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ABSTRACT

Contingency tables represent data in a granular way and are a well-established tool for inductive generalization of
knowledge from data. We show that the basic concepts of rough sets, such as concept approximation, indiscernibility,
and reduct can be expressed in the language of contingency tables. We further demonstrate the relevance to rough
sets theory of additional probabilistic information available in contingency tables and in particular of statistical tests
of signi�cance and predictive strength applied to contingency tables. Tests of both type can help the evaluation
mechanisms used in inductive generalization based on rough sets. Granularity of attributes can be improved in
feedback with knowledge discovered in data. We demonstrate how 49er's facilities for (1) contingency table re�nement,
for (2) column and row grouping based on correspondence analysis, and (3) the search for equivalence relations
between attributes improve both granularization of attributes and the quality of knowledge. Finally we demonstrate
the limitations of knowledge viewed as concept approximation, which is the focus of rough sets. Transcending that
focus and reorienting towards the predictive knowledge and towards the related distinction between possible and
impossible (or statistically improbable) situations will be very useful in expanding the rough sets approach to more
expressive forms of knowledge.

Keywords: knowledge discovery; knowledge re�nement; automated discovery; granularity; indiscernibility; approx-
imation; contingency tables; rough sets.

1. ROUGH SETS REPRESENTATION BY CONTINGENCY TABLES

Both rough sets and contingency tables are founded on a similar idea of granular empirical data. Both approaches
use the representation of empirical objects by n-tuples or vector of attribute values. This representation is common
in statistics, databases, machine learning, pattern recognition and many other areas. Speci�c to rough sets and
contingency tables approaches are indiscernibility classes. Objects are indiscernible if their property tuples are the
same. That can happen in practice when domains of attributes contain small numbers of values. That happens in
many databases, especially when attribute values are determined with limited accuracy. But if that is not the case,
binning also known as discretization, can be used.

Rough sets were introduced in 1980's by Zdzislaw Pawlak (1991), while the history of contingency tables is several
decades older. They play a major role in the theory and practice of statistics (Gokhale & Kullback, 1978; Fienberg,
1980; Whittaker, 1990). Contingency tables have been used as a general tool for expressing knowledge and for
knowledge re�nement in 49er (Zembowicz and Zytkow, 1993, 1996).

In this paper we place rough sets in the framework of contingency tables. We argue that contingency tables
provide an added value of statistical techniques and a broader perspective on knowledge that can help to transcend
the current rough sets applications (Ziarko, 1994; Polkowski & Skowron, 1998, 1998A)

1.1. Contingency tables

In this paper we will consider data organized into a single relational table R with the attributes A1, A2, . . . , AM .
Let V1, V2, . . . , VM be the corresponding sets of values for each attribute. This will ensure compatibility with the
rough sets treatment of data.

The space W of all possible events (situations) is the Cartesian product W = V1�V2�: : :�VM , which includes all
possible combinations of attribute values. While a data table is a convenient way of storing data, a Cartesian product
provides an important theoretical perspective. We will explain that perspective throughout this paper. Contingency

Further author information: e-mail: zytkow@uncc.edu; http://www.cs.uncc.edu/~zytkow



tables are de�ned on Cartesian products of values of all attributes. For each relational table R, a frequency table
is a mapping from W to the set of natural numbers, associating each possible event (v1; : : : ; vn), v1 2 V1, . . . ,
vM 2 VM , with the number of occurrences of the corresponding record in the database. Frequency tables, also called
contingency tables, or tables of actual counts, are very useful, because they can represent regularities in the domain
represented by data. For instance, �elds which are occupied by one or more records indicate possible events, while if
su�ciently many data are available, empty �elds (with zero records) indicate impossible events. Di�erent patterns
that distinguish combinations of values that occur in the domain, vs. those that do not occur, lead to di�erent forms
of knowledge, such as equations, equivalence and subset relation.

But in many domains the knowledge is not black-and-white. All events are possible but not equally probable.
Contingency tables are commonly used to express statistical relations between attributes. Consider university records
that include for each student information such as high school grade point average (HSGPA) and total credit hours
taken at the university in the entire course of study (CURRHRS). The following contingency table provides, for each
pair of values of CURRHRS and HSGPA indicated at the margins, the number of students in the university records
who share these values. The numbers describe a cohort of students admitted in a particular year. For example, there
are 92 records with CURRHRS of 120+ and HSGPA=B.

