
Discovery of Equations and the Shared

Operational Semantics in Distributed

Autonomous Databases

Zbigniew W. Ra�s and Jan M. _Zytkow

Computer Science Dept. University of North Carolina, Charlotte, N.C. 28223
e-mail: ras@uncc.edu & zytkow@uncc.edu

also Institute of Computer Science, Polish Academy of Sciences

Abstract. Empirical equations are an important class of regularities
that can be discovered in databases. In this paper we concentrate on
the role of equations as de�nitions of attribute values. Such de�nitions
can be used in many ways that we brie
y describe. We present a discov-
ery mechanism that specializes in �nding equations that can be used as
de�nitions. We introduce the notion of shared operational semantics. It
consists of an equation-based system of partial de�nitions and it is used
as a tool for knowledge exchange between independently built databases.
This semantics augments the earlier developed semantics for rules used
as attribute de�nitions. To put the shared operational semantics on a
�rm theoretical foundation we developed a formal interpretation which
justi�es empirical equations in their de�nitional role.

1 Shared semantics for distributed autonomous DB

In many �elds, such as medical, manufacturing, banking, military and educa-
tional, similar databases are kept at many sites. Each database stores informa-
tion about local events and uses attributes suitable for a local task, but since
the local situations are similar, the majority of attributes are compatible among
databases. Yet, an attribute may be missing in one database, while it occurs in
many others. For instance, di�erent military units may apply the same battery
of personality tests, but some tests may be not used in one unit or another. Sim-
ilar irregularities are common with medical data. Di�erent tests may be applied
in di�erent hospitals.

Missing attributes lead to problems. A recruiter new at a given unit may
query a local database S1 to �nd candidates who match a desired description,
only to realize that one component a1 of that description is missing in S1 so that
the query cannot be answered. The same query would work in other databases
but the recruiter is interested in identifying suitable candidates in S1.

In this paper we introduce operational semantics that provides de�nitions of
missing attributes. De�nitions are discovered by an automated process. They are
used for knowledge exchange between databases and jointly form an integrated
semantics of our Distributed Autonomous Knowledge System.

The task of integrating established database systems is complicated not only
by the di�erences between the sets of attributes but also by di�erences in struc-
ture and semantics of data, for instance, between the relational, hierarchical
and network data models. We call such systems heterogeneous. The notion of
an intermediate model, proposed by Wiederhold, is very useful in dealing with
the heterogeneity problem, because it describes the database content at a rela-
tively high abstract level, su�cient to guarantee homogeneous representation of
all databases. In this paper we propose a discovery layer to be an intermediate
model for networked databases. Our discovery layer contains rules and equations
extracted from a database.

To eliminate the heterogeneity problem D. Maluf and G. Wiederhold [5] pro-
posed to use an ontology algebra which provides the capability for interrogating
many knowledge resources, which are largely semantically disjoint, but where
articulations have been established that enable knowledge interoperability. The
main di�erence between our approaches is that they do not use the intermedi-
ate model for communication, and they did not consider automated discovery
systems as knowledge sources.

Navathe and Donahoo [6] proposed that the database designers develop a
metadata description (an intermediate model) of their database schema. A collec-
tion of metadata descriptions can then be automatically processed by a schema
builder to create a partially integrated global schema of a heterogeneous dis-
tributed database. In contrast, our intermediate model (a discovery layer) is
built without any help from database designers. Its content is created through
the automated knowledge extraction from databases.

1.1 Methods that can construct operational de�nition

Many computational mechanisms can be used to de�ne values of an attribute.
Ras et al. [4], [11] (1989-1990) introduced a mechanismwhich �rst seeks and then
applies as de�nitions rules in the form \If Boolean-expression(x) then a(x)=w"
which are partial de�nitions of attribute a. Recently, Prodromidis & Stolfo [8]
mentioned attribute de�nitions as a useful task. In this paper we expand at-
tribute de�nitions from rules to equations. We call them operational de�nitions
because each is a mechanism by which the values of a de�ned attribute can be
computed. Many are partial de�nitions, as they apply to subsets of records that
match the \if" part of a de�nition.

