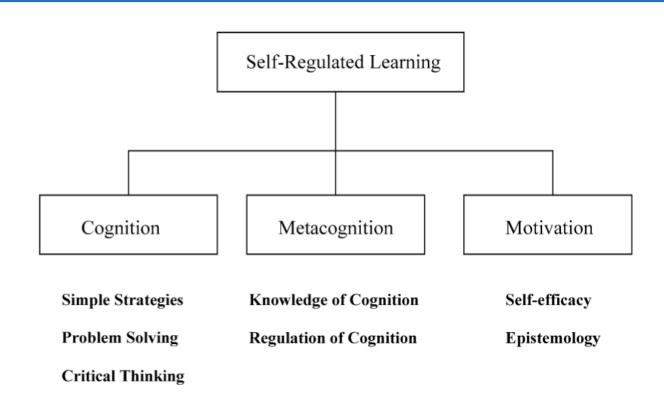
Promoting Self-Regulation in Science Education: Metacognition Schraw et al. 2006

Presented by Stephen MacNeil

Introduction

Using active learning techniques

- flipped classroom learning
 - individuals required to be more responsible
 - individuals must be autonomous
- group projects


see a problem?

Problems

- Flipped classrooms have an individual component
- Group projects students rely on others for grades

- Team-based learning is not all-powerful
 - the majority of learning is independent
 - individuals have different needs
 - difficulty finding teams to learn with (industry)

Overview

Self-Regulation

- set goals
- select strategies
- implement strategies
- monitor progress

(Schunk 1996)

Seems easy right?

Steps to Self-Regulation

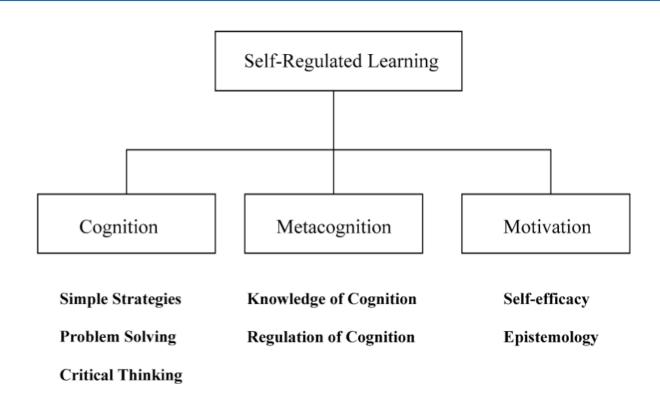
How should students move from being reliant learners to self-regulated learners?

hint: how might you scaffold it?

Social Cognitive Steps

- observational modeling
- imitative guidance/feedback
- self-controlled standards
- self-regulated self efficacy and strategies

internal vs external


Background for Self-Regulation

- Bandura's theory of reciprocal determinism
 - personal factors beliefs and attitudes
 - environmental factors quality of instruction
 - behavioral factors prior performance

Modern beliefs

 interacting cognitive, metacognitive, and motivational (Butler & Winne, 1995; Zimmerman 2000)

Revisit the overview

Cognition: strategies

- student generated questions (Chinn & Brown 2002)
 - focus attention
- constructing graphs and tables (House 2002)
 - mental models
- cloze assessments (Koch 2001)
- predict observe explain (Rickey & Stacey 2000)
 - scaffolded problem solving

Cognition: problem solving

- predict observe explain (Rickey & Stacey 2000)
 - scaffolded problem solving
- problem solving (Dhillon 1998)
 - composable parts
 - teachable

Cognition: critical thinking

- identifying the source of information
- verifying the source of information
- reconcile the information with prior beliefs
- draw conclusions

(Linn 2000)

Metacognition

- Knowledge of and regulation of cognition
- Types of knowledge
 - Declarative knowledge about ourselves as learners
 - Procedural knowledge of strategies
 - Conditional when to use which strategy
- Metacognitive late onset and need not be explicit (domain experts)

Motivation

Back to Bandura

- It doesn't matter if you don't think it works.
- Factors
 - social support
 - self talk and self belief (self-efficacy)
 - availability and strength of models

Six Strategies for Improving (2/6)

Remember: cognitive, metacognitive, motivation

- inquiry-based learning (Anderson 2002)
 - critical thinking
 - explicit planning, monitoring and evaluation
 - expert modeling
- collaborative learning (situated learning Lave 1991)
 - models strategies
 - models self reflection
 - social support, modeling own learning by others

Six Strategies for Improving (4/6)

Remember: cognitive, metacognitive, motivation

- strategies
 - multiple (analogies, mnemonics ...)
 - develop conditional knowledge
 - improve self-efficacy
- mental models
 - explicit model to analyze
 - reflect and evaluate proposed method
 - promotes conceptual changes

Six Strategies for Improving (6/6)

Remember: cognitive, metacognitive, motivation

- technology
 - provides models and simulates data
 - helps test, evaluate and revise models
 - provides collaborative support
- personal beliefs
 - modeling epistemological characteristics of experts
 - promotes personal change and reflection
 - increases engagement and persistence

Thank you!

Remember to teach students to learn how to learn.