CURRHRS 120 + 0 11 102 92 73
90-119 0 13 67 26 32
60-89 0 6 54 25 25
30-59 0 34 100 32 22
1-29 4 164 243 60 29

0 0 14 17 5 3
F D C B A HSGPA

Such a table has been also called actual distribution, cross-tabulated data, cross-classi�ed data, two-way frequency
table.

Although 2D tables are the most commonly used, CTs can be n-dimensional. 1D table is a histogram, which is
a mapping from the set of attribute's values to the number of occurrencies of each. In our example those numbers
are the totals of all rows or all columns. Many-dimensional tables were rarely used in practice, as their size grows
exponentially with the number of dimensions, as they were sparse for relational tables with small numbers of records
that were common in the past, and as their printing and viewing is awkward.

A typical size of 2-10 values per attribute makes a 2D table manageable and suitable for moderate-size data. In
our example, the number of original values of HSGPA and CURRHRS is above 100 for each attribute. Those values
have been grouped into 5 and 6 categories shown in the table. The use of computers and large data sets will increase
the admissible number of values. Attribute values can be discretized (binned, grouped) when numbers of values are
large. Grouping may be aided by prior knowledge: an attribute may be on the ordering scale, a taxonomy of values
may be provided or an equivalence to another attribute can be used.

2. ROUGH SETS AND CONTINGENCY TABLES

In the theory of rough sets, the source of data is also a single relational table R. It is called an information system.
The domain of each attribute A used in R is expressed as VA. In typical applications, the cardinality of each VA is
small, for the reasons similar to contingency tables (cf. many articles in Ziarko, 1994; Polkowski & Skowron, 1998,
1998A).

Indiscernibility relation on R is an equivalence relation on tuples such that all identical tuples belong to the same
class. A B-indiscernibility relations can be de�ned for each subset B of attributes in R.

In a contingency table, each n-tuple of values forms a class of indiscernibility. Some of those classes may not
contain any data. Such classes provide an important message, for they allow us to distinguish what can exist from
what cannot. When those empty classes are ignored, we miss the empirical perspective on knowledge. Recognition
that some logically possible situations are physically not possible leads to knowledge that has predictive value. Each
possibility that is excluded narrows down the predictions and makes knowledge more deterministic.



The paradigmatic application of rough sets is concept learning from examples, called concept approximation.
Given a subset C of tuples in R, the task is �nding the most accurate description of C in terms of attributes available
in R. Such a description should capture the tuples in C and exclude all the remaining tuples.

The task is essentially the same as the main task in machine learning, which is concept learning from examples.
The treatment of indiscernibility, however, is di�erent. In machine learning, two tuples which are equal on all
attributes but di�er on their class assignment are called inconsistent. In distinction to machine learning which treats
data inconsistency as inconvenience which must be avoided, for instance by expert advise, rough sets developed a
formalism that systematically uses data inconsistency. All unproblematic (consistent) examples of C determine its
lower approximationC�, while all inconsistent cases belong to the boundary. The lower approximation together with
the boundary form the upper approximation C� . The rough sets approach distinguishes between strong rules that
capture lower approximation and possible rules that de�ne the upper approximation.

2.1. Indiscernibility in CTs

Data indiscernibility can be rare when each tuple includes values of many attributes. It becomes common, however,
in case of data reduction when only a subset of attributes is considered in attempts at a possibly simple knowledge.
B-indiscernibility applies to tuples that become equal on a reduced set B of attributes. Many rough sets techniques
are used for data reduction, by determining special subsets of attributes called reducts. A classical reduct retains
a minimal set of attributes that retains indiscernibility of the original data, but other reducts eliminate further
attributes and thus increase indiscernibility.

Let CT(B) be a contingency table on the set B of attributes. Each cell in a CT(B) represents a potential class
of B-indiscernibility. While in the theory of Rough Sets, indiscernibility is de�ned for concrete tuples available in
the data, a CT(B) expands B-indiscernibility to the space of all logically possible events, de�ned by the Cartesian
product of domains of attributes in B.

