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After two decades of research on automated discovery (1995; 1998; 1999;
Chaudhuri & Madigan, 1999; Edwards, 1993; Komorowski & Zytkow, 1998; Lan-
gley, Simon, Bradshaw, & Zytkow, 1987; Piatetsky-Shapiro & Frawley, 1991;
Shen, 1993; Shrager & Langley; Simon, Valdes-Perez & Sleeman, 1997; Zytkow,
1992, 1993, 1997), it is worthwhile to summarize the foundations for discovery
systems by a set of principles. We propose a number of such principles and we
discuss the ways in which di�erent principles can be used together to explain
discovery systems and guide their construction. Automated discovery is closely
linked to natural sciences, logic, philosophy of science and theory of knowledge,
arti�cial intelligence, statistics, and machine learning. Knowledge discovery tools
use a creative combination of knowledge and techniques from the contributing
areas, adding its own extra value, which we emphasize in several principles.

1 What is a discovery

We start by clarifying the notion of discovery that applies to automated agents.
A person who is �rst to propose and justify a new piece of knowledge K is con-
sidered the discoverer of K. Being the �rst means acting autonomously, without
reliance on external authority, because there was none at the time when the
discovery has been made, or the discovery contradicted the accepted beliefs.
Machine discoverers should be eventually held to the same standards. Abso-
lute novelty is important, but a weaker criterion of novelty is useful in system
construction:

Agent A discovered knowledge K i� A acquired K without the use of
any knowledge source that knows K.

This de�nition calls for cognitive autonomy of agent A. It requires only that
K is novel to the agent, but does not have to be found for the �rst time in the
human history. The emphasis on autonomy is useful in machine discovery. Even
though agent A discovered a piece of knowledge K which has been known to
others, we can still consider that A discovered K, if A did not know K before
making the discovery and was not guided towardsK by any external authority. It
is relatively easy to trace the external guidance received by a machine discoverer,
as all details of software are available for inspection.



2 Principles of autonomy

A1: Autonomy of an agent is increased by each new method that
overcomes some of the agent's limitations.

Admittedly, each machine discoverer is only autonomous to a degree. Its au-
tonomy, however, can be increased by identifying the missing discovery capabili-
ties and developing methods that supply them (Langley et.al, 1987; Nordhausen
& Langley, 1993; Kulkarni & Simon, 1987; Kocabas & Langley, 1995; Valdes-
Perez, 1993). The mere accumulation of new components, however, is not very
e�ective. Each new component should be used in new creative ways, in combina-
tion with the existing methods. As a result, more discovery steps in succession
can be performed without external help, leading to greater autonomy:

A2: Autonomy of an agent is increased by method integration,
when new combinations of methods are introduced.

Many methods use data to generate knowledge. When applied in sequence,
elements of knowledge generated at the previous step become data for the next
step. This perspective on knowledge as data for the next step towards improved
knowledge is important for integration of many methods (Langley et al, 1987):

A3: Each piece of discovered knowledge can be used as data for
another step towards discovery:

Step-1 Step-2
Data-1 �� ! Knowledge-1 = Data-2 �� ! Knowledge-2 = Data-3

3 Theory of knowledge

Knowledge of external world goes beyond data, even if data are the primary
source of knowledge. It is important to understand elements of the formalism in
relation to elements of the external world. Consider a fairly broad representation
of a regularity (law, generalization):

Pattern (relationship) P holds in the range R of situations.

In practical applications this schema can be narrowed down, for instance:
(1) if P1(A1)&:::&Pk(Ak) then Rel(A;B)
where A;B;A1; :::; Ak are attributes that describe each in a class of objects, while
P1; :::; Pk are predicates, such as A1 > 0 or A2 = a. An even simpler schema:
(2) if P1(A1)&:::&Pk(Ak) then C = c

covers all rules sought as concept de�nitions in machine learning.

A good �t between knowledge and data is important, but discoverer should
know real-world objects and attributes, not merely data and formal hypotheses:

K1: Seek objective knowledge about the real world, not knowledge
about data.



This principle contrasts with a common data mining practice, when re-
searchers focus entirely on data. Sometimes, however, speci�c knowledge about
data is important, for instance about wrong data or data encoding schemas.

Schemas such as (1) or (2) de�ne vast, sometimes in�nite, hypothesis spaces,
so that hypotheses must be generated, often piece by piece, evaluated and re-
tained or eliminated.

K2: [Principle of knowledge construction]All elements of each piece
of knowledge are constructed and evaluated by a discovery system.

Predictions are essential for hypothesis evaluation. It is doubtful that we
would consider a particular statement a piece of knowledge about external world
if it would not enable empirically veri�able predictions:

K3: A common characteristic of knowledge is its empirical contents,
that is empirically veri�able predictions.

Knowledge improvement can be measured by the increased empirical con-
tents. Logical inference is used to draw empirically veri�able conclusions. The
premises are typically general statements and some known facts, while conclu-
sions are statements which predict new facts. Empirical contents can occurs in
regularities (laws, statements, sentences), not in predicates which do not have
truth value. Concepts, understood as predicates, have no empirical contents. We
can de�ne huge numbers of concepts, but that does not provide knowledge. The
vast majority of knowledge goes beyond concept de�nitions:

K4: Each concept is an investment; it can be justi�ed by regularities
it allows to express.

