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Abstract. A beuristic method of model selection for a nonlinear regres-
sion problem on RB? is proposed and discussed. The method is based on
combining nonparametric statistical technigues for generalized additive
models with an implementation of the Hquation Finder of Yembowice
aned '.;L_vaow (1992). Given the inherent instability of such approaches to
madel selection when data are noisy, a spedal procedure for stabilization
of the selection is an impaortant target of the methad proposed.

1 Introduction

Discovering functional relationships from data in presence of random errors
should be an inherent capability of every data miningand, more generally, knowl-
edge discovery system. Such discoveries are particularly challenging when data
carry relatively large errors. The challenge becomes aggravated when function
argument is of a dimension greater than one.

In statistical terms, the problem amounts to choosing a model in a regression
set-up. That is, given a random sample of pairs was: (%1, 1), .- ., (Xn, ¥ ), where

¥i = flxi) + s, (1)

i=1,2,...,n, &'s are zero-mean random variables and f iz an unknown (re-
gression) function on R4, d > 1, the task is to estimate f by a member of a
given family of functions. We assume that the x;’s come from some probability
distribution on a compact set in R* and that they are mdependent of the g£'s.
Functions f estimating unknown f will be called predictars.

Cwik and Keronacki (1998) have dealt with one-dimensional case, d = 1.
In that study, the Equation Finder (EF), a discovery system of Zembowicz and
Zytkow (see Zembowicz and Zytkow (1992) for a detailed description and dis-
cussion of the system and Moulet {1997) for EF’s evaluation and comparisons),
has been used almost directly, since EF is capable of discovering functions of one
variable. The only problem was to propose and include a procedure stabilizing
the choice of acceptable models for data at hand. Indeed, it was revealed by



simulations that, for different samples from the same distribution, EF provides
results that differ substantially from sample to sample if random errors are not
small encugh . This sort of instability is commean to practically all the well-known
methods of model selection in nonlinear regression.

To be more specific, let us recall first that EF finds “acceptable” models
by means of a systematic search among polynomials of transformed data, when
transformations — such as logarithm, exponent and inverse — of both the inde-
pendent and response variable are conducted. The family of all models to be
considered is decided upon n advance by listing pessible transformations of the
data and choosing the possible order of the polynomials. Initial part of simulation
study by Cwik and Koronacki (1998) consisted in generating random samples
drawn from regression model (1) with fixed (and known) fs which belonged to
the family of models recognizable by EF. For each fixed f, a set of samples of
the same size n was generated from the same probability distribution (the distri-
bution of £;’s was always normal while the distribution of x;’s was uniform on a
fixed interval). Then, for each such sample, predictors found by EF as acceptable
or close to acceptable were subjected to two additional rankings, one based on
the empirical mean squared error,

T

EMSE = ];ch(z,-} - Az

i=1
and another on the mean squared residual error,

oot 1 Pl
MSRE = —— = n;(y,—f(:.}} .
It turned out that, for each f used for data gemeration, each predictor’s ranks
based on MSRE differed substantially from sample to sample while its EMSE
ranks behaved very stably. Interestingly, for most samples, the EMSE ranks were
relatively low when the equation for f (with the predictor’s parameters unspec-
ified) could be made close or equal to f by properly specifying its parameters,
and these ranks were relatively large when no specification of parameters of f
could make the predictor close to fin the Ly distance.

From the above observations there follows a simple idea for a more stable
model selection when d = 1. As should have been expected, MSRE has been
shown to be a poor basis for evaluating predictors’ accuracy. However, for most
samples, we can hope that predictors f are relatively close to f if the space
searched by EF includes the right form. Thus, for most samples, such predic-
tors can be close one to another or, to put it otherwise, to appear in clusters
in a suitably defined space Note that this last observation makes the values of
the EMSE of predictors, unknown in real life situations, irrelevant. This very
ohservation has been used to advantage by Cwik and Koronacki (1998) who
consider as acceptable those predictors which appear in clusters for most sam-
ples. Since in practice one has just one sample of data, (x1,3), ..., (X0, M), 2
set of peendosamples is first generated from the original sample by resampling



combined with leave-many-out procedure, and EF is run an the spendosamples.
The approach can be traced back to Breiman (1996a and 1996b).