2.2. Representing concept approximations in CTs

Rough sets techniques were mainly applied in concept approximation, which is concept learning from examples.
Many worthwhile results were reached, competitive in accuracy with approaches of machine learning.

Let us consider the following contingency table. It was created for a simple comparison of a statistical approach
to concept learning based on contingency tables with that of rough sets.

Number of occurrences of C 5 3 4 2 5 9 6 2 0 0
Number of occurrences of :C 0 0 1 2 3 8 7 8 10 4

Values of A a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
lower approx. boundary of C complement

upper approximation of C of C

Table 1. Concept C learned with the help of concept A

This made-up table emphasizes the phenomenon common in probabilistic situations, where concept boundaries
cover almost all indiscernibility classes.

We can distinguish the following situations:

1. Concept boundary extends to all values of A (A can be a Cartesian product of more than one attribute). Rough
sets approach is not going to work, as the lower approximation and the complement of C is empty. Statistical
methods and probabilistic predictions are the best tool.

2. Concept boundary is non-empty but relatively narrow. This is the main area of applications of rough sets
techniques. Here rough sets o�er a simple yet competitive approach to concept approximation by probabilistic
distributions. It seems that in this area they can provide results better than machine learning.



3. Concept boundary is empty. Here rough sets approaches lose competitive advantage over machine learning,
but they still apply.

Notice that the analytical methods based on contingency tables and used by 49er can handle all three situations.
In the third case, for instance, 49er would notice the equivalence relation between C and a binary partition of the
values of A.

Notice an advantage of statistical signi�cance analysis. When the numbers of occurrences per cell are small, the
quali�cation of a cell (indiscernibility class) to the lower approximation, the boundary, or the complement of C is
objectionable. Additional records are very likely to change that quali�cation.

2.3. Representing reducts in CTs

Reduction of the number of attributes reduces the volume of data considered in concept learning and also improves
performance of many learning methods which depend heavily on the number of attributes. We can distinguish two
basic strategies:

Strategy 1: remove the attributes which are not used to make distinctions between tuples in C and in :C. This
can be often done in many ways, and the numbers of reducts can be very large.

Strategy 2: (49er, ID3, etc.) Add attributes, as needed to discern between tuples in C and in :C.

As reducts can be statistically super�cial, the second strategy has distinct advantages. Suppose that the data
include a few random attributes. Those random attributes can and probably will be used in a reduct, as they provide
distinctions between the tuples that exist in the data. Those distinctions, however, are statistically insigni�cant and
should not be made.

But reducts are objectionable on another ground, too. Attributes that are redundant, because other attributes
provide similar distinctions, may still be very valuable as alternatives that can be jointly used to make a de�nition
more robust. We can improve Strategy 2:

Strategy 2A: (49er) If two attributes are approximately equivalent, use both of them in the de�nition. Such
de�nitions ar resilient to missing data and are statistically signi�cant even on smaller sets of data.

3. INDUCTIVE GENERALIZATION

It is important to understand the method of data collection before attempting at generalization which would make
claims about a real-world domain. Data can be

1. a set of carefully selected examples; this was typical at early stages of machine learning, when a few examples
were typically used. Near misses were particularly to avoid over-generalization.

2. a set collected for another purpose, typically to support the business operation of data owners; such data may
not be a representative sample, so we must be careful about the target of generalization.

3. a statistically valid sample of a population; here statistical methods are particularly useful.

4. data about natural system, which do not represent a population. We typically do not seek statistical results,
and even quantum indeterminism is statistically di�erent from population statistics in ecology or sociology.

While concept approximationmethods are recently successfully applied to large datasets, at early stages, similarly
to early machine learning, the rough sets mechanism was used to learn from small well-prepared datasets, often
called decision table. Data reduction to decision tables is still one of the key methods in the repertory of rough sets
techniques.

It is obvious that a contingency table represents the dataset R from which it was generated. But can it be used to
infer knowledge about the domain represented by R? Let Aab be the number of records that include values a and b of
two attributes. Let n be the total number of records in data. We can make an instantaneous inductive generalization
and claim that pij = Aij=n estimates joint probability distribution of both attributes in the population represented
by R.



Such a generalization can be very useful, but is not always valid. First, the number of data must be su�cient so
that probability values are signi�cant. As a rule of thumb, the average number of data per category (cell) should be
larger than some minimum of three or four.