4 Principles of search

Discoverers explore the unknown and examine many possibilities which can be
seen as dead ends from the perspective of the eventually accepted solutions,
because they do not become components of the accepted solutions. This process
is called search. We can conclude that:

S1: If you do not search, you do not discover.

A simple search problem in AI can be de�ned by a set of initial states and a
set of goal states in a space of states and moves. The task is to �nd a trajectory
from an initial state to a goal state. In the domain of discovery the goal states
are not known in advance, but the basic framework of discovery can be applied
(Simon, 1979; Langley et al, 1987):

S3: [Herbert Simon 1] Discovery is problem solving. Each problem
is de�ned by the initial state of knowledge, including data and by
the goals. Solutions are generated by search mechanisms aimed at the
goals.



The initial state can be a set of data, while a goal state may be an equation
that �ts those data (Langley et al, 1987; Zembowicz & Zytkow, 1991; Dzeroski
& Todorovski, 1993; Washio & Motoda, 1997). The search proceeds by construc-
tion of terms, by their combinations into equations, by generation of numerical
parameters in equations and by evaluation of completed equations.

Search spaces should be su�ciently large, to provide solutions for many prob-
lems. But simply enlarging the search space does not make an agent more cre-
ative. It is easy to implement a program that enumerates all strings of characters.
If enough time was available, it would produce all books, all data structures, all
computer programs. But it produces a negligible proportion of valuable results
and it cannot tell which are those valuable results.

S4: [Herbert Simon 2] A heuristic and data-driven search is an e�-
cient and e�ective discovery tool. Data are transformed into plausible
pieces of solutions. Partial solutions are evaluated and used to guide
the search.

Goal states are supposed to exceed the evaluation thresholds. Without that,
even the best hypothesis reached in the discovery process can be insu�cient. A
discovery search may fail or take too much time and a discoverer should be able
to change the goal and continue.

S5: [Recovery from failure] Each discovery step may fail and cog-
nitive autonomy requires methods that recognize failure and decide
on the next goal

Search states can be generated in many orders. Search control, which handles
the search at run-time, is an important discovery tool.

S6: [Simple-�rst] Order hypotheses by simplicity layers; try simpler
hypotheses before more complex.

The implementation is easy, since simpler hypotheses are constructed before
more complex. Also, simpler hypotheses are usually more general, so they are
tried before more complex, that is more speci�c hypotheses. If a simple hypoth-
esis is su�cient, there is no need to make it more complex.

Do not create the same hypothesis twice, but do not miss any:

S7: Make search non-redundant and exhaustive within each sim-
plicity layer.

5 Beyond simple-minded tools

The vast majority of data mining is performed with the use of single-minded
tools. Those tools miss discovery opportunities if results do not belong to a par-
ticular hypothesis space. They rarely consider the question whether the best �t
hypothesis is good enough to be accepted and whether other forms of knowledge
are more suitable for a given case. They ignore the following principle (Zembow-
icz & Zytkow, 1996):



O1: [Open-mindness] Knowledge should be discovered in the form
that reects real-world relationships, not one or another tool at hand.

6 Statistics

Equations and other forms of deterministic knowledge can be augmented with
statistical distributions, for instance, y = f(x) + N (0; �(x)). N (0; �(x)) repre-
sents Gaussian distribution of error, with mean value equal zero and standard
deviation �(x).

Most often a particular distribution is assumed rather than derived from
data, because traditional statistical data mining operated on small samples and
used visualization tools to stimulate human judgement. Currently, when large
datasets are abundant and more data can be easily generated in automated
experiments, we can argue for the veri�cation of assumptions:

ST AT 1: Do not make assumptions and do not leave unveri�ed as-
sumptions.

For instance, when using the model y = f(x) + N (0; �(x)) verify Gaussian
distribution of residua, with the use of runs test and other tests of normality.
Publications in statistics notoriously start from \Let us assume that ..." Either
use data to verify the assumptions, and when this is not possible, ask what is
the risk or cost when the assumptions are not met.

Another area which requires revision of traditional statistical thinking is test-
ing hypothesis signi�cance. Statistics asks how many real regularities are we
willing to disregard (error of omission) and how many spurious regularities are
we willing to accept (error of admission). In a given dataset, weak regularities
cannot be distinguished from patterns that come from random distribution (the
signi�cance dilemma for a given regularity can be solved by acquisition of ad-
ditional data). Automated discovery systems search massive hypothesis spaces
with the use of statistical tests, which occasionally mistake a random uctuation
for a genuine regularity:

ST AT 2: [Signi�cance 1] Chose a signi�cance threshold that enables
middle ground between spurious regularities and weak but real regu-
larities speci�c to a given hypothesis space.

While a signi�cance threshold should admit a small percent of spurious reg-
ularities, it is sometimes di�cult to compute the right threshold for a given
search. Each threshold depends on the number of independent hypotheses and
independent tests. When those numbers are di�cult to estimate, experiments on
random data can be helpful. We know that those data contain no regularities,
so all detected regularities are spurious and should be rejected by the test of
signi�cance. We should set the threshold just about that level:

ST AT 3: [Signi�cance 2] Use random data to determine the right
values of signi�cance thresholds for a given search mechanism.
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