
A Data-Driven Analysis of
Informatively Hard
Concepts in Introductory
Programming
R. Paul Wiegand

Anthony Bucci

Amruth N. Kumar

Jennifer L. Albert

Alession Gaspar

Presented by: Sterling McLeod

Introduction

• “Attrition in introductory programming courses is legendary.”

• What are the hard and easy concepts in such a class?

• Typical measures are not thorough
• If all students miss a problem, we don’t gain much info about what students don’t

understand
• What if it is a pre-requisite concept that most students don’t understand? What if half

understand the pre-requisite concepts, but not the main concept?

• This paper proposes a data-driven approach to identify easy and hard concepts

2

Analysis Goals

• Problem classifications:

• Informatively hard – most often solved incorrectly by most dominant students

• Informatively easy – most often solved correctly by the most dominated students

• Student classifications:

• Most dominant student – one who solved the most problems in that concept

• Most dominated student – one who solved the fewest problems in that concept

• Use Dimension Extraction Coevolutionary Algorithm (DECA) to identify structural relationships
among students and problems

3

Co-optimization

• Co-optimization is different from typical optimization because there are multiple types of entities
• We are interested in both students and problems

• Any student can attempt any problem(s) and receive a score
• Many-to-many relationship between students and problems

• Decompose information (scores of students) into two coordinate systems

• “Problem Coordinate System” – each axis is a concept

• “Student Coordinate System” – each axis a subset of students, i.e. a learner type

4

Dimension Extraction

• Dimension Extraction Coevolutionary Algorithm (DECA)

• Normally: searches through candidate solutions and tests
• But only interested in the dimension-extraction part to analyze students and problems

• Problem Analysis
• Students are candidates and problems are the tests
• Each dimension corresponds to a different concept
• Problems further on axis are harder -> higher value = less # of students got it correct

• Student Analysis
• Problems are candidates and students are the tests
• Students furthest along axis solved the most problems
• Each dimension corresponds to a different pattern in which students performed on problems, i.e.

a “type” of learner

5

Dimension Extraction

• Problem Analysis

• # of extracted dimensions gives measure of
distinct concepts in a problem set

• Student Analysis

• # of ways students can be grouped based on performance

• Together, they give a notion of how informative problems are
Student 0, Student 2

Student 3, Student 5, Student 6

Student 1, Student 4, Student 9

arithmetic

loops

exceptions

6

Student Analysis

• Student analysis axes are groups of students that perform comparably

Problems: P1 P2 P3 P4 P5 P6

Students: S1 S2 S3 S4 S5 S6
S1 S2 S4

7

Student Analysis

• Student analysis axes are groups of students that perform comparably

Problems: P1 P2 P3 P4 P5 P6

Students: S1 S2 S3 S4 S5 S6
S1 S2 S4

Correct Problems
S1: P1, P2
S2: P1, P2, P3
S4: P1, P2, P3, P4

Easy to compare
performance

Each student along axis
got the same problems
right as previous
students

8

Student Analysis

• Student analysis axes are groups of students that perform comparably

Problems: P1 P2 P3 P4 P5 P6

Students: S1 S2 S3 S4 S5 S6
S1 S2 S4

Correct Problems
S1: P1, P2
S2: P1, P2, P3
S4: P1, P2, P3, P4

S3: P1, P5

Easy to compare
performance

Each student along axis
got the same problems
right as previous
students

How do we
compare to
S1, S2, S4?

9

Student Analysis

• Student analysis axes are groups of students that perform comparably

Problems: P1 P2 P3 P4 P5 P6

Students: S1 S2 S3 S4 S5 S6
S1 S2 S4

Correct Problems
S1: P1, P2
S2: P1, P2, P3
S4: P1, P2, P3, P4

S3: P1, P5

Easy to compare
performance

Each student along axis
got the same problems
right as previous
students

How do we
compare to
S1, S2, S4?