Second, not every dataset represents a population. In engineering and sciences such as physics, chemistry, the
notion of population is rarely useful. When data have been procured by an experimentation or observation strategy
which selects the values of attribute A, the histogram of A represents the experimentation strategy, not a population.
Instead of a joint probability distribution, conditional probabilities of other attributes, given the value of A, represent
knowledge of D.

Third, populations can change. As always, how far can we generalize is subject to future empirical veri�cation.

But even if drawn from the same population, the actual frequency tables may be di�erent in di�erent samples. On
the ip side, a given table can come from many distributions. The attributes used in the table can be independent,
while an appearance of dependence has occurred by a random uctuation. Since attribute independence is common,
it is customary to evaluate that possibility. A 2D table shows the joint distribution of the values of both attributes.
This information is additional to histograms of both attributes. When attributes A and B are independent, their
joint distribution should be close to the product of histograms of both variables. The expected number of records
with A = a and B = b is

Eab =
h(A; a) � h(B; b)

n
;

where h(A; a) is the number of records in dataset D with the value a of attribute A, and similarly h(B; b). Eab is
usually called the expected distribution.

How di�erent can Aab be from Eab so that we can still claim that Eab is the true distribution? Here comes the
theory of statistics. It can tell how probable it is that a sample generated from a speci�ed probabilistic distribution
has a parameter value which exceeds a speci�ed threshold. An e�cient, but approximate way of making such an
estimate starts from the value of chi-square:

�2 =
X
a;b

(Aab � Eab)2

Eab

Given the �2 and the number � of degrees of freedom in the table (in our example � = (Mrow�1)Mcol�1) = 20), the
probability Q can be computed (Jobson, 1991), estimating the likelihood that a table such as Aab has been randomly
drawn from distribution Eab.

In our example, �2 = 229:0; Q = 1:66 � 10�32. Such a low value of Q tells that it is practically impossible that
HSGPA and CURRHRS can be independent. Thresholds of signi�cance vary from traditional 0.01 or 0.05 to much
smaller, more demanding numbers in massive search for regularities in KDD (Zembowicz and Zytkow, 1996).

When a previously estimated joint distribution of A and B is available, we may use it as Eab to estimate the
probability that Aab comes from that distribution. Lacking knowledge of the relation between the attributes, the
current Aab table can be treated as an exact representation of the population.

Notice that all the problems with generalization of a contingency table are also problems of all other inductive
generalization techniques, including rough sets.

4. PREDICTIVE POWER OF CTS

A contingency table can be used to reason about objects in the domain (Gokhale & Kullback, 1978; Bhattacharyya
& Johnson, 1986). Treated as a regularity, contingency table can provide many predictions. In a 2D table, pab are
probabilities that randomly selected objects will have the pair of values a and b. If the value of one attribute is
known, then the row or column corresponding to that value can be used to make predictions of values of the other
attribute.

For instance, for an incoming student with the value A of HSGPA, we can predict probabilistically the value of
CURRHRS. The value 120+ will occur with probability 0.4 (73=184).



Predictive strength of a CT can be measured by various criteria, such as Cramer's V (Jobson, 1991) and lambda
measures (Goodman and Kruskal, 1954). For a given Mrow �Mcol contingency table, Cramer's V, is de�ned as

V =

s
�2

N min(Mrow � 1;Mcol � 1)
:

In our example, V = 0:19. When the values of one attribute can be uniquely predicted from values of the other,
Cramer's V = 1. On the other extreme, when the actual distribution is equal to the expected, then �2 = 0 and
V = 0. V does not depend on the size of the contingency table nor on the number of records. Thus it can be used
to compare regularities found in di�erent subsets and for di�erent combinations of attributes.

Missing values can be ignored and they do not harm many statistical tests. But in addition to that, contingency
tables are convenient for determining why values are missing. When missing values are treated as special values that
are included in a table, it is possible to �nd why the values are missing.

The additional information available in contingency tables provides advantage over other inductive methods,
including rough sets, because it allows to assess in probabilistic cases the predictive power of statistical regularities.

