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Abstract. Discovery of multidimensional empirical equations has been
a task of systems such as BACON and FAHRENHEIT.When confronted
with data collected in a robotic experiment, BACON-like generaliza-
tion mechanism of FAHRENHEIT reached an impasse because it found
many acceptable equations for some datasets while none for others. We
describe an improved generalization mechanism that handles both prob-
lems. We apply that mechanism to a robot arm experiment similar to
Galileo's experiments with the inclined plane. The system collected data,
determined empirical error and eventually found empirical equations ac-
ceptable within error. By confronting empirical equations developed by
FAHRENHEIT with theoretical models based on classical mechanics, we
have shown that empirical equations provide superior �t to data. System-
atic deviations between data and a theoretical model hint at processes
not captured by the model but accounted for in empirical equations.

1 Robotic experiment and challenges of real data

We describe a discovery mechanism that makes several improvements over the
BACON-like search for multidimensional empirical equations. It has been mo-
tivated by an impasse reached by the existing systems, such as BACON and
FAHRENHEIT, applied to data produced automatically in robotic experiments.

1.1 Challenges to BACON-like search for equations

BACON-like search for multidimensional equations proceeds step by step, adding
one independent variable at a time. Suppose the experimenter collects data by
setting the values of three variables x1, x2, and x3, and measuring y. The �nal
goal is an equation that combines y; x1; x2; x3. It can often be expressed in a
form convenient for predictions: y = f(x1; x2; x3). At any step of BACON's
generalization from data to equations, independent variables can be divided
in three categories: (1) those that have already been used in an equation (for
example, x1), (2) one variable that is being added (for example, x2), and (3)
those variables which have been kept constant in all experiments (x3).

Generalization to x2 is triggered when an equation has been found for y and
x1. The generalization process starts from data collection: for each value of x2



an equation is sought for y and x1. Data collection is successful when BACON

reaches an externally selected number n of equations of the same algebraic form
f(y; x1; A1; : : :Ak) = 0, which may have di�erent values of parameters A1; : : :Ak.
Each equation corresponds to one value of x2. The following table summarizes
the \higher level" data used for generalization. Each aij represents a j-th value
of parameter Ai:

x2 A1 . . . Ak

v1 a11 . . . ak1
v2 a12 . . . ak2
. . . . . . . . . . . .
. . . . . . . . . . . .
vn a1n . . . akn

Now the task is to �nd k equations of the form Ai = gi(x2), i = 1; : : : ; k that
link x2 with each of A1; : : :Ak, one at a time. Those equations can be used to
eliminate A1; : : :Ak in the original equation y = f(x1; A1; : : :Ak). As a result,
the equation for y uses two independent variables x1 and x2 plus several new
parameters B1; : : :Bm, which can be used to generalize the equation to the next
independent variable.

BACON works �ne when it discovers a single equation per dataset, the same
for all data. Langley et al. (1987) o�er many examples of successful search, but
pay little attention to the many ways in which the BACON search may fail. Even
a simple failure at one of many steps causes the whole system to fail and halt.
In this paper we describe solutions to the following problems:

1. Search results in multiple alternative equations, that o�er acceptable �t to
data. If equations of di�erent form are best for di�erent datasets, which equation
should be selected for generalization?

2. No equation of common form is acceptable for each dataset. This prevents
a meaningful generalization, as all values of any given parameter Ai such as the
slope of linear equation, must have the same meaning, so the induction over
di�erent values makes sense.

3. Equations can be evaluated when the measurement error is known. In BA-

CON, the value of error is provided from the outside, but it should be determined
by experiments since it is speci�c to a given experiment setup. Evaluation may
be overly demanding or too permissive if the system uses wrong values of error.
A discovery method should use data to infer the error and then propagate the
error so that it applies at all stages of the discovery process.