1.2 Shared semantics in action: query answering

Many real-world situations �t the following generic scenario. A query q that
uses attribute a is \unreachable" at database S1 because a is missing in S1.
A request for a de�nition of a is issued to other sites in the distributed au-
tonomous database systems. The request speci�es attributes a1; :::; an available
at S1. When attribute a and a subset fai1; :::; aikg of fa1; :::; ang are available in
another database S2, a discovery mechanism is invoked to search for knowledge
at S2. A computational mechanism can be discovered by which values of a can

be computed from values of some of ai1 ; :::; aik. If discovered, such a mechanism
is returned to site s1 and used to compute the unknown values of a that occur
in query q.

The same mechanism can apply if attribute a is available at site s1, but some
values of a are missing. In that case, the discovery mechanism can be applied at
s1, if the number of the available values of a is su�ciently large.

2 Other applications

Functional dependencies in the form of equations are a succinct, convenient
form of knowledge. They can be used in making predictions, explanations and
inference. a = rm(a1; a2; :::; am) can be directly used to predict values a(x)
of a for object x by substituting the values of a1(x); a2(x); :::; am(x) if all are
available. If some are not directly available, they may be predicted by other
equations.

When we suspect that some values of a may be wrong, an equation imported
from another database may be used to verify them. An equation acquired at the
same database may be used, too, if the discovery mechanism is able to distinguish
the wrong values as the outliers. For instance, patterns discovered in clean data
can be applied to discovery of wrong values in the raw data.

Equations that are used to compute missing values are empirical general-
izations. Although they may be reliable, we cannot trust them unconditionally,
and it is a good practice to seek their further veri�cation, especially if they are
applied to the expanded range of values of a. The veri�cation may come from
additional knowledge that can be used as alternative de�nitions. Ras [9], [10]
(1997-1998) used rules coming from various sites and veri�ed their consistency.
His system can use many strategies which �nd rules describing decision attributes
in terms of classi�cation attributes. It has been used in conjunction with such
systems like LERS (developed by J. Grzymala-Busse) or AQ15 (developed by
R. Michalski).

Equations that are generated at di�erent sites can be used, too, to cross-
check the consistency of knowledge and data coming from di�erent databases.
If the values of a computed by two independent equations are approximately
equal, each of the equations receives further con�rmation as a computational
method for a.

All equations by which values of a can be computed expand the understand-
ing of a. Attribute understanding is often initially inadequate when we receive a
new dataset for the purpose of data mining. We may know the domain of values
of a, but we do not understand a's detailed meaning, so that we cannot apply
background knowledge and we cannot interpret the knowledge discovered about
a. In such cases, an equation that links a poorly understood attribute a with
attributes a1; :::; an, the meaning of which is known, explains the meaning of a
in terms of a1; :::; an.

3 Request (Quest) for a de�nition

For the purpose of inducing equations from data we could adapt various dis-
covery systems [7][2]. We have chosen the 49er system (Zytkow and Zembowicz,
1993) because it applies to data available in databases and because it searches
for equations that apply to subsets of data, in addition to equations that apply
to all data. The system allows to describe one attribute as a function of other
attributes and it seeks equations when attributes are numerical. It has demon-
strated successful applications in many databases coming from various domains.

Special requirements are needed for an equation that can be used as a de�ni-
tion of a given numerical attribute. One of the main problems with the search for
equations is that the best �t can be always found for any dataset in any class of
models (equations). But is the best �t good enough? How good is good enough?
Equations often provide rough estimates of patterns, but those estimates may
be not good for de�nitions. How good must be a �t of an equation so that this
equation can be used as a de�nition?

When we know the desired accuracy of �t, we know how to evaluate equations
against data. In database applications there is a \natural" limit on the accuracy
for those common attributes whose values are numerical and discrete. Consider
an attribute whose values are integers, such as weight in pounds or age in years.
The error (accuracy) of �t can be derived from the granularity of the domain.
For any three adjacent values v1; v2; v3 in the ascending order, the acceptable
accuracy of determination of v2 is (v3�v1)=4. For instance, for the age in years,
the accuracy is half a year. That error rate is entirely satisfactory, but sometime
even a worse �t is still acceptable from a de�nition.

