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Abstract. Knowledge representation which is internal to a computer

lacks empirical meaning so that it is insu�cient for the investigation of

the external world. All intelligent systems, including robot-discoverers

must interact with the physical world in complex, yet purposeful and

accurate ways. We argue that operational de�nitions are necessary to

provide empirical meaning of concepts, but they have been largely ig-

nored by the research on automation of discovery and in AI. Individual

operational de�nitions can be viewed as algorithms that operate in the

real world. We explain why many operational de�nitions are needed for

each concept and how di�erent operational de�nitions of the same con-

cept can be empirically and theoretically equivalent. We argue that all

operational de�nitions of the same concept must form a coherent set

and we de�ne the meaning of coherence. No set of operational de�ni-

tions is complete so that expanding the operational de�nitions is one of

the key tasks in science. Among many possible expansions, only a very

special few lead to a satisfactory growth of scienti�c knowledge. While

our examples come from natural sciences, where the use of operational

de�nitions is especially clear, operational de�nitions are needed for all

empirical concepts. We briey argue their role in database applications.

1 Operational de�nitions provide empirical meaning

Data about external world are obtained by observation and experiment. Sophis-
ticated procedures and instruments are commonly used to reach data of sci-
enti�c value. Yet we rarely think systematically about methods by which data
have been procured, until problems occur. When a set of data is inconsistent
with our expectations, we start asking: \How was this particular measurement
obtained?", \What method has been used?", \How is this method justi�ed?".
Often it turns out that a method must be changed. Because data can be wrong
in so many ways, sophisticated knowledge is required in order to examine and
improve measurement methods.

It is critical to the growth of scienti�c knowledge to study new situations,
for which no known method can measure a particular quantity. For instance,
we may wish to measure temperatures lower than the capabilities of all existing
instruments. Or we want to measure temperature change inside a living cell, as
the cell undergoes a speci�c process.



When no known method applies, new methods must be discovered. New
measurement methods must expand the existing concepts. For instance, a new
thermometer must produce measurements on a publicly shared scale of temper-
ature.

Discovery of new measurement methods, which we also call operational def-
initions, is the central problem in this paper. We provide an algorithm that
demonstrates how empirical knowledge is used to construct new operational def-
initions, how new methods can be empirically veri�ed and how choices can be
made among competing methods.

We end each section with a few basic claims about operational de�nitions.

Claim 1: For each empirical concept, measurements must be obtained by repeat-
able methods that can be explained in detail and used in di�erent laboratories.

Claim 2: The actual veri�cation in empirical science is limited to empirical
facts. Operational de�nitions determine facts; thus they determine the scope of
scienti�c veri�cation.

Claim 3: In contrast, scienti�c theories often make claims beyond the facts that
can be empirically veri�ed at a given time. Theoretical claims often apply to all
physical situations, whether we can observe them or not.

In this paper we use examples of numerical properties of objects and their
pairs. The numbers that result from measurements, for instance temperature or
distance, we call values of empirical concepts.

Claim 4: Operational de�nitions can be classi�ed in several dimensions: (a) they
apply to objects, states, events, locations and other empirical entities; (b) they
may de�ne predicates of di�erent arity, for instance, properties of individual
objects, object pairs (distance) or triples (chemical a�nity); (c) some opera-
tional de�nitions provide data while others prepare states that possess speci�c
properties, such as the triple point of water.

2 The AI research has neglected operational de�nitions

Operational semantics links the terms used in scienti�c theories with direct ob-
servations and manipulations (Bridgman, 1927; Carnap, 1936). While important
in empirical science, the mechanisms that produce high quality experiments have
been neglected not only in the existing discovery systems but in the entire do-
main of arti�cial intelligence.

The distinction between formalism and its interpretation, also called seman-
tics, has been applied to the study of science since 1920's and 1930's. Scienti�c
theories have been analyzed as formal systems whose language is empirically
interpreted by operational de�nitions.

