goals

The path to discovery leads through many steps. Autonomous systems must combine many lesser
goals and plans that carry these goals out.

We will illustrate the basic building blocks of the discovery process on the goals and plans im-
plemented in FAHRENHEIT ( _Zytkow, 1996). For a given physical system S, FAHRENHEIT makes
many experiments and generalizes them to a theory. Experiments are the only source for obtaining
information about S. The ultimate discovery goal is construction of empirical theory which de-
scribes, within empirical error, regularities between control variables and dependent variables and
boundary conditions for those regularities.

Formally, in FAHRENHEIT each experiment consists in enforcing independently a value for each
control variable xi; i = 1; � � � ; N , and in reading the value of y. Finding the regularities between one

control variable and one dependent variable is an important discovery goal, and a subgoal to many
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others. Such regularities are particularly simple and are considered by many discovery systems (for
instance BACON.1: Langley et. al, 1987; FAHRENHEIT's Equation Finder (EF): Zembowicz and
_Zytkow 1991). They can be found from data in which one control variable is varied, the values
of all other control variables are �xed, and the values of one variable are measured. Such data
are typically generated in a carefully conducted sequence of experiments. One of FAHRENHEIT's
goals is to conduct a sequence of experiments. After that goal is completed, the resultant sequence
of data is passed on to the Equation Finder module which seeks equations which �t those data.
Success or failure in �nding an equation lead to other goals.

When an equation E has been found for a sequence of data, new alternative goals are to �nd
the limits of E's application or to generalize E to another control variable. When the former goal is
successful, that is, when the boundaries for application of E have been found, this leads to the goals
of �nding regularities beyond the boundaries. These goal are of the same type as �nding the �rst
regularity. Generalization, in turn, can be done by recursively invoking the goals of data collection
and equation �tting (BACON.3: Langley et.al. 1987; and FAHRENHEIT), plus identi�cation of
equations and objects such as maxima and discontinuities, which have been discovered in di�erent
ranges of data ( _Zytkow, Zhu, and Hussam, 1990).

If an equation which would �t the data cannot be found, those data can be decomposed into
smaller fragments and the equation �nding goal can be set for each fragment separately. Creation
of a useful data fragmentation is a subgoal, which can be accomplished by detection of maxima,
minima, discontinuities, and other special points detected in the data (Zytkow et.al. 1990, 1992).
If no regularity can be found, a data set can be treated as a lookup table.

The presented set of goals, called repeatedly, is su�cient to build an empirical theory in N -
dimensional space of N control variables. However, before the construction of the main theory may
start, one should �nd the theory of empirical error, as well as improve the operational procedures to
reduce that error as much as possible. Empirical error is needed to satisfy many goals, for instance,
to design experiments over a particular physical system, �nd equations which �t given data, and �nd
the scope of applications of regularities. Error reduction, in turn, leads to more precise, repeatable
data, and in consequence to the discovery of better theories. The theory construction tools that
we described in this section, can be used to discover theories of error for the measured and control
variables. They can be also used to reduce error by improvements in operational de�nitions. Initial
operational procedures are expanded and re�ned as a result of discoveries. Better procedures, in
turn, allow FAHRENHEIT to collect better data and to improve its knowledge ( _Zytkow, Zhu and
Zembowicz 1992). The same goal of �nding an empirical equation can serve many supergoals. This
and other successes in the reduction of the method to a smaller number of tools, may convince us
that it is possible that only a small number of di�erent goals and plans is needed to build a machine
discoverer with a broad range of applications.

FAHRENHEIT's knowledge representation in the form of a knowledge graph ( _Zytkow, 1996)
allows the system to examine any given state of knowledge and seek new goals that transcend
that state. Each goal corresponds to a limitation of knowledge. Each state of knowledge can be
transcended in di�erent directions, so that goal generator typically creates many goals and is thus
supported by goal selector.
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5 Applications of a robot-discoverer

The same mechanism can be applied in many domains. We will consider three case studies: (1)
a discovery in the domain of chemistry, (2) a repetition of Galileo's experiment made by a robot
arm, and (3) exploration of o�ce space by a mobile robot.

5.1 Discovery in a science laboratory

We used FAHRENHEIT to conduct many experiments in the domain of di�erential pulse voltam-
metry ( _Zytkow, Zhu, & Hussam 1990). Di�erent parameters of a pulse have been used as control
variables, while the locations and heights of the induced peaks have been measured as dependent
variables. They indicate the presence and concentration of di�erent ions in the investigated sam-
ple. Some experiments involved collection of many thousand data points, detection of maxima in
data and the discovery of many regularities on the heights and locations of those maxima. The
accuracy has been compatible with, or better than the accuracy achieved by human researchers.
In several cases our system detected a more complex and precise regularity than the chemist, or
found a regularity in the cases in which the chemist did not look for it, believing that the results
must be constant. FAHRENHEIT has returned the results in a much shorter time than human com-
petitors. We found that what typically required several days of work for the research assistants,
FAHRENHEIT completed in 50 minutes.

5.2 Robot arm experiment

We set-up a robot arm experiment similar to Galileo's experiments with the inclined plane. The
robotic system placed di�erent cylindrical objects on the top of an inclined plane and measured
the time in which they rolled and reached the bottom. The system collected data, on mass of the
cylinders, determined empirical error and eventually found empirical equations acceptable within
error (Huang & _Zytkow, 1997). The equations have been generalized to the second control variable,
angle at which the inclined plane has been set. By confronting empirical equations developed by
FAHRENHEIT with theoretical models based on classical mechanics, we have shown that empirical
equations provide superior �t to data. Systematic deviations between data and a theoretical model
hint at processes not captured by the model but accounted for in empirical equations.

5.3 Exploration of environment with a mobile robot

The analysis of maps made by the mobile robot, Nomad, has been yet another application of
FAHRENHEIT. Consider the following map made by Nomad with the use of its sonar sensors. The
map shows a part of a T-intersection, traversed by Nomad. Each number in the map indicates
how many sensor readings have been associated with the given point at the map. Each asterisk
indicates the lack of a sonar reading at the appropriate map location. The discovery tasks have been
to describe the intersection in terms of regularities and their boundaries. The regularities sought
have been equations of straight lines that represent walls. Some of the boundaries on regularities
represent points such as the corner in the central part of the map. Other boundaries on straight
lines indicate the scope of sonar readings.
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