GAANN Seminar UNC-Charlotte

Investigating and improving the models of programming concepts held by novice programmers

L. Ma , J. Ferguson , M. Roper & M. Wood

Presented By David Burlinson 9/15/2016

INTRODUCTION

- Computer programming education is still a major challenge
- ITiCSE working group ("McCracken group") study
 - Low preparedness
 - Poor performance
 - High dropout rates

INTRODUCTION

- Computer programming education is still a major challenge
- Sources of weakness:
 - Problem-solving ability [1]
 - Non-viable mental models of key concepts [2,3]

Barnes, Fincher, & Thompson, 1997
 Bayman & Mayer, 1983
 Lui, Kwan, Poon, & Cheung, 2004

INTRODUCTION

- Computer programming education is still a major challenge
- Addressing the deficiencies:
 - Preliminary study of novice students' mental models
 - 3 studies using constructivist learning model with cognitive conflict and visualization
 - Evaluation of results

- Mental Models
 - Craik (1943): small-scale models of reality
 - Johnson-Laird (1983): working memory constructs
 - Gentner and Stevens (1983): long-term memory
 - Schwartz & Black (1996): long-term models may influence the working models

- Mental Models of novice programmers
 - Bayman and Mayer (1983): models of computer activity for BASIC statements
 - Kahney (1983): loop or copy models of recursion
 - Gotschi, Sanders, and Galpin (2003): loop or copy models of recursion
 - **Dehnadi and Bornat** (2006): mental models for assignment statements
 - Caspersen, Bennedsen, and Larsen (2007): could not replicate the previous work

- Difficulties of novice programmers du Boulay (1989)
 - 1. Orientation what is programming for
 - 2. Notional Machine general properties
 - 3. Notation syntax and semantics
 - 4. Structure patterns and schemas
 - 5. Pragmatics specify, develop, test, debug

- Difficulties of novice programmers du Boulay (1989)
 - 1. Orientation
 - 2. Notional Machine
 - 3. Notation
 - 4. Structure
 - 5. Pragmatics

- Constructivism
 - Alternative to objectivism a single objective truth to transfer to students' minds
 - Learners actively construct knowledge by combining the experiential world with existing cognitive structures
 - A key strategy cognitive conflict
 - explicitly challenging pre-existing ideas
 - form appropriate, viable mental models

- Cognitive conflict
 - A number of supporting results
 - Baser (2006) heat and temperature content in physics
 - Demircioglu, Ayas, and Demircioglu (2005) acids and bases in chemistry
 - Some alternative results
 - Limon (2001) suggested a range of effects

Investigating the viability of mental models held by novice programmers

- Motivated by Dehnadi & Bornat's controversial study
- Examining mental models of value and reference assignment in novice Java programmers
- 90 participants
 - from an object-oriented programming course using "objects first" approach
 - studied near the end of the course
 - Questionnaire under examination conditions

- Questionnaire format
 - open-ended questions
 - describe the execution of a small program fragment
 - use text or diagrams
 - designed to reveal mental models
 - multiple choice questions (12)
 - predict the result of a small program fragment
 - predefined answers mapped to mental models
 - examined questions related to value- and reference-based assignments

- Questionnaire results
 - open-ended questions
 - 25 (of 90) too brief or unclear to categorize
 - 11 clearly used appropriate mental models
 - 54 at least one inappropriate model
 - non-viable reference models more common

- Questionnaire results
 - MC questions

- Questionnaire results
 - Compared results with course grades
 - appropriate models correlated with good performance
 - inappropriate models correlated with bad performance
 - 1/3 of students held non-viable models of value assignment
 - 5/6 of students held non-viable models of reference assignment

A learning model integrating cognitive conflict strategy and program visualization

- Building viable mental models of programming concepts is hard
 - information to confirm or contradict models is not easily available
- Visualizations can aid construction of mental models of abstract phenomena, however —
 - most tools are based on objectivist models
 - they don't let students explore their own conceptions
 - students satisfied with their pre-existing concepts tend not to accept new ones

- General idea:
 - employ cognitive conflict
 - support construction of viable models using a visualization environment

- Proposed teaching model
 - 1. Preliminary stage investigate pre-existing mental models
 - Cognitive conflict stage challenge pre-existing models
 - 3. Model construction stage construct viable models with visualization and animation
 - 4. Application stage reinforce models with applied problems