A similar distinction applies to discovery systems and to knowledge they
create. A discovery mechanism such as BACON (Langley, Simon, Bradshaw &
Zytkow, 1987) can be treated as (1) a formal system that builds equations from
data that are formally tuples in the space of the values of independent and
dependent variables plus (2) a mechanism that procures data.



Similarly to scientists, BACON and other discovery systems use plans to pro-
pose experiments. Each experiment consists in selecting a list of values x1; :::; xk
of empirical variables X1; :::; Xk, and in obtaining the value y of a dependent
variable Y which provides the "world response" to the empirical situation char-
acterized by x1; :::; xk. But instead of real experiments, the values of dependent
variables are either typed by the user or computed in simulation, in response to
the list of values of independent variables.

This treatment bypasses real experimentation and measurements. Other pa-
pers and collections that consider many components of the scienti�c methods
(Kulkarni & Simon, 1987; Sleeman, Stacey, Edwards & Gray, 1989; Shrager &
Langley, 1990; Valdes-Perez, 1995) neglect operational de�nitions of concepts.

In the wake of robotic discovery systems, operational semantics must, at the
minimum, provide realistic methods to acquire data. _Zytkow, Zhu & Hussam
(1990) used a robotic mechanisms which conducted automatically experiments
under the control of FAHRENHEIT. In another robotic experiment, _Zytkow, Zhu
& Zembowicz (1992) used a discovery process to re�ne an operational de�ni-
tion of mass transfer. Huang & Zytkow (1997) developed a robotic system that
repeats Galileo's experiment with objects rolling down an inclined plane. One
operational de�nition controlled the robot arm so that it deposited a cylinder
on the top of an inclined plane, while another measured the time in which the
cylinder rolled to the bottom of the plane.

While operational semantics must accompany any formalism that applies to
the real world, it has been unnoticed in AI. Jackson's claim (1990) is typical:
\a well-de�ned semantics . . . reveals the meaning of . . . expressions by virtue of
their form." But this simply passes on the same problem to a broader formalism,
that includes all the terms used in formal semantics. Those terms also require
real-world interpretation that must be provided by operational de�nitions.

Plenty of further research must be conducted to capture the mechanisms in
which operational de�nitions are used in science and to make them applicable
on intelligent robots.

Claim 5: Formal semantics are insu�cient to provide empirical meaning.

Claim 6: Robotic discoverers must be equipped in operational de�nitions.

3 Operational de�nitions interact with the real world

Early analyses of operational de�nitions used the language of logic. For instance,
a dispositional property \soluble in water" has been de�ned as

If x is in water then (x is soluble in water if and only if x dissolves)

But a more adequate account is algorithmic rather than descriptive:

Soluble (x)

Put x in water!

Does x dissolve?



As an algorithm, operational de�nition consists of instructions that prescribe
manipulations, measurements and computations on the results of measurements.
Iteration can enforce the requirements such as temperature stability, which can
be preconditions for measurements. Iteration can be also used in making mea-
surements. The loop exit condition such as the equilibrium of the balance, or
a coincidence of a mark on a measuring rod with a given object, triggers the
completion of a step in the measurement process.

Procedures that interpret independent and dependent variables can be con-
trasted as manipulation and measurement mechanisms. Each independent vari-
able requires a manipulation mechanism which sets it to a speci�c value, while
a response value of an dependent variable is obtained by a measurement mech-
anism. In this paper we focus on measurement procedures.

It happens that an instruction within procedure P does not work in a spe-
ci�c situation. In those cases P cannot be used. Each procedure may fail for
many reasons. Some of these reasons may be systematic. For instance, a given
thermometer cannot measure temperatures below -40C because the thermomet-
ric liquid freezes or above certain temperature, when it boils. Let us name the
range of physical situations to which P applies by RP .

Often, a property is measured indirectly. Consider distance measurement
by sonar or laser. The time interval is measured between the emitted and the
returned signal. Then the distance is calculated as a product of time and velocity.
Let C(x) be the quantity measured by procedure P . When P terminates, the
returned value of C is f(m1; :::;mk), where m1; :::;mk are the values of di�erent
quantities of x or the empirical situation around x, measured or generated by
instructions within P , and f is a computable function on those values.