1.2 Experiment setup

Let us distinguish between two meanings of experiment. In the �rst meaning,
an experiment includes the investigated empirical system S, the manipulating
and measuring equipment and the strategy of using them. We shall call it a
setup experiment. In the second meaning, an experiment is a single cycle of
interaction between the experimenter and empirical system S. The cycle consists



of creating a particular state of S, determined by the values of some variables,
and in measuring the response of S in terms of other variables. In this paper
we consider a discovery system that performs many experiments in the second
sense, by varying objects and their properties within the �xed setup.

1.3 Empirical space

BACON and FAHRENHEIT operate within a �xed empirical setup. The scope
of their experiments can be represented by a simple formal space. Consider M
control variables x1; � � � ; xM and N dependent variables y1; � � � ; yN . Each xi; i =
1; :::;M , is limited to a set of values Xi, that is to the scope of manipulations.
Each yi; i = 1; :::; N can be measured within a set of values Y i. The values of all
variables form a Cartesian product E of M + N dimensions. Each dimension is
a segment of values between a minimum and a maximum.

Experiments are the only way for obtaining information about E . Each exper-
iment consists of enforcing a value for each independent variable xi; i = 1; � � � ;M ,
and of measuring afterwards the values of yj ; j = 1; � � � ; N .

The values of each variable carry empirical error. In this paper we will only
consider error of dependent variables. The values of error, "i, can vary across
Y i. They can be determined by FAHRENHEIT in the course of experimentation,
as we shall see later. Because of the �nite size and the minimum grain level
determined by the error of each variable, the space E is �nite from the perspective
of possible manipulations and measurements.

1.4 Relation to other systems

Although the new methods described in this paper actually expand FAHREN-

HEIT ( _Zytkow, 1996), in this paper we only consider a subset of FAHRENHEIT
similar to BACON-3 (Langley et al. 1987). In consequence, for the sake of sim-
plicity, we describe the new methods as additions to BACON-3.

Just as BACON-3 uses BACON-1, FAHRENHEIT uses Equation Finder (EF;
Zembowicz & _Zytkow, 1991) to generate bi-variate equation. Bi-variate equation
�nding has been the most popular area of automated discovery (e.g. Nordhausen
& Langley, 1990; Moulet, 1992; Dzeroski & Todorovski, 1993). EF can be dis-
tinguished by its broader space of equations and systematic use of error.

Experiments conducted by FAHRENHEIT and simulated experiments of BA-
CON occur within a given setup. Kekada (Kulkarni & Simon, 1987) o�ers a
broader perspective on experiments, designing them within a number of setups
and providing links between experiments in di�erent setups.

Nordhausen and Langley's IDS (1990), although capable of deriving mul-
tidimensional equations and placing them in sophisticated theories, does not
control experiments and neither deals with the choices among many alternative
equations nor consistently handles empirical error.
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Fig. 1. (a) Galileo's experiment. A ball is rolling down the inclined plane. The exper-
imenter controls height h. When the ball reaches the bottom of the ramp it assumes
horizontal direction and falls to the oor at point P. The distance PQ is proportional
to velocity. (b) Our experiment. A cylinder moves a �xed distance between a sensor at
the top of the ramp and the sensor installed in the bu�er at the bottom.

2 Experiment description

In distinction to our previous automated experiments (eg. Zytkow, Zhu & Hus-
sam, 1990) in the domain of chemistry, this time we used a robot arm and the
measurement of mechanical motion. We also wanted to evaluate our robotic dis-
covery system on a well-known experiment that inuenced the foundation of
mechanics.

2.1 Galileo's discovery

Galileo investigated the motion of objects rolling down an inclined plane. A ball,
released from the top of the inclined plane depicted in Figure 1a, rolled down
and �nally hit the bottom. Galileo was not able to measure the accurate time
at which the ball reached the bottom, but he could indirectly measure the �nal
velocity. He attached a \jumping board" to the bottom of the inclined plane, so
that reaching the bottom the ball assumed horizontal velocity and fell through
the air to hit the oor at point P . Galileo used the distance PQ between the
jumping board and point P to calculate the velocity of the ball at the bottom of
the slope. After a sequence of experiments in which he varied the height h from
which the ball started to roll, he derived a theory of velocity v,

v =
p
ah ; a = constant: (1)



Fig. 2. The experiment setup. The robot arm is reaching for the �rst cylinder. Four
cylinders have been placed in the cylinder container, while the other �ve can be seen
at the lower right corner of the picture. Holes of di�erent diameter are readily visible.
The inclined board has been set at the lowest angle. The board has a bumper attached
at the lower end on the left to hold the bottom touch sensor and stop the cylinders.