Consider the situations when the required accuracy of �t "i is provided for all
data (xi; y1; "i); i = 1; :::; n. For each candidate equation the probability can be
estimated that (xi; y1; "i); i = 1; :::; n could have been generated by f(xi) + ri),
where ri is generated from normal distribution N (0; "). A demanding probability
threshold such as Q � 0:01 is also needed.

In summary, the quest for a de�nition in the form of an equation includes:

� the attribute a for which a de�nition is sought in the form of an equation;
� the accuracy of attribute a for each value in the domain Va of a;
� a set of attributes fa1; :::; ang which can be used in the de�nition;

The resultant equations, if any, have the form a(x) = f(ai1 ; :::; aik), and they
�t the data within a demanding probability threshold Q = 0:01, which is the
default value for de�nitions.

3.1 Functionality Test

Plenty of time can be saved if equations are not sought in data which do not
satisfy the mathematical de�nition of functional relationship.

De�nition: Given a set D of value pairs (vi; wi), i = 1; : : : ; N of two attributes
a and b, and the range Va of a; b is a function of a in Va i� for each v0 in Va,
there is exactly one value w0 of b, such that (v0; w0) is in D.

The following algorithm approximates this de�nition. It determines whether
it is worthwhile to search for an equation that �ts the data.

Algorithm: Test approximate functional relationship between a and b

given the contingency table of actual record counts and set Va of values of a
AV average number of records per cell
for each value in Va

�nd all groups of cells with adjacent values of b and counts > AV
if # of groups > � then return NO{FUNC

if average # of groups > � then return NO{FUNC else return FUNCTION

This algorithm is controlled by two modi�able parameters, � and �, which
measure local (�) and global (�) uniqueness of b; that is, the number of values of
b for the same value of a. The default values used by 49er is � = 2 for data from
databases, and � � 1:5. For � = 3 the functionality test fails when for a value in
Va there are more than 3 adjacent groups of cells with above average density of
points. This higher value 3 of � solves the problem of rare outliers, allowing up
to 2 outliers if they happen rarely. However, many outliers or frequent multiple
values in y should fail the test, therefore the value of � is much smaller and close
to 1. Note that both parameters set to 1 corresponds to the strict mathematical
de�nition of functionality given above. Presence of error, noise, and other data
imperfections force values of � and � to be larger than 1. The noise handling
by varying the number of cells in the table is treated in detail by _Zytkow &
Zembowicz (1993).

The same mechanismapplies when we want to determine a functional relation
in a set of data tuples D of the size 1 + k for k � 2. If the test is successful,
equations in the form b(x) = r(b1; :::; bk) are sought. If the test fails, it will be
applied to subsets of data when they are generated by 49er.

3.2 Equation Finder's search

The task of equation �nding can be formally de�ned by the input of n datapoints
which come from projection of attributes a and b from data table S, and the
computation of required accuracy of b: (vi; wi; "i); i = 1; :::; n. The output is
the list of acceptable equations. Since the equations are initially 2-d and can be
subsequently re�ned, the acceptance threshold is at this stage less demanding
(Q � 0:0001)

Equation Finder's search can be decomposed into (1) generation of new
terms, (2) selection of pairs of terms, (3) generation and evaluation of equa-
tions for each pair of terms. The combination of these three searches can be
summarized by the following algorithm:

Algorithm: Find Equation

T (A B) ; the initial list of terms for search #1
old-T NIL ; the list of terms already used
E a set of polynomial equation models ; list of models for search #3
loop until new terms in T exceed threshold of complexity