Each axis is a group of students that seem to understand the material in a non-contradictory way

S3

10

Problets

• http://problets.org/

• Software assistants for programming
problems

• Generate a problem, grade student
solution, explain the correct solution,
and log data

• Each topic has repository of 200+
problems categorized into concepts

11

http://problets.org/

Informatively Hard/Easy

• Informatively hard – most often solved incorrectly by most dominant students

• Informatively easy – most often solved correctly by the most dominated students

• For each dimension, the most dominant student is the student furthest
along the corresponding axis
• S4, S8, S9

• For each dimension, the most dominated student is the first student
along the corresponding axis
• S1, S3, S6

S1 S2 S4

S3

S5

S8

S6

S7

S9

12

Informatively Hard/Easy

• These two measures do NOT coincide with their traditional counterparts
• Easy: Problem that the most students got correct

• Hard: Problem that the most students got incorrect

• It is possible for a problem to be missed by everyone but the strongest students OR for a
challenging problem to be solved by the weakest student

• Student behavior is not linear expectation

• Informatively hard/easy highlight and preserve the idea that different students understand
different concepts in different ways

13

Results

• Study done in Spring 2014

• 14 topics

• C++, Java, and C#

• Hard/Easy – most number of
incorrect/correct responses

• Informatively Hard/Easy – Collect all
most dominant/dominated students,
find the problems that all those
students fail/pass the most

14

Results

• Arithmetic Expressions
• Easy

• Evaluating expressions such as 10 - - 5
• Fully parenthesized expressions such as (14/((2 – 1) + 4)

• Hard
• Modulus operator embedded in expression, such as 12%5+5%12.3

• Unique to programming

• Informatively Easy
• Divide-by-zero expressions, 9/3/0

• Informatively Hard
• Integer division, 5/3+3*5

• Unique to programming

15

Results

• Logical Expressions
• Easy

• Evaluating fully parenthesized expressions, (true && (true && (true || false))) that do not require precedence rules

• Hard
• Evaluating C++ expressions wherein numerical values are used as Boolean operands, 3*0&&3+0

• Informatively Easy
• Evaluating fully parenthesized expressions that do not require precedence rules

• Informative Hard
• Evaluating fully parenthesized expressions that do not require precedence rules

• Even though fully parenthesized expressions are easy, the best students still make mistakes when
evaluating them

16

Results

• While loops
• Easy

• Predicting the output of a loop that iterates only once

• Loop that never iterates because condition is false on first try

• Hard
• Identifying the output of multiple back-to-back loops where behavior depends on previous iteration

• Informatively Easy
• Predicting output of nested loops

• Informatively Hard
• Predicting the output of nested loops when inner loop behavior depends on the outer loop

• Loop that never iterates because condition is false on first try

17

Results

• Functions
• Easy

• Tracing output when function is part of an expression

• Hard
• Predicting output when variable is passed-by-value to a function (C++ only)

• Identifying bug when a return statement is missing

• Informatively Easy
• Tracing behavior of a function that has multiple conditional return statements

• Informatively Hard
• Not identifying a bug when two variables have the same name appear in two different functions

• Identifying the C++ bug where a function is called before it is defined or prototyped

18

Results

• Arrays
• Easy

• Specifying the contents of a fully initialized array

• Hard
• Identifying the contents of an array declared with incomplete initialization

• Informatively Easy
• Predicting behavior when an element of an array is referenced before it is initialized

• Informatively Hard
• Identifying type mismatch when an array is passed as parameter to a function

• Although students are familiar with parameter passing and type mismatch by now,
applying those concepts to arrays is still challenging

19

Thoughts

• Informatively easy/hard concepts rarely overlap with traditionally easy/hard concepts

• Some concepts intuitively thought to be hard turned out to be informatively easy (e.g.
independently nested while loops)

• Using DECA to identify informatively easy/hard concepts can bring many new insights to teaching
introductory programming courses

• This study can help lead to a concept inventory for introductory programming

20

Questions?

21