Galileo's theory inuenced the foundations of modern mechanics. It was em-
pirically inaccurate, however, partly because he did not consider momentum of
inertia of the rolling body.

2.2 Experiment setup

In our experiment we used the inclined plane, but a precise time measurement
has been easier for us than the measurement of velocity. Two touch sensors,
to signal the beginning and the end of the process, have been placed at �xed
points at the top and bottom of the inclined plane at distance D (50.2cm) and
attached to the computer (cf. Figure 1b, 2). The equivalent of Galileo's equation
(1) expressed in terms of time t, angle � and Earth acceleration g is,

t =

r
2D

gsin(�)
: (2)

In our experiments we also wanted to capture the inuence of angular mo-
mentum on motion. Instead of a ball, we used nine cylinders of the same length
(5.9cm) and equal external diameter (4.5cm), with holes of di�erent radius drilled
symmetrically through the ax of each cylinder. Their internal diameters di�er
from 0cm to 4cm by 0.5 cm increments (cf. Figure 2).

Since the �xed locations of touch sensors determined the scope of motion,
instead of various locations on the �xed board that Galileo used as his initial
states, we varied the angle of the inclined plane. Altogether we used �ve angles.



Thus, the empirical space consisted of two independent variables (angle and
mass) and one dependent variable (time di�erence between the �nal and the
initial state). The robot arm placed a cylinder of mass mi at the location of the
top sensor (initial state) and then picked it up at the �nal state, at the location
of the bottom sensor.

3 Discovery process

We linked the operational procedures that transport the cylinders and measure
time to the FAHRENHEIT discovery mechanism ( _Zytkow, 1996). For the purpose
of this experiment, a subset of FAHRENHEIT has been used, essentially equiv-
alent to BACON-3 (Langley et.al., 1987). Since BACON-3 mechanism is widely
known, we will remind it only briey and concentrate on the new elements.

3.1 Experimentation

The experiments can be summarized as a 3D nested loop:

FOR angle FROM angle-1 TO angle-5

FOR mass FROM mass-1 TO mass-9

FOR repeat FROM 1 TO 50

move mass on top of board at angle

release gripper

start timer at interrupt from top sensor

time(angle, mass, repeat) = read timer at interrupt from bottom sensor

Nine objects, �ve angles and �fty repetitions for each pair led to 2250 experi-
ments. At about 30 seconds per experiment, data collection took about 20 hours.

3.2 Error detection

For each cylinder and each angle, the mean value of 50 repetitions has been used
as the value of time, while the doubled value of the estimated standard deviation
has been used as time measurement error.

3.3 The use of empirical error

The vast majority of discovery systems have been simplistic in handling empir-
ical error. Although many systems include error parameters, they disregard the
variety of ways in which error should be used throughout the discovery process.

Consider the data in the form D = f(xi; yi; ei) : i = 1; :::; Ng and the search
for equations of the form y = f(x) that �t (xi; yi) within the limits of error
ei. For the same data f(xi; yi) : i = 1; :::; Ng, the smaller is the error ei, the
closer �t is required between data and equations. Among the equations that �t
the data at error ei, only some will be acceptable at a smaller error, so that a
smaller error may reduce the ambiguity of search for equations.

Knowledge of error, prior to the search for equations, is used in several ways
by Equation Finder (EF: Zembowicz & _Zytkow, 1991):



1. When the error varies for di�erent data, �2 =
PN

i=1

�
yi�f(xi;A1;:::;Aq)

�i

�2
(the

weighted chi-square value) is used to compute the best values a1; : : : ; aq for
model f, enforcing better �t to the more precise datapoints. � = ei=2.