2T list of new pairs of terms created from T and old-T
; the list generated by search #2, initially (A B)

for each pair in 2T and for each model in E
�nd and evaluate the best equation

if at least one equation accepted, then
return all accepted equations and HALT the search

old-T old-T augmented with T
T list of new terms created from old-T

For each pair of terms (either original attributes a and b or terms x and y) gen-
erated by search #1, and for each polynomial up to the maximum pre-speci�ed
degree, search # 3 proposes polynomial models y = f(x; a0; : : : ; aq), which are
then solved for b, if possible, and compared with the models considered earlier.
For each equation which comes out as a new one, the best values are found for
the parameters (coe�cients) a0, . . . , aq, and error values "a0 , . . . , "aq for each
parameter. Each polynomial coe�cient for which jaij < "ai is removed. The
equation is accepted as a de�nition of b by a if the signi�cance measure exceeds
a threshold, set to 0.01. If that threshold is not met, a re�nement process (not
treated in this paper) applies to the equation if the signi�cance measure exceeds
a threshold, set by default at 0.0001. The signi�cance is based on �2 test and
the number of degrees of freedom, that is on the number of data points minus
the number of parameters in the equation.

Correlation analysis is often used as a measure of linearity of a relation. Our
approach o�ers a far broader search for equations. Many textbook examples
show that correlation values are close to zero (that means, no correlation) even
though a sharp functional dependency occurs in the data. Our Equation Finder
returns well-�tted equations in many such cases.

3.3 E�ciency

The functionality test operates on contingency tables. Since the size of the table
is typically small compared to the size of data, and the test requires one pass
through the table, it is extremely e�cient. It also saves large amount of time
because it prevents a far more costly equation �nding search, when it cannot be
successful. Generation of a contingency table is linear in the number of records.
The number of contingency tables is linear in the number of attributes consid-
ered. If the number of original attributes is very large, various techniques of
feature selection can be used to reduce their number. For a comprehensive treat-
ment of feature selection, see [3]. Sampling, in turn, can reduce the number of
records. Equation �nding is linear in the number of records and is proportional
to the number of models considered. The space of Equation Finder search can
be limited in di�erent ways by setting the parameter values for each search, such
as depth of search and the list of operators. The potentially most costly is search
in the subsets of data, but it can be also adjusted to the available resources, by
limiting the depth of search.

4 A shared semantics of equations in a Distributed
Autonomous Knowledge System

In this section each database in Distributed Autonomous Database Systems will
be extended to a knowledge system. We �rst recall the notions of an information
system and a distributed information system. Next we de�ne the shared meaning
of attributes in a Distributed Autonomous Knowledge System DAKS.

By an information system we mean a structure S = (X;A; V), where X
is a �nite set of objects, A is a �nite set of attributes, and V =

S
fVa : a 2 Ag

is a set of their values. We assume that:

� Va; Vb are disjoint for any a; b 2 A such that a 6= b,
� a : X �! Va is a function for every a 2 A.

Instead of a, we will often write a[S] to denote that a in an attribute in S.
By a distributed information system [9] we mean a pairDS = (fSigi2I ; L)

where:

� I is a set of sites.
� Si = (Xi; Ai; Vi) is an information system for any i 2 I,
� L is a symmetric, binary relation on the set I,

In this paper we assume a distributed information system DS = (fSigi2I ; L)
which is consistent, that is,

(8i)(8j)(8x 2 Xi \Xj)(8a 2 Ai \Aj) (a[Si](x) = (a[Sj])(x).

In the remainder of this paper we assume that DS = (fSigi2I ; L) is a dis-
tributed information system which is consistent. Also, we assume that Sj =
(Xj ; Aj; Vj) and Vj =

S
fVja : a 2 Ajg, for any j 2 I.

We will use A to name the set of all attributes in DS, A =
S
fAj : j 2 Ig.

4.1 Shared operational semantics

The shared semantics (see [12]) is de�ned for the set A of all attributes in all
information systems in DS. For each attribute a in A, the operational meaning
of a is de�ned by:

1. the set of (pointers to) information systems in which a is available: fSi : a 2
Aig;

2. the set of information systems in which a de�nition of a has been derived,
jointly with the set of de�nitions in each information system. De�nitions can
be equations, boolean forms, etc.