Claim 7: Each operational de�nition should be treated as an algorithm.

Claim 8: The range of each procedure P is limited in many ways, thus each is
merely a partial de�nition applicable in the range RP .

Claim 9: An operational de�nition of concept C can measure di�erent quantities
and use empirical laws to determine the value of C: C(x) = f(m1; :::;mk)

Claim 10: An operational de�nition of a concept C(x) can be represented by a
descriptive statement: \If x is in RP then C(x) = f(m1; :::;mk)"

4 Each concept requires many operational de�nitions

In everyday situations distance can be measured by a yard-stick or a tape. But
a triangulation method may be needed for objects divided by a river. It can be
extended to distance measurement from the Earth to the Sun and the Moon.
Then, after we have measured the diameter of the Earth orbit around the Sun,
we can use triangulation to measure distances to many stars.

But there are stars for which the di�erence between the \winter angle" and
the \summer angle" measured on the Earth, is non-measurably small, so another
method of distance measurement is needed. Cefeids are some of the stars within
the range of triangulation. They pulsate and their maximum brightness varies



according to the logarithm of periodicity. Another law, determined on Earth and
applied to stars claims that the perceived brightness of a constant light source
diminishes with distance as 1=d2. This law jointly with the law for cefeids allows
us to determine the distance to galaxies in which individual cefeids are visible.

For such galaxies the Hubble Law was empirically discovered. It claims pro-
portionality between the distance and red shift in the lines of hydrogen spectrum.
The Hubble Law is used to determine the distance of the galaxies so distant that
cefeids cannot be distinguished.

Similarly, while a gas thermometer applies to a large range of states, in very
low temperatures any gas freezes or gas pressure becomes non-measurably small.
A thermometer applied in those situations measures magnetic susceptibility of
paramagnetic salts and uses Curie-Weiss Law to compute temperature. There are
high temperatures in which no vessel can hold a gas, or states in which the inertia
of gas thermometer has unacceptable inuence on the measured temperature.
Measurements of thermal radiation and other methods can be used in such cases.

Claim 11: Empirical meaning of a concept is de�ned by a set of operational
de�nitions.

Claim 12: Each concrete set is limited and new methods must be constructed
for objects beyond those limits.

5 Methods should be linked by equivalence

Consider two operational de�nitions P1 and P2 that measure the same quantity
C. When applied to the same objects their results should be empirically equiva-
lent within the accuracy of measurement. If P1 and P2 provide di�erent results,
one or both must be adjusted until the empirical equivalence is regained.

From the antiquity it has been known that triangulation provides the same
results, within the limits of measurement error, as a direct use of measuring rod
or tape. But in addition to the empirical study of equivalence, procedures can
be compared with the use of empirical theories and equality of their results may
be proven.

Triangulation uses a basic theorem of Euclidean geometry that justi�es the-
oretically the consistency of two methods: by the use of yard-stick and by tri-
angulation. To the extent in which Euclidean geometry is valid in the physical
world, whenever we make two measurements of the same distance, one using a
tape while the other using triangulation, the results are consistent.

Claim 13: Methods can di�er by their accuracy and by degree to which they
inuence the measured quantity.

Claim 14: When two operational de�nitions de�ne the same property and apply
to the same objects, their results should be empirically equivalent. If they are
not, additional data are collected and methods are adjusted in order to restore
their equivalence.

Claim 15: When two operational de�nitions de�ne the same concept C(x), it is
possible to prove their equivalence. The prove consists in deducing from a veri�ed



empirical theory that the statements that represent them are equivalent, that is,
f1(m1; :::;mk) = f2(n1; :::; nl)

Claim 16: When the statements that represent two procedures use empirical
laws C(x) = f1(m1; :::;mk), C(x) = f2(n1; :::; nl), theoretical equivalence of both
procedures follows from those laws.