2. Error is used in the evaluation of equations. Error of each datum can be
interpreted as the standard deviation of the normal distribution of y's for
the value of x. For each equation E, knowledge of that distribution permits
the computation od the probability that the data have been generated by
adding the value of y obtained from E and the value drawn randomly from
the normal distribution de�ned by the error of each datum. This is a plau-
sible null hypothesis for testing, as normal distributions are often a good
approximation of error.

3. As many other equation-�nding systems, EF generates new terms by trans-
forming the initial variables x and y. Error values are propagated to the new
terms and used in search for equations that use those terms.

4. Error is propagated to the values of A1; : : : ; Aq in the �tted equations.

5. If the error of a parameter is larger than the absolute value of that parameter,
EF assumes that the parameter value is zero. If this happens to the parameter
at the highest degree polynomial term, the equation is eliminated. This tool
can eliminate the over�tting polynomial solutions.

3.4 Multiple alternative equations

Consider the search for empirical equations. The space of algebraic equations
can be built by repeated combination of three spaces determined by (1) the
set of models that are directly �tted to data, (2) the set of transformations
that generate new terms, and (3) the choice of tuples of terms to be used in
the equations. BACON-1 uses (1) constant or linear �t, (2) transformations *
and /, (3) pairs of terms, at least one of them derived from the dependent
variable. EF uses (1) polynomial equations up to a degree determined by data,
(2) transformations *, /, exp. log, sqrt, (3) pairs of terms such that one is derived
solely from x, while the other uses occurrences of y.

As a general principle, in automated discovery the search control should
follow the simple-�rst strategy. If two solutions enjoy comparable support by
data, the simpler of the two should be preferred. It has less parameters that
require empirical interpretation. Simplicity is determined by factors such as the
number of parameters in the equation and the number of term transformations
used. When the simplicity criteria cannot be reduced to a single scale, solutions
can be only arranged into partially ordered simplicity classes.

Since the order of search in each simplicity class is arbitrary, the search driven
by simple-�rst control should stop after examining all solutions in the simplicity
class C in which it found the �rst acceptable solution, or in the case of partially
ordered simplicity classes should examine all classes not more complex than class
C. EF conducts the search with a �xed acceptance threshold normally set at
Q=0.001 and a �xed polynomial degree determined by data. To avoid explosive



search, the depth in the number of transformations has been also limited (to one
transformation for each of x and y).

3.5 Equations for time as a function of angle, at �xed mass

Following BACON-3 method, Equation Finder (EF) has been applied for each
mass from mass-1 to mass-9, to data in the format (angle, time, error of time).
Because of the small number of 5 datapoints and their monotonicity, EF limits
the search to linear �t. Repeated application of EF led to nine sets of equations,
one for each data set. The same �ve equations out of 46 considered by EF have
been consistently the best in each data set. We shall call them eq1 { eq5:

eq1: y = (A+B
p
x)=x eq2 y = exp(A+ B log x) eq3 y = 1=(A+B

p
x)

eq4 y = log(A+B=x) eq5 y =
p
A+ B=x

These �ve equations have been accepted at least in six data sets each, but
unaccepted in some data sets. The best �ve equations generated by EF for mass-2
are reproduced below in a slightly edited lisp form:
Y = (/ 1 (+ A (* B (SQRT X)))) (A B) = (-0.083 0.370) +- (0.016 0.004) Chi2 = 8.77 Q = 0.033

Y = (/ (+ A (* B (SQRT X))) X) (A B) = (0.732 2.680) +- (0.104 0.038) Chi2 = 9.19 Q = 0.027

Y = (EXP (+ A (* B (LOG X)))) (A B) = (1.176 -0.545) +- (0.015 0.006) Chi2 = 11.46 Q = 0.010

Y = (SQRT (+ A (/ B X))) (A B) = (-0.0710 9.403) +- (0.0118 0.153) Chi2 = 21.41 Q = 8.63d-5

Y = (LOG (+ A (/ B X))) (A B) = (1.216 13.260) +- (0.018 0.232) Chi2 = 30.10 Q = 1.31d-6

EF returns error for the value of each parameter. For instance, in the last equa-
tion, the value 1.216 of A has error 0.018, while the value 13.260 of parameter
B has error 0.232. The �rst three have been accepted, since their probability Q
has been higher than the threshold value Qa = 0:001.