Model selection for nonlinear regression, with suitable stabilization proce-
dures included, is grossly aggravated when the argument’s dimensionality is in-
creased to two. In the next section, we propose to adopt the projection pur-
suit regression (PPR) of Friedman and Stuetzle (1981). Using PPR with one-
dimensional projections turns the original regression problem into a combination
of one-dimensional tasks, so that EF can then be applied. Stabilization of se-
lection of projections is proposed and incorporated into the estimation proocess.
At this stage of our research, the whole process of discovering functional rela-
tionship from data at hand is not yet integrated into one system. In particular,
algorithms for (nonparametric) estimation of a regression function on R* are
barrowed from the statistical system S-Plus.

Simulation results are discussed in Sect. 3. Although we confine ourselves to
discussing in detail just one example, several other have been investigated, lead-
ing to essentially the same conclusions. The simulationsshow that the methodol-
ogy proposed can be considered a useful tool for model selection in the nonlinear
regression context, at least when the argument’s dimensionality is one or two.
In fact, the method should work well for 3D and, perhaps, 4D problems. So far,
our modest experience seems to confirm this caim for the 31 case.

2 The Method — 2D Case
The true model can be written as
E(yX =x) = f(x)

with F{-|X = x) denoting conditional expectation given X = x, x € R*. We will
approximate the true model by a so-called generalized additive model

Ma
f(x} = py+ Z .ﬂm‘.sm(aj:;x}: (2)

m=l

where p, is the overall expectation of y, the 3, are constants, a,, are two-
dimensional unit vectors (projection directions), éy, are functions of one variable
such that

Egmanx) =10, Bgkfalx) =1 (3)

£ R o

and My is a fixed number of additive terms in the model. Tt follows, e.g., from
Diaconis and Shahshahani (1984) that each continuous function on R? can be
written in this form. It should be emphasized that we do not require the ¢'s to
be of any known general form with only some parameters unspecified (in this
sense, the given estimator is “nonparametric”).

The most interesting method of estimating an unknown regression function
of several variables by an estimator of the form given by (2) is PPR of Friedman
and Stuetzle. In that method, the a,,’s are found by pursuing “most interest-
ing” directions in some sense. In our method of model selection, we use PPR



repeatedly, in a version implemented in S-Plus. If the ag,’s are considered fixed
in advance, other nonparametric estimators of the form given by (2) can be
used. In what follows, we use the technique of alternating conditional expecta-
tions, or ACE, developed by Breiman and Friedman {1985, again in the form
implemented in S-Plus.

The process of finding “the most interesting” directions requires some sort
of stabilization since its result depends heavily on a sample at hand. In effect,
our propasal for choosing a model in the 2D case can be summarized as follows:

1. Generate a set of psendosamples from the original sample (x;, 1), i =
1,....n

2. Apply the PPR algarithm to each pseudosample.

3. Determine "stable projections of high merit™ by properly “averaging” pro-
Jection directions obtained for different pseudosamples.

4. Substitute the projection directions thus determined into the additive model
given by (2), and fit that model to the original sample using the ACE algo-
rithm.

5. Use EF to approximate the c.ﬁm[a:ix}, m = 1,..., My, by parametric func-
tions. Use the form of equations, but disregard the parameter values.

i. Fit the parametric model obtained {with the a;,’s kept fixed) to the original
sample using the least squares (L5) method.

Let us now explain the process in detail.

As to 1: A set of pseudesamples is obtained by the folowing resampling
procedure: the original data are randomly permuted and the first psendosample
iz obtained by leaving-out the first 2% of the data; then the second 2% is left-out
to obtain the second pseudcsample, again of the size equal to 98% of the size
of the original data, and so on, each time giving a pseudosample of the same
size; (e.g., if the sample =ize is 100, each permutation enables cne to obtain
50 pseudosamples of size 98). The whole process, starting with permuting the
original data, is repeated as many times as needed.

As to 2: The PPR algorithm is applied separately to each psendosample.
Given the results, a new and single M} {see (2)) is determined and PPR, is rerun
on those samples for which it had earlier chesen another value of M. (M; should
preferably be determined by the user upon inspecting a randomly chosen part
of the results for pseudosamples; it can also be the M, which had been chosen
maost often by the algorithm.)

As to 3: "Averaging” the directions aq,, m = 1,_. ., My, over all pseudosam-
ples should be robust against too high variability of the directions found and,
hence, should be confined to a cluster {or clusters) where the bulk of directions
lie. Thus, “averaging” decomposes into (i) running a clustering algorithm based
on the notion of similarity and (ii) averaging within a cluster {or, separately,
within clusters) obtained:



Clustering uses the following steps:

 Let the My directions found for a j-th pseudosample be called the j-th set of
directions and let directions in this set be denoted by a,i;";], m=1,..., My
J=1,...,Jwith J denoting the num ber of pseud osam ples_ In arder to define
similarity between any pair of two sets of directions, say, sets j and &, note
first that each of the two sets determines My lines coming through zero and
having the given directions. Now, find the smallest possible angle between
a line from set j and that from set k. Exclude the two lines involved from
further considerations and find the smallest possible angle between one of
the remaining lines in set § and one of the remaining lines in set k. Repeat
this process until Ay angles are found and define the sum of these angles
as the similarity between set j and set k. Repeat for all pairs of the sets of
directions.