5. IMPROVING GRANULARITY BY FEEDBACK FROM KNOWLEDGE

Discretization and binning can be done apriori or can be based on background knowledge. But in many cases,
techniques based on search for knowledge with the use of contingency tables provide a more informed binning, that
leads to better quality knowledge. We will briey outline two such methods.

5.1. Determination of a functional relation in data

In databases, typically a small discrete set of values is permitted for each attribute. Given a small set VA of A values,
and a small set VB of B values, the product VA � VB is computationally manageable, as well as the corresponding
frequency table F which is a mapping

F : VA � VB ! N;

where N is the set of natural numbers, and F (A0; B0) = n when n is the number of datapoints with A = A0 and
B = B0.

If the number of distinct values of A and/or B becomes too large to compute the frequency table, the values of A
and B can be grouped into bins b(VA) and b(VB), respectively. Aggregating the values of A into bins b(VA) of equal
size �A means that the point (A0; B0) is replaced by a pair of integer numbers (kA; kB) such that A0 is in the range
from Amin+kA�A to Amin+(kA+1)�A, and B0 is in the range from Bmin+kB�B to Bmin+(kB +1)�B, where
Amin and Bmin are the smallest values of A and B, respectively. The frequency table F (kA; kB) can be interpreted
as a grid b(VA) � b(VB) imposed on the data (A;B) and de�ned by �A and �B.

Binning the original variables A and B into bins b(VA) and b(VB) helps to determine functionality in data which
include error and/or noise. If the grid size �B is comparable to the error �B , the requirement of maximumdi�erence
between B values corresponding to the same value of A can be replaced by: all points in the same A-bin kA must
lie in the adjacent B-bins (for example, in bins kB � 1, kB, kB + 1). This works only if the bin sizes �A and �B
are not smaller than corresponding errors; otherwise the functionality test may fail because points in the same A-bin
may not lie in adjacent B-bins, even if the original data follow a functional dependency plus error. On the other
hand, if the sizes �A and �B are too large, the test could assign functionality to data that intuitively should not
be described by a function. In the extreme case, when �B is larger than Bmax � Bmin, all points always lie in the
same B-bin, because one bin includes all values of B.

The problem of background noise can be alleviated if one tests the adjacency only for cells that contain an above
average number of points. This noise subtraction works e�ectively only if the background noise is not stronger than
the regularity itself. But if the noise is stronger, there is hardly any chance to �nd a regularity.

If the errors �A and �B are known, they can be used as the corresponding bin sizes �A and �B. But if they are
unknown or uncertain, the proper grid sizes must be estimated. Let us de�ne the \density" � as the average number
of points in all cells which contain at least one point. As long as the grid size �A is smaller than �, � is equal to
one. The density � starts to grow when �A becomes greater than �. Note that in distinction to the true density
equal the number of data points divided by the total number of cells, � does not depend on the number of A-bins



in the following sense. If we extend the range of A by adding more points which are evenly distributed, and keeping
�A constant, then in our ideal example, � will have exactly the same values. This is important because it means
that the \density" measure � does not depend on the range of A or B as long as bin sizes are the same. Therefore �
can be used to determine �A and �B.

Let us consider an algorithm that determines the grid size. It starts from some small initial sizes �A and �B
and changes these sizes until a criterion for \density" � is satis�ed.

Note that for the linear dependency A = aB+b and evenly distributed points the \density" � becomes larger than
1 when �A > � = VA=N or �B > a� = VB=N , where N is the number of points. Based on these observations, we
have developed the following algorithm to determine of the grid size in the case of unknown error. �0 is the minimum
required \density" of points in non-empty cells.

Algorithm: Determine grid size

�A  VA=2N�0, �B  VB=2N�0
�  N / (# of non-empty cells)
if � � �0 then

repeat

�A  2�A, �B  2�B
�  N / (# of non-empty cells)

until � > �0
else

repeat

�A  �A=2, �B  �B=2
�  N / (# of non-empty cells)

until � < �0
�A  2�A, �B  2�B

end if

end algorithm

The initial values of �A and �B are chosen to be VA=2N�0 and VB=2N�0, respectively, because for monotonic
functions with more or less evenly distributed points the resulting density � would be close to �0. The additional
factor 1=2 was introduced to avoid decreasing the grid size in cases when initial � is only slightly larger than �0.
Decreasing the grid size is more costly than increasing it, because the latter operation can be performed on the
existing grid from the previous step, while in the former case the density grid must be build from data. From the
de�nition of � one can see that its value is never smaller than 1. If the grid size is too small, the value of � is about
1.

