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Abstract: In this paper we present a new rule-discovery method for incomplete Information Systems (IS) which are generalizations of information systems introduced by Pawlak [4]. The proposed method has some similarities with system LERS [1]. It is a bottom-up strategy, generating sets of weighted objects having first only one-value properties. Some pairs of these generated sets are used for constructing rules and they are marked as successful. All pairs having a number of supporting objects below some threshold value are marked as well. All remaining (unmarked) pairs are used to construct new sets of weighted objects having two-value properties. Some of them are in a supporting relationship with sets of weighted objects having one-value properties. By supporting relationship we mean a relationship identifying a rule which can be extracted from our incomplete IS. This process is continued recursively by moving to sets of weighted objects having k-value properties, where k(2. Our strategy can also be used for chasing incomplete information systems with rules discovered from them. This way, our system can be seen as a new tool for handling incompleteness in IS.

1. Introduction

There is a number of strategies which allow us to find rules describing decision attributes in terms of classification attributes. For instance, we can mention here such systems like LERS [1], AQ18, Rosetta [3] and,  C4.5 [5]. In spite of the fact that the number of rule discovery methods is still increasing, most of them are developed under the assumption that the information about objects in the information system is either precisely known or not known at all. This implies that either one value of an attribute is assigned to an object as its property or no value is assigned to it (instead of  no value we use the term null value).  

Problem of inducing rules from systems with incomplete attribute values represented as sets of possible values was discussed for instance by Kryszkiewicz and Rybinski [2] and by Ras and Joshi [6]. In this paper, we present a new strategy for discovering rules in incomplete information systems. The constraints placed on what values of attributes can be assigned to objects are as weak as possible. Quite often user’s knowledge about objects is not exact and even asking the user to assign a set of possible attribute values to an object is a property which is still too strong to be forced as a constraint. In our system, we allow to use not only sets of attribute values as values of an object but also we allow to assign a confidence to each of this attribute values. For instance, by assigning a value {(brown, 1/3), (black, 2/3)} of the attribute Color of Hair to an object x we say that the confidence in object x having brown hair is 1/3 whereas the confidence that x has black hair is 2/3.

2. Discovering Rules in Incomplete IS

We start with a definition of an incomplete information system which is a generalization of an information system introduced by Pawlak [3].  

By an incomplete Information System (IS) we mean  S = (X, A, V), where X is a finite set of objects, A is a finite set of attributes and  V = ({Va : a ( A} is a finite set of values of attributes. The set Va is a domain of attribute a.  We assume that for each attribute a ( A and  x ( X,  a(x) ={(ai, pi): i ( Ja(x)  ( ((i ( Ja(x)) [ai ( Va]  (  (pi = 1}. Null value assigned to an object is interpreted as all possible values of an attribute with equal confidence assigned to all of them. Figure 1 gives an example of an incomplete information system S = ({x1, x2, x3, x4, x5, x6, x7, x8}, {a, b, c, d, e}, V}. 

Clearly, a(x1) = {(a1,1/3), (a2,2/3)}, a(x2) = {(a2,1/4), (a3,3/4)}, …..

Let us try to extract rules from S describing attribute e in terms of attributes {a, b, c, d} following a strategy similar to LERS [1].

So, we start with identifying sets of objects in X having properties  a1, a2, a3, b1, b2, c1, c2, c3, d1, d2  and next we find their relationships with sets of objects in X having properties  e1, e2, e3. Let us start with  a1*  which is equal to {(x1,1/3), (x3,1), (x5, 2/3)}. The justification of this is quite simple. Only these 3 objects may have that property. Object x3 has property 1 for sure. The confidence that x1 has property a1 is 1/3 since  (a1,1/3) ( a(x1). In a similar way we justify the property a1 for object x5.  

	X
	a
	b
	c
	d
	e

	x1
	(a1,1/3), (a2,2/3)
	(b1,2/3), (b2,1/3)
	c1
	d1
	(e1,1/2), (e2,1/2)

	x2
	(a2,1/4), (a3,3/4)
	(b1,1/3), (b2,2/3)
	
	d2
	e1

	x3
	a1
	b2
	(c1,1/2), (c3,1/2)
	d2
	e3

	x4
	a3
	
	c2
	d1
	(e1,2/3), (e2,1/3)

	x5
	(a1,2/3), (a2,1/3)
	b1
	c2
	
	e1

	x6
	a2
	b2
	c3
	d2
	(e2,1/3), (e3,2/3)

	x7
	a2
	(b1,1/4), (b2,3/4)
	(c1,1/3), (c2,2/3)
	d2
	e2

	x8
	a3
	b2
	c1
	d1
	e3


Figure 1.

So, as far as values of classification attributes, we get :
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For the values of decision attribute we get:
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The next step is to propose a method for checking a relationship between classification attributes and the decision attribute. For any two sets 
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We calculate the support of the rule  [
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Similarly, the support of the term  
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. So, the confidence of the above rule will be 
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, if we follow the standard strategy for calculating the confidence of a rule. 

Now, let us follow a strategy which has some similarity with LERS. All inclusions [
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] will be automatically marked assuming that the confidence and support of the corresponding rules are both above some threshold values (which are given by user). In the current example we take 
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Assume again that  
[image: image53.wmf]N

i

i

i

i

p

x

c

Î

=

)}

,

{(

*

, 
[image: image54.wmf]M

j

j

j

j

q

y

e

Î

=

)}

,

{(

*

.  The algorithm will check first the support of the rule  
[image: image55.wmf]j

i

e

c

®

 . If support is below a threshold value, then the corresponding relationship 
[image: image56.wmf]M

j

j

j

N

i

i

i

q

y

p

x

Î

Î

Í

)}

,

{(

)}

,

{(

 does not hold and it is not considered in later steps. Otherwise, the confidence of the rule 
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 is checked. If that confidence is either above or equal the assumed threshold value, the rule is approved and the corresponding relationship 
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 is marked. Otherwise this corresponding relationship remains unmarked.

Now, let us follow the strategy similar to LERS. All feasible inclusions are automatically marked assuming that their confidence is above the threshold (given by user). In the current example we take Msup=1 as the threshold value for support and Mconf=0.5  as the threshold value for the confidence.
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3. Algorithm ERID (Extracting Rules from Incomplete Decision Systems)

We are ready to present the algorithm for extracting rules from an incomplete information system. To simplify the presentation, a new notations (only for the purpose of this algorithm) will be introduced. So, let us assume that  
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end

The complexity of this algorithm is similar to complexity of LERS.

4. Conclusion

Missing data values cause problems both in knowledge extraction from information systems and in query answering systems. Quite often missing data are partially specified. It means that the missing value is an intermediate value between the unknown value and the completely specified value. Clearly there is a number of intermediate values possible for a given attribute. Algorithm ERID presented in this paper can be used as a new tool for chasing values in incomplete information systems with rules discovered from them. We can keep repeating this strategy till a fix point is reached. To our knowledge, there are no such tools available for incomplete information systems presented in this paper. 
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