» Construct a complete linkage dendrogram (see, e.g., Krzanowski {1988) for
the dendrogram’s description).

+ Cut the dendrogram at half of its height and stop if the greatest cluster con-
tains more than 30% but less than T0% of all sets of directions.

« If the greatest cluster contains T0% of sets or more, increase the number of
clusters by one and continue until less than T0% of sets are in the greatest
cluster.

# If the greatest cluster contains 30% of sets or less, decrease the number of
clusters by one and continue until more than 30% of sets are in the greatest
cluster.

+ Accept for further consideration clusters with maore than 20% of sets.

Averaging within a cluster consists in the following:

e Faor each cluster separately, find the set of "median” or "averaged” directions:
Choose a j-th set of directions and sort its directions arbitrarily from 1 to
My; for each other set in the cluster, sort its directions in the way consistent
with how the similarity between this set and set j has been calculated; for
each m-th direction, m = 1,_.., My, take the i-th (i = 1, 2) coordinate of all
a:i}?,j =1,...,J, sort them and find their median (for a given m, this gives
the median coordinates (in [{*) for this direction).

Asto 4: Most of the time, more than one set of “stable” directions is obtamed
at stage 3. When this happens, ACE is run on the original sample repeatedly,
each time using anot her stable set of averaged directions. The estimate ret ained
for further analysis is determined by inspecting the results provided by running
ACTE: the smoothest estimate of a regression function sought is chosen.

As to §: The estimate obtained at stage 4 is uniquely determined but it is
nonparametric. Moreover, while it is possible to give j:(x} for each x, the ana-
Iytical form off remains unknown. We therefore apply ETF along each direction
Ay, to estimate parametrically the ¢’s. For each m, only a model which best fits
corresponding funcion ¢ is chosen. Once all the additive terms in the model are



thus given parametric forms, only the general formulas are preserved while the
parameter values provided by EF are disregarded.

As to fi: Parameters of the additive model obtained at stage 5 are estimated
by running the LS methad for the original data. Earlier determined projection
directions a,,, m = 1,..., My, are kept fixed, but it should be emphasized that
this step of our algorithm can be made more general by adding the a,, s to the
set of parameters to be specified by the LS method (see discussion in Sect. 3).

Two more points need explanation. First, disregarding parameter values pro-
vided by EF and adding stage 6 usually leads to a dramatic improvement of the
accuracy of the model finally chosen. And second, it is in principle possible to
choose more than one model in each direction at stage 5, in particular by fit-
ting the additive model (with directions fixed) to pseudosamples. Clearly, this
would lead to a family of plausible models, much in the spirit of our analysis in
the one-dimensional case. It seems likely that such an approach can help when
the algorithm presented in this report fails to find a satisfactory model (a likely
passibility only when f is not recognizable by EF or noise 8 “very large”).

3 Simulation Results
In our example, the regression function was of the form
Fix) = 22y + afyy, (4)

z(g € [-1,1], and the £ were normally distributed with zero mean and stan-
dard deviation equal to 0.05. Equation Finder was set at search depth equal to
one, with transfarmations SQR, SQRT, EXP, LOG, INV, MULTIPLICATION
and DIVISION, and with maximum polynomial degree equal to three. Hundred
random samples (x1, 1), (X2, 2:), - - -, (X100, Proo) of size 100 were generated from
model {1).

It is worth noting that f in (4) is equal to

(/20 =y +x)* = (120 — z)* + 2]

Thus, ideally, My in {2) should be equal to 3 and the ¢'s should be of the form
af{z(y + (), blzpy = z(y)* and ez}, where a, b, ¢ are normalizing constants
(cf. (3))-

In the simulations, 8 pseudosamples were generated from each sample, each
of size 98 (the size of pseudosamples should be specified by the user — it should
such that the variability of directions provided by PPR be clearly visible but
not “too wild”). For all samples, M, = 3 was chosen upon inspection — it was
always clear that the fourth direction introduces only noise into the maodel (i.e.,
&4 provided by PPR behaved very erratically and ¢4(x) could be considered
negligible for all x’s). Typically, 2 or 3 clusters were obtained by step 3 of the
general algorithm. Only in a very few cases 4 clusters had to be taken into
account. The best cluster (ef. our comment to step 4) was always easy to choose.