3.6 Generalization to mass

Di�erent equations have been the winners for di�erent masses and none has
been acceptable for all masses. This motivated us to expand FAHRENHEIT by
a module which prioritizes the equations and rede�nes their acceptability.

Even if no single form of equation is acceptable for all datasets, generaliza-
tion should be attempted. The situation is similar to the evaluation of a single
equation. Even if an occasional data point is at a distance greater than error
from the value predicted by equation, the probability of �t can be still high and
the �t can be accepted.

FAHRENHEIT has been expanded to consider each form of equation accepted
in at least two thirds of datasets by EF, generalizes all such equations and
computes the probability measure Q in the same way as for 2-D equations.
For comparison, we also compute several other evaluation metrics. Consider the
equations for mass 1{9, summarized below by three measures:

1. The total of ranks of a given equation type in nine sets of equations. For
instance, equation-1 was the �rst twice (2pts), second three times (6pts), third
twice (6pts), and fourth twice (8pts), for the total of 22pts.

2. Total �2 for all nine equations. The best measure of �t.
3. The ratio of datasets in which the equation was accepted to all datasets.



MEASURE: 1. RANK 2. CHI-2 TOTAL 3. ACCEPTANCE RATIO

eq_1 22 68.8 8/9

eq_2 24 65.3 8/9

eq_3 26 71.0 8/9

eq_4 31 104.4 6/9

eq_5 32 101.4 6/9

The results show that three equation types are distinctly better. Each of the
three equations has been accepted at the probability threshold 0.001 for eight
out of nine masses.

The following postulates follow from our analysis: (1) a few unacceptable
�ts, unless very bad (big value of �2) do not disqualify a given type of equation;
(2) not accepted equations must be remembered at the �rst level, since some of
them will be used at the next level if accepted in the majority of datasets.

The �rst three equations have been admitted to the next level of search, but
for comparison we also used eq4. Each equation has two parameters, A and B.

For each equation type, FAHRENHEIT creates two datasets, one for param-
eter A and one for B: (mi; Ai; "Ai

) and (mi; Bi; "Bi
). The value of error for

each parameter value has been generated by EF at the �rst level. Now EF is
applied to both datasets. The best �ts are shown below for the best two equa-
tions. Notice, that the majority of searches have been successful without any
term transformations.

eq_1: time = (A + B * SQRT(angle)) / angle
For A: A = (+ Aa (* Ab mass)) , (Aa Ab) = (0.248 0.0018) +- (0.1020 0.0005) Chi2 = 15.0 Q = 0.036

For B: B = (+ Ba (* Bb mass)) , (Ba Bb) = (3.016 -0.0026) +- (0.035 0.0002) Chi2 = 7.7 Q = 0.361

eq_2 : time = EXP(A + B * LOG(angle))

For A: A = (LOG (+ Aa (* Ab mass mass))) , (Aa Ab) = (3.09 -2.9e-6) +- (0.03 6.4e-7) Chi2 = 23.9 Q = 0.001

For B: B = (+ Ba (* Bb mass)) , (Ba Bb) = (-0.509 -1.65e-4) +-(0.006 3.24e-5) Chi2 = 16.5 Q = 0.021

To produce equations of the form t = g(angle;mass), the equations for A
and B can be substituted into the original equation t = f(angle).

4 Evaluation of the results

We shall now investigate the quality of the equations proposed by FAHRENHEIT.