Claim 17: The more general and better veri�ed are the theories that justify the
equivalence of two procedures P1 and P2, the stronger are our reasons to believe
in the equivalence of P1 and P2.

Claim 18: Proving the equivalence of two procedures is desired, because the
empirical veri�cation of equivalence is limited.

6 Operational de�nitions of a concept form a coherent set

We have considered several procedures that measure distance. But distance can
be measured in many other ways. Even the same method, when applied in dif-
ferent laboratories, varies in details. How can we determine that di�erent mea-
surements de�ne the same physical concept? Procedures can be coordinated by
the requirements of empirical and theoretical equivalence in the areas of common
application. However, we must also require that each method overlaps with some
other methods and further, that each two methods are connected by a chain of
overlapping methods.

De�nition: A set � = f�1; :::; �ng of operational de�nitions is coherent i� for
each i, j = 1,...,n

(1) �i is empirically equivalent with �j . Notice that this condition is trivially
satis�ed when the ranges of both operational de�nitions do not overlap;

(2) there is a sequence of de�nitions �-i1,...,�-ik, such that �-i1 = �i, �-ik =
�j, and for each m = 2; :::; k the ranges of �-im and �-im+1 intersect.

The measurements of distance in our examples form such a coherent set. Rod
measurements overlap with measurements by triangulation. Di�erent versions
of triangulation overlap with one another. The triangulation applied to stars
overlaps with the method that uses cefeids, which in turn overlaps with the
method that uses Hubble Law.

Similarly, the measurements with gas thermometer have been used to cali-
brate the alcohol and mercury thermometers in their areas of joint application.
For high temperatures, measurements based on the Planck Law of black body
radiation overlap with the measurements based on gas thermometers. For very
low temperatures, the measurements based on magnetic susceptibility of para-
magnetic salts overlap with measurements with the use of gas thermometer.

Claim 19: Each empirical concept should be de�ned by a coherent set of op-
erational de�nitions. When the coherence is missing, the discovery of a missing
link becomes a challenge.

For instance, the experiment of Millikan provided a link between the charge
of electron and electric charges measured by macroscopic methods.



Claim 20: By examining theoretical equivalence in a coherent set � of opera-
tional de�nitions we can demonstrate that the values measured by all procedure
in � are on the same scale.

Claim 21: Operational de�nitions provide means to expand to new areas the
range of the laws they use.

7 Laws can be used to form new operational de�nitions

Operational de�nitions can expand each concept in several obvious directions,
towards smaller values, larger values, and values that are more precise. But the
directions are far more numerous. Within the range of \room" temperatures,
consider the temperature inside a cell, temperature of a state that is fast varying
and must be measured every second, or temperature on the surface of Mars. Each
of these cases requires di�erent methods. A scientist may examine the shift of
tectonic plates by comparing the distances on the order of tens of kilometers
over the time period of a year, when the accuracy is below a millimeter.

Whenever we consider expansion of operational de�nitions for an empirical
concept C to a new range R, the situation is similar:

(1) we can observe objects in R for which C cannot be measured with the
needed accuracy;

(2) some other attributes A1; :::; An of objects in R can be measured, or else
those objects would not be empirically available;

(3) some of A1; :::; An are linked to C by empirical laws or theories. We can
use one or more of those laws in a new method: measure some of A1; :::; An and
then use laws to compute the value of C.

Consider the task: determine distance D from Earth to each in a set R of
galaxies, given some of the measured properties of R: A1; A2; :::; An. Operational
de�nitions for A1; :::; An are available in the range R. For instance, let A2 mea-
sure the redshift of hydrogen spectrum. Let D = h(A2) be Hubble Law. The
new method is:

For a galaxy g, when no individual cefeids can be distinguished:

Measure A2 of the light coming from g by a method of spectral analysis

Compute the distance D(Earth, g) as h(A2(g))

The same schema can yield other operational de�nitions that determine dis-
tance by properties measurable in a new range, such as yearly parallax, perceived
brightness or electromagnetic spectrum.