The initial values of �A and �B are chosen based on the case of a monotonic function with evenly distributed
points. However, as our algorithm does not depend on these assumptions, in many situations �A and �B would
be then changed: either increased or decreased, until the resulting \density" parameter � gets close to the required
value �0.

When � becomes signi�cantly greater than 1, say its value is about 2, it means that there is on average about
two points per each non-empty cells. At that moment for most data one can analyze functionality based on that
grid size, therefore a good default value for �0 is around 2. However, when the distribution of data is very uneven,
�0 should be increased.

5.2. Re�nement of 2*2 CT patterns and concepts

2*2 contingency tables are based on attribute values aggregated into two disjoint and complementary subsets of
\lower" and \upper" values for each attribute. They are an important tool for summarizing regularities, similar
to linear correlations, because they are easy to interpret, to use for predictions or decisions, and take little space
even if expanded to more than two dimensions. 49er makes the initial aggregates a priori, using the histogram of
each attribute. By the changes of the concept de�nitions for the \lower" and \upper" values, an initial 2*2 pattern
can be strengthened. New concepts of \lower" and \upper" values obtained as a result of re�nement can be more
meaningful.



The re�nement of 2*2 tables uses the hill-climbing search control, which stops when strength of the regularity
can be improved no more. For ordinal attributes the resulting algorithm is fast (O(k2�n), where n is the number of
values of the attribute, k is the number of attributes). Concepts that result from CT re�nement can be very useful,
but at the same time the �nal CTs are the strongest regularities.

6. KNOWLEDGE BEYOND CONCEPTS

The main target of learning in the rough sets community are concept de�nitions, also called concept approximations.
Some concepts can be functions, which are a special type of sets. Machine learning considers, in addition to con-
cept learning, also dividing data into clusters and construction of cluster hierarchies. Concepts, clusters and their
hierarchies are de�ned by systems of rules and alternative descriptions such as trees that can jointly describe many
concepts. Both in machine learning and in rough sets communities the emphasis on concepts is complemented by
the claim that concepts are the main target of learning and discovery.

In sciences such as physics and chemistry, that developed the most advanced forms of knowledge, concepts are
secondary to laws and models. Discovery of a new law is important, while introduction of a new concept derives
meaning from laws that can be expressed by that concept. Concept and cluster de�nitions are inferior in their
predictive capabilities or even void of empirical, predictive contents. Let us consider the reasons in detail.

Empirical data are not just any set of tuples. Consider a simple case of one argument function y = f(x) that
captures the dependence of attribute y on x. The relevant empirical data, a set of pairs F = f(xi; yi) : i = 1; :::; ng
must represent real-world situations or events. Each datum must be obtained by observation or experiment. When
the data are obtained by experiments, at most one variable can be controlled by the experimenter, while the value
of the other is measured as a response of the empirical world to the situation created by the experimenter.

A set F of pairs f(xi; yi); i = 1; :::; ng represents a function in the set-theoretic sense i� for all pairs in F , when
xi = xj then yi = yj . This de�nition does not make any claim about the points outside of F. Empirical data that
justify a functional regularity such as an empirical equation, are empirical data that meet stronger requirements.
The value of y should be unique not only in F , but in the domain represented by data. Experiments must recreate
many times the situation in which the value xi holds, and each time determine that the resultant value yi = �(xi)
of y is the same within measurement error. Notice that �(xi) indicates one result of experiment for the value xi
of the control variable x. At di�erent times the result of experiment, and thus the value of �(xi) can be di�erent.
Experiments must determine that a unique value of y corresponds to every value of x:

8x (9y (y = �(x));

8x(y1 = �(x) & y2 = �(x) ! y1 = y2):

Let K be a piece of knowledge. Knowledge with empirical contents has several appealing properties. First, since
empirical contents of K is non-tautological, situations inconsistent with K are logically possible. They should not
occur or K is false. In other terms, there is no empirical contents in K if it does not exclude any logically possible
situation. Second, every observational consequence can be viewed as a prediction.