3. the set of information systems in which a de�nition of a can be used, be-
cause the de�ning attributes are available there. An attribute a is a de�ned
attribute in an information system S if:

(a) a de�nition DEF of a has been discovered in an Si in DS;
(b) all other attributes in the de�nition DEF are present in S; in such cases

they can be put together in a JOIN table and DEF can be directly
applied.

4.2 Equations as partial de�nitions: the syntax

We will now de�ne the syntax of de�nitions in the form of equations. Partial
de�nitions are included, as they are often useful. In the next subsection we give
an interpretation of partial de�nitions.

Functors are the building blocks from which equations and inequalities can
be formed. Those in turn are the building blocks for partial de�nitions. Assume
that x is a variable over Xi and r1; r2; :::; rk are functors. Also, we assume here
that mj is the number of arguments of the functor rj, j = 1; 2; ::; k. The number
of arguments can be zero. A zero argument functor is treated as a constant.

By a set of s(i)-atomic-terms we mean the least set T0i such that:

� 0;1 2 T0i,

for any symbolic attribute a 2 Aj ,

� [a(x) = w] 2 T0i for any a 2 Ai and w 2 Via,
� � [a(x) = w] 2 T0i for any a 2 Ai and w 2 Via,

for any numerical attributes a; a1; a2; :::; amj
in Ai,

� [a � rj(a1; a2; :::; amj
)](x) 2 T0i, where � 2 f=;�;�g

s(i)-atomic-terms of the form [a(x) = w] and [a = rj(a1; a2; :::; amj
)](x) are

called equations.

By a set of s(i)-partial-de�nitions (it s(i)-p-defs in short) we mean the least
set Ti such that:

� if t(x) 2 T0i is an equation, then t(x) 2 Ti,
� if t(x) is a conjunction of s(i)-atomic-terms and s(x) is an equation, then
[t(x) �! s(x)] 2 Ti,

� if t1(x); t2(x) 2 Ti, then (t1(x) _ t2(x)); (t1(x) ^ t2(x)) 2 Ti.

For simplicity we often write t instead of t(x).

The set s(I)-p-defs represent all possible candidate de�nitions built from
attributes that can come from di�erent information systems in DS. s(I)-p-defs
is de�ned in a similar way to s(i)-p-defs: the set Vi is replaced by

S
fVj : j 2 Ig

and the set Ai is replaced by
S
fAj : j 2 Ig.

4.3 Equations as partial de�nitions: the interpretation

By a standard interpretation of s(i)-p-defs in Si = (Xi; Ai; Vi) of a distributed
information system DS we mean a function Mi such that:

� Mi(0) = ;, Mi(1) = Xi

� Mi(a(x) = w) = fx 2 Xi : a[Si](x) = wg,
� Mi(� (a(x) = w)) = fx 2 Xi : a[Si](x) 6= wg,
� for any � 2 f=;�;�g,
Mi((a � rj(a1; a2; :::; amj

))(x)) =
fx 2 Xi : a[Si](x) � rj(a1[Si](x); a2[Si](x); :::; amj[Si](x))g,

� Mi([t �! s]) = fx 2 Xi : if [x 2Mi(t)] then x 2Mi(s)]g,
� if t1; t2 are s(i)-p-defs, then
Mi(t1 _ t2) = Mi(t1) [Mi(t2), Mi(t1 ^ t2) = Mi(t1) \Mi(t2),
Mi(t1 = t2) = (if Mi(t1) =Mi(t2) then True else False).

Let us assume that [t1 �! (a1(x) = w1)]; [t2 �! (a2(x) = w2)] are s(i)-p-
defs. We say that they are Si-consistent, if either a1 6= a2 or Mi(t1 ^ t2) = ; or
w1 = w2. Otherwise, these two s(i)-p-defs are called Si-inconsistent.

Similar de�nitions apply when w1 and w2 in those partial de�nitions are
replaced by r1(a1; a2; :::; amj

)(x) and r2(a1; a2; :::; amj
)(x).