For some of the original samples, PPR, failed to provide satisfactory results.
Far one such example sample, the situation is illustrated in figure 1. In the first
line, the three ¢'s provided by PPR applied to the original sample are given._ In
the subsequent lines, the three ¢’s provided by step 4 of the general algorithm
are depicted: since running step 3 resulted in obtaining two sets of directions,
ACE was applied to the original sample twice (i.e., with each set used once in
madel {2)). Clearly, the second set of directions provides a satisfactory result.
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Fig. 1. The ¢'s provided by PPR and by ACE with averaged directions

Results from the third line of figure 1 are typical for mest samples. The three
&'s provided by step 4 of the general algorithm, which are depicted in the fig-
ure, approximated in turn in step § by EF, have been found to be, respectively,
quadratic functions of @y 1)@ + a1 (2 and of as 11211y + @2, (2 2(2), and a
palynomial of degree 3 of az (13217 + @z (2)%(2); moreover, the projection direc-
tions determined in step 3 (and kept fixed from then on) have been found by
the algorithm as one would like them to be: all the a; ), ,j = 1,2, are of ap-
proximately the same magnitude (1 IJ’\/‘E} with only one of them being negative,
ag ) = 1 and ag jz =~ 0.

The results for all samples are summarized in table 1. In its second column,
the mean (over all samples) of EMSE is given. In the first line of the table,
the result for fitting the true model by LS is provided. Subsequent lines give



results for: PPR applied to the original sample; running steps 1-4 of the general
algorithm (in the table, symbol PPRuys refers to the fact that the a,,’s in (2)
come from the previous steps of the algorithm); running steps 1-5 with parameter
values provided by EF considered as the final parameters of the model (i.e., f
provided by using EF is considered to be the final estimate of f); running all 6
steps of the general algorithm (symbal LSy, refers to keeping the a,,’s fixed);
running all 6 steps with with the a,,’s added in step 6 to the set of parameters

to be specified by the LS method.

Table 1.

Algorithm 10° EMSE
True Maodel 4 LS 8
PPR 398
PPRatuse + ACE 175
PPRetust + ACE + EF 2651

PPRetust + ACE + EF + LSair 203
PPR.jus + ACE + EF + LS 26

Results abtained by running all 6 steps of the general algorithm (with step 6
in its original form) can be considered truly satsifactory. First, EMSE obtamed
for PPRuus + ACE + EF + LSa. is comparable with that for PPRyy. +
ACE, what should be seen as a desirable result. While the latter estimator gives
as good a fit to the data as is possible in the presence of random errors, it does
not provide an analytical form of f; it is the former estimator which does. And
second, our general algorithm has proved capable of correctly recognizing the
general form of the two terms in (4).

At the same time, one should not hope for obtaining low values of EMSE
without readjusting model parameters by implementing the LS method. This
point is well illustrated by the results for PPRoye + ACE + EF at the one
extreme and for PPRyy. + ACE + EF + LS at the other. It is well-known
that, whenever possible, parameter readjustment after each modification of a
maodel is & must when random errors are present.

In particular, if it is feasible, the a.,’s, which appear in the additive model
obtained in step 5, should be added to the set of parameters to be specified
by the L5 method. This could readily be done in cur example since EF proved
capable of discovering that the f given by (4) is in fact a polynomial of order 3



in two variables. It is another matter that the generalization mentioned can turn
the least squares minimization into a highly nonlinear problem whose numerical
solution can be hard to obtain.

Let us turn briefly to one more example. Let

1

3

1) =32+ g

and all the other conditions be as in the former example. In this case, the general
algorithm described in section 2 cannot lead to EMSE as low as that obtained
in the earlier example, unless the sample size is made sufficiently larger. For
the sample size of 100, it is not unusual to obtain in step 6 of the algorithm
parameters like 1.15 or 1.25 instead of the true value 1.2 in the second term of
[ but then, for 25y = —1, the differences

1 1 1 1
— d -
Ty + 1.2 oz + 115 a xoy+ 12 ry+1.25

become -1.66G... and 1, respectively. Since the values in the denominator are not
far enough from zero, the fraction’s contribution to the mean squared error will
be large unless an estimate of the constant 1.2 is very close to 1.2, But, for a
given level of random g's, this can only be achieved by imcreasing the sample
size. Interestingly, however, already for sample size of 100, the shape of the two
functions contributing to f is again generally well recognized by our algorithm.
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