4.1 Empirical equations vs. data

Total �2 (
PN

i=1[(yi � f(xi))=�i]
2) and the corresponding probability Q summa-

rize the �t of equation y = f(x) to data (xi; yi; �i). Residua f(xi) � yi provide
detailed information about local areas of �t and mis�t. The analysis of residua
demonstrates no substantial areas of mis�t between data and predicted values,
leading to the conclusion that empirical equations provide a joint description of
all phenomena that contributed to the data.

The total �2 for each type of equation is shown below. We computed �2

for each of the four �nal equations, and we also show the number obtained by
totaling �2 for each of the nine equations at the �rst level (for mass). For each
equation, both numbers o�er answers to an important question: how much �t



is lost in generalization from bi-variate equations derived on the �rst level to
the equation derived at the second level. The �2 for the �nal equation must be
bigger that the total of �2's for the �rst level equations because the values of A
and B derived from equations at the second level cannot be as good as the best
one, while the best �t has been assured for each equation on the �rst level.

Equation: eq1 eq2 eq3 eq4 mechanics

chi-2 level1: 69 65 71 104

chi-2 level2: 109 113 115 154 711

The total �2 values of the best equations show that the global �t of the
theoretical equation (5) (see last column at level2, above) was far worse than
that of the best empirical equations.

4.2 Galileo's theory vs. data

After the cylinder is released by the gripper and starts rolling down, the top touch
sensor changes its state from engaged to released and the timer is turned on.
When that happens, however, the cylinder has already rolled a short distance of
about 0.7cm, and its initial velocity V 1 is greater than zero. We haven't reduced
this distance to zero as we wanted to keep a safety margin, so that the top sensor
is always successfully engaged. Galileo's theory from section 2.1, applied to our
setup, leads to the equation:

t =

r
2D

gsin(�)
�

r
2d

gsin(�)
(3)

We used this equation to predict time for each of the nine cylinders at each
angle. Since Galileo's theory does not capture rotational energy and momentum
of inertia, the predicted values o�er a very poor �t to data. The residua are at
the level of about 25 percent of the empirical values, compared to about 1% of
the prediction error of our best empirical equations. The original equation of
Galileo, however, could do better, since the constant was determined from his
data, eliminating the systematic under�t.

4.3 Theoretical equation vs. data

The following theoretical equation on time t of descent of a hollow cylinder of
mass m, derived from classical physics, combines loss of potential energy, gain
in kinetic energy of translation, and gain in the kinetic energy of rotation:

t =

r
D(4M �m)

sin(�)gM
(4)

where D is the distance rolled by the cylinder,M is mass of a solid cylinder of the
same diameter as the given cylinder (massm), and g is Earth acceleration. From
equation 4 we derive the theoretical equation that takes into account distance d
that the cylinder covered before the top sensor was released

time =

r
D(4M �m)

sin(�)gM
�

r
d(4M �m)

sin(�)gM
(5)



D = 50:2cm, d = 0:7cm. We used g = 980:03cm=s2 received from physicists in
our building.

The analysis of residua for the theoretical equation (5) suggests that addi-
tional factors, not accounted for in the theoretical model, systematically alter
results in two areas. For the smallest angle the time predicted from (5) is sys-
tematically shorter than the time measured, while for larger angles, the time
predicted from (5) is systematically longer. Cylinder sliding is a likely factor at
higher angles. Energy dissipation by static friction is likely at the lowest angle.

5 Conclusions

Robotic systems that interact with the real world, gathering empirical data and
developing theories, make an attractive long-term goal for machine discovery.
Automation of discovery meets a demanding test when applied on robots.

Our reconstruction of Galileo's experiment shows that a simple discovery
system linked to a simple robot arm can generate empirical equations that �t the
data better than equations derived from a well-established theory. The inuence
of processes that are hard to represent in a theoretical model can be captured
by empirical equations.

It may be futile to expect a robot discoverer to deliver a distinctly superior
single solution, typically sought in machine discovery. For automated systems,
single solutions are a desired but unlikely borderline between no solutions and
many solutions. Automated discoverer may require plenty of further knowledge
to gain the perspective necessary to make choices between competing equations
and to move from empirical equations to basic theories.
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