Let us illustrate these notions, using the sentence 8x(A1(x) ! A2(x)). This sentence can be used to express
empirical contents, since it is not a tautology and is made of observational terms A1 and A2. Concrete predictions,
A1(r) ! A2(r), can be inferred for each record or entity r. Empirical contents of those predictions is very speci�c.
Notice that A1(r) ! A2(r), or its equivalent :A1(r) _ A2(r), do not predict an individual observation, but if it is
further known that A1(r), a concrete prediction of A2(r) follows. Concrete individual observations have the logical
form of ground literals (atomic sentences or their negations), which we call facts.

6.1. Concepts and knowledge

Formally, a concept can be represented by a predicate, such as D(x). Since D(x) contains x as a free variable, it
does not have a truth value. D(x) is satis�ed by objects which belong to the extension of D and not satis�ed by
objects in the complement of D. Satisfaction of D(x) by object r does not lead to any extra observational statement
about r. In contrast, statements without free variables are either true or false. Consider the regularity \All ravens



are black," formally expressed as 8x(R(x)! B(x)). It is a statement which is false if a non-black raven exists. For
each object r, the observational conclusion is Rr! Br or equivalently :Rr_Br. Knowing that r is a raven, we can
predict that r is black.

Any observational language provides room for many concepts. For instance, in the language of R and B, we can
de�ne a concept of black non-raven: :R(x)_B(x), a concept of black raven, a concept of raven which is non-black,
and so forth. None of them contains any claims about the situation in the world. Some of them can be empty.
Many are not useful. Empirical contents is present in regularities but not in concepts understood as predicates.
Huge amount of concepts can be conceived in any dataset R, arguably all subsets of R. Concept de�nitions can be
any predicated de�ned by attributes available in R and values of those attributes. But only a small subset of that
enormous variety is useful.

Arguably, concept to be learned in machine learning and rough sets are useful, but that must be guaranteed by a
human operator. In sciences and in mathematics concepts can be viewed as investments and they can be evaluated
autonomously. They demonstrate their value by qualities of laws and theorems expressed in their terms. Generality,
accuracy and utility of laws (theorems and models) justify the investment made by introduction of a concept used
in those laws (theorems, models). Automated scienti�c discovery systems (BACON: Langley et al. 1987; IDS:
Nordhausen & Langley, 1993; FAHRENHEIT: Zytkow, 1996) explore this view of concepts, keeping them only when
justi�ed by the simultaneously discovered knowledge.

6.2. De�nitions by equivalence: empirical contents

Consider a classical de�nition of C that can be a result of concept learning

8x(C(x) � D(x));

where D(x) is a Boolean expression formed from descriptors (statements such as A1(x) = a) that use the attributes
A1; : : : ; An, and their values. Such a de�nition can be viewed as a special case of regularity. It can be empirically
veri�ed on the provided examples and counterexamples. Whenever an expert (teacher) is available,C is observational,
so the de�nition has empirical contents. One prediction, of C(r) or :C(r), can be made and veri�ed for each record.
The de�nition can be used to predict class membership for other records, which haven't been classi�ed by the teacher,
but then it acts as a norm, not as a descriptive regularity. When C is not observational, 8x(C(x) � D(x)) does not
have empirical contents, as no conclusion can be expressed purely in terms of A1; : : : ; An. Such a de�nition cannot
be falsi�ed if we have no method other than D(x) to assess membership in C. In conclusion, a concept de�nition
by equivalence provides one prediction per object but may have no empirical contents if that prediction cannot be
independently veri�ed.

A knowledge miner will be well advised to seek multiple de�nitions of concept C, by predicates E1(x), . . . , En(x).
Jointly, multiple de�nitions of C possess empirical contents, expressed by the statement of their equivalence

8x(E1(x) � : : : � En(x)):

One observation Ei(r) for object r leads to n � 1 predictions of facts. Alternative de�nitions make such concepts
resistant to missing data.

In conclusion, it is possible to discover a concept with signi�cant empirical contents by accumulating di�erent
de�nitions by equivalence, but there is little interest in ML, rough sets, and KDD communities in this approach.
Exceptions are systems such as COBWEB (Fisher, 1987) and 49er (Zembowicz & _Zytkow, 1996).
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