5 Discovery layer

In this section, we introduce the notions of a discovery layer and a distributed
autonomous knowledge system. Also, we introduce the concept of a dynamic
operational semantics to re
ect the dynamics of constantly changing discovery
layers.

Notice that while in the previous sections s(i)�p�defs have been interpreted
at the sites at which all relevant attributes have been present, we now consider
s(I) � defs imported from site k to site i.

By a discovery layer Dki we mean any s(i)-consistent set of s(k)�p�defs, of
the two types speci�ed below, which are satis�ed, by means of the interpretation
Mk, by most of the objects in Sk:

� [t �! [(a = rm(a1; a2; :::; am))(x)]], where a1; a2; :::; am 2 Ai and a 2 Ak

and t is a conjunction of atomic terms that contain attributes that occur
both in Ai and in Ak

� [t �! (a(x) = w)], where a 2 Ak and t satis�es the same conditions as
above.

Suppose that a number of partial de�nitions have been imported to site i
from a set of sites Ki. All those de�nitions can be used at site i.

Thus, the discovery layer for site i 2 I is de�ned as a subset of the set
Di =

S
fDki : k 2 Kig.

By Distributed Autonomous Knowledge System (DAKS) we mean DS =
(f(Si; Di)gi2I ; L) where (fSigi2I ; L) is a distributed information system and Di

is a discovery layer for a site i 2 I.
Figure 1 shows the basic architecture ofDAKS (WWW interface and a query

answering system kdQAS that can request and use s(I)-p-defs are also added to
each site of DAKS).

Predicate logic and i-operational semantics are used to represent knowledge
in DAKS. Many other representations are, of course, possible. We have cho-
sen predicate logic because of the need to manipulate s(I) � defs syntactically
without changing their meaning. This syntactical manipulation of s(I)-defs will
be handled by IQAS. By designing an axiomatic system which is sound we are
certain that the transformation process for s(I)-p-defs based on these axioms

Discovery
Layer
Discovery
Layer
Discovery
Layer

Discovery
Layer

Discovery
Layer

Discovery
Layer

WWW interface WWW interface

mining mining

WWW interface WWW interface

Client/server
protocols

Client/server
protocols

Client/server
protocols

Database Database Database Database

kdQAS kdQAS kdQAS kdQAS

Fig. 1. Distributed Autonomous Knowledge System

either will not change their meaning or will change it in a controlled way. It will
produce s(i)-p-defs approximating the initial s(I)-p-defs.

Clearly, if for each non-local attribute we collect rules and equations from
many sites of DAKS and then resolve all inconsistencies among them, the re-
sulting rules and equations in the local discovery layer have more chance to be
locally true.

Let Mi be a standard interpretation of s(i)-p-defs in Si and Ci =
S
fVk :

k 2 Ig�Vi. By i-operational semantics of s(I)-p-defs in DS = (f(Si; Di)gi2I ; L)
where Si = (Xi; Ai; Vi) and Vi =

S
fVia : a 2 Aig, we mean the interpretation

Ni such that:

� Ni(0) = ;, Ni(1) = Xi

� for any w 2 Via,
Ni(a(x) = w) = Mi(a(x) = w), Ni(� (a(x) = w)) = Mi(� (a(x) = w))

� for any w 2 Ci \ Vka where k 6= i,
Ni(a(x) = w) = fx 2 Xi : ([t �! [a(x) = w]] 2 Di ^ x 2Mi(t))g
Ni(� (a(x) = w)) = fx 2 Xi : (9v 2 Va)[(v 6= w) ^ ([t �! [a(x) = v]] 2
Di) ^ (x 2Mi(t))]g

� for any w 2 Ci \ Vka where k 6= i and a is a numeric attribute,
Ni((a(x) = w)) =

S
fx 2 Xi : (9y 2Mk[a(y) = w = rm(a1; a2; :::; am)])