Some laws cannot be used even though they apply to galaxies. Consider
D = a=

p
B (B is brightness). It applies even to the most remote sources of

light. But B used in the law is the absolute brightness at the source, not the
brightness perceived by an observer. Only when we could determine the absolute
brightness, we could determine the distance to galaxies by D = a=

p
B.

The following algorithm can be used in many applications:



Algorithm:

Input: set of objects observed in range R

attribute C that cannot be measured in R

set of attributes A1,...,Ak that can be measured in R

set {F1,...,Fp} of known operational definitions for C

set LAWS of known empirical laws

Output: a method by which the values of C can be determined in R

Find in LAWS a law L in which C occurs

Let B1,...,Bm be the remaining attributes that occur in L

Verify that C can be computed from L, and the values of B1,...,Bm

Verify that {B1,...,Bm} is subset of {A1,...,Ak},

that is, B1,...,Bm can be measured in at least some situations in R

Use L and B1,...,Bm to create new procedure F for C

Make F consistent with procedures in {F1,...,Fp}

After the �rst such procedure has been found, the search may continue for each
law that involves C.

In set-theoretic terms, each expansion of concept C to a new range R can be
viewed as a mapping from the set of distinguishable classes of equivalence with
respect to C for objects in R to a set of possible new values of C, for instance, the
values larger than those that have been observed with the use of the previous
methods. But possible expansions are unlimited. The use of an existing law
narrows down the scope of possible concept expansions to the number of laws
for which the above algorithm succeeds. But the use of an existing law does
not merely reduce the choices, it also justi�es them. Which of the many values
that can be assigned to a given state corresponds to its temperature? If laws
reveal the real properties of physical objects, then the new values which �t a law
indicate concept expansion which has a potential for the right choice.

Claim 22: Whenever the empirical methods expands to new territories, new
discoveries follow. New procedures are instrumental to that growth.

Claim 23: Each new procedure expands the law it uses to a new range. If
procedures P1 and P2 use laws L1 and L2 respectively, and produce empirically
inconsistent results for new objects in range R, the choice of P1 will make L2
false in R.

If a number of procedures provide alternative concept expansions, various
selection criteria can be used, depending on the goal of research.

Claim 24: Among two methods, prefer the one which has a broader range, for
it justi�es concept expansion by a broader expansion of an existing law.

Claim 25: Among two methods, prefer the one which has a higher accuracy,
since it provides more accurate data for the expansion of empirical theories.

Claim 26: Methods must and can be veri�ed in their new area of application
or else, the empirical laws they apply would be mere de�nitions.



8 Operational de�nitions apply to all empirical concepts

While explicit operational de�nitions are rarely formed by experimental scien-
tists, they become necessary in autonomous robots. A robot explorer can also
bene�t from mechanisms for generation of new procedures.

Operational meaning applies to databases. They are repositories of facts that
should be shared as a major resource for knowledge discovery and veri�cation.
But data and knowledge can be only useful for those who understand their mean-
ing. Operational de�nitions describe how the values of all �elds were produced.

Similarly to our science examples, operational de�nitions can be generated
from data and applied in di�erent databases. Consider a regularity L, discovered
in a data tableD, which provides accurate predictions of attribute C from known
values of A1; :::; An. L can be used as a method that determines values of C.

Consider now another tableD1, that covers situations similar toD, but di�ers
in some attributes. Instead of test C, tests B1; :::; Bm are provided, which may
or may not be compatible with C. Suppose that a doctor who has been familiar
with test C at his previous workplace, issues a query against D1 that includes
attribute C which is not inD1. A regular query answering mechanismwould fail,
but a mechanism that can expand operational meaning of concepts may handle
such a query (Ras, 1997). A quest Q for operational de�nition of concept C with
the use of B1; :::; Bm will be send to other databases. If an operational de�nition
is found, it is used to compute the values of C in the doctor's query.
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