[Mi([a1[Si](x) = a1[Sk](y)]^[a2[Si](x) = a2[Sk](y)]^:::^[am[Si](x) = a1[Sk](y)])
^ [a(y) = w = rm(a1; a2; :::; am)] 2 Dig
Ni(� (a(x) = w)) = Xi � Ni(a(x) = w)

� for any s(I)-terms t1; t2
Ni(t1 _ t2) = Ni(t1) [Ni(t2), Ni(� (t1 _ t2)) = (Ni(� t1)) \ (Ni(� t2)),

Ni(t1 ^ t2) = Ni(t1) \Ni(t2), Ni(� (t1 ^ t2)) = (Ni(� t1)) [(Ni(� t2)),
Ni(�� t) = Ni(t).

� for any s(I)-terms t1; t2
Ni(t1 = t2) = (if Ni(t1) = Ni(t2) then True else False)

The i-operational semantics Ni represents a pessimistic approach to eval-
uation of s(I)-p-defs because of the way the non-local s(I)-atomic-terms are
interpreted (their lower approximation is taken).

References

1. Batini, C., Lenzerini, M., Navathe, S., \A comparative analysis of methodologies
for database schema integration", in ACM Computing Surveys, Vol 18, No. 4, 1986,
325-364

2. Dzeroski, S. & Todorovski, L. 1993. Discovering Dynamics, Proc. of 10th Interna-

tional Conference on Machine Learning, 97-103.
3. Liu, H. & Motoda, H. 1998. Feature selection for knowledge discovery and data

mining, Kluwer.
4. Maitan, J., Ras, Z., Zemankova, M., \Query handling and learning in a distributed

intelligent system", in Methodologies for Intelligent Systems, IV, (Ed. Z.W. Ras),
North Holland, 1989, 118-127

5. Maluf, D., Wiederhold, G., \Abstraction of representation for interoperation", in
Proceedings of Tenth International Symposium on Methodologies for Intelligent Sys-

tems, LNCS/LNAI, Springer-Verlag, No. 1325, 1997, 441-455
6. Navathe, S., Donahoo, M., \Towards intelligent integration of heterogeneous infor-

mation sources", in Proceedings of the Sixth International Workshop on Database

Re-engineering and Interoperability, 1995
7. Nordhausen, B. & Langley, P. 1993. An Integrated Framework for Empirical Dis-

covery, Machine Learning, 12, 17-47.
8. Prodromidis, A.L. & Stolfo, S., \Mining databases with di�erent schemas: Inte-

grating incompatible classi�ers", in Proceedings of The Fourth Intern. Conf. onn

Knowledge Discovery and Data Mining, AAAI Press, 1998, 314-318
9. Ras, Z., \Resolving queries through cooperation in multi-agent systems", in Rough

Sets and Data Mining (Eds. T.Y. Lin, N. Cercone), Kluwer Academic Publishers,
1997, 239-258

10. Ras, Z., Joshi, S., \Query approximate answering system for an incomplete DKBS",
in Fundamenta Informaticae Journal, IOS Press, Vol. 30, No. 3/4, 1997, 313-324

11. Ras, Z., Zemankova, M, \Intelligent query processing in distributed information
systems", in Intelligent Systems: State of the Art and Future Directions, Z.W. Ras,
M. Zemankova (Eds), Ellis Horwood Series in Arti�cial Intelligence, London, Eng-
land, November, 1990, 357-370

12. _Zytkow, J. An interpretation of a concept in science by a set of operational pro-
cedures, in: Polish Essays in the Philosophy of the Natural Sciences, Krajewski W.
ed. Boston Studies in the Philosophy of Science, Vol.68, Reidel 1982, p.169{185.

13. _Zytkow, J. & Zembowicz, R., \Database Exploration in Search of Regularities", in
Journal of Intelligent Information Systems, No. 2, 39-81

14. _Zytkow, J.M., Zhu, J., and Zembowicz R. Operational De�nition Re�nement: a
Discovery Process, Proceedings of the Tenth National Conference on Arti�cial In-

telligence, The AAAI Press, 1992, p.76{81.

This article was processed using the LATEX macro package with LLNCS style