- Visualization tool:
 - step-by-step execution
 - textual descriptions

- Focus on value assignment
- 60 participants
 - from freshman Java course
 - after value assignment had been taught
- Preliminary pre-test to identify models
- Students with non-viable models (38) sorted into two groups
 - Cognitive conflict and visualization
 - Visualization only
- Post-test to investigate model results

- Results
 - Pre-test identified a number of mental models

Model	Description of the model						
M2	A Java primitive type value is copied from the result of the evaluated expression on the right of the assignment operator to a variable on the left (appropriate mental model)						
MIncon M9 ME MUR M11Ss ^a M2Ss	Different models are used to answer the collection of questions Nothing happens when an assignment statement is executed Viewing '=' as a comparison operator A variable cannot be 'rewritten', i.e. the variable can be only written once Variables swap values when an assignment statement is executed + Ss model M2 + Ss						
Group	MIncon	M9	ME	MUR	M11Ss	M2Ss	Total
CC+Viz Viz Total	6 2 8	0 1 1	2 4 6	1 0 1	1 1 2	4 6 10	14 14 28

	Model change successfully					Model change failed		
Group	$\overline{\text{MIncon}}$ M2/Ss ^a	$\begin{array}{c} M9 \rightarrow \\ M2/Ss \end{array}$	$\begin{array}{c} M11Ss \rightarrow \\ M2/Ss \end{array}$	$\frac{\text{ME} \rightarrow}{\text{M2/Ss}}$	Total	M11s → MIncon	$\begin{array}{c} \text{ME} \rightarrow \\ \text{MIncon} \end{array}$	Total
CC+Viz	6	0	1	2	9	1	0	1
Viz	2	1	1	1	5	0	3	3
Total	8	1	2	3	14	1	3	4

Group	Model	change success	fully	Model change failed		
	$M2Ss \rightarrow M2$	$M11Ss \rightarrow M2$	Total	$\frac{M2Ss}{M2Ss}$	M11Ss → M2Ss	Total
CC+Viz	2	1	3	2	0	2
Viz	3	0	3	3	1	4
Total	5	1	6	5	1	6

- Discussion
 - No significant difference between treatments (p = 0.13)
 - Visualization tool helped students challenge preexisting model and develop viable mental models
 - Visualization tool was helpful for assignment, but not so much for execution flow
 - tool might not directly challenge all models of flow

STUDY B

- Focus on reference assignment
- 43 participants
 - from same freshman Java course
 - after reference assignment had been taught
- Preliminary pre-test to identify models
- Students with non-viable models (41) sorted into two groups
 - Cognitive conflict and visualization
 - Visualization only
- Post-test to investigate model results and feedback questionnaire

David Burlinson GAANN Seminar 9/15/16

int a =10, b=20, c=30;
Line1: $a = b;$
Line2: $b = c;$

(a) The original example

int a =10, b=20, c=30;	
Line1: $a = b;$	
Line2: $c = a;$	

```
(b) The modified example
```

STUDY B

- Results
 - Participants organized into categories after completing study
 - Category 1: became comfortable with the questions and concepts
 - Category 2: improved understanding of reference
 - Category 3: improved understanding of supporting concepts (but not reference)
 - Category 4: realized their understanding was flawed, but did not change understanding

	Category 1	Category 2	Category 3	Category 4	Category 5
CC+Viz	4	1	9	4	0
Viz	0	5	4	4	7

Category 5: did not realize understanding was flawed

STUDY B

- Discussion
 - Significant difference between treatments (p = 0.0202)
 - It might take more time and practice to construct valid models
 - Some participants might be building simplified models at first
 - Some see they're wrong but don't know why
 - Reference is harder, requires more base knowledge
 - Tool might not be at students' level

STUDY C

- Repeat motivation study to evaluate proposed teaching method
- 66 participants
 - from freshman Java course
 - near the end of the course
 - 22 participated in study A
 - 18 participated in study B
 - 14 participated in both
- Exact same test and conditions as motivational study

STUDY C

- Results:
 - 30 of 36 (from study A) used appropriate models for value assignment
 - significant (p = 0.0282)

Inconsistent
 Consistently Inappropriate
 Consistently Appropriate

- 16 of 32 (from study B) used appropriate models for reference assignment
 - significant (p = 0.0002)

STUDY C

- Results:
 - Compared test results to those from Studies A and B

	The mental models used in the 'value assignment' experiment		The mental models	Number of students 15 7 1 5 3	
	Pre-test Post-test		used at end of the course		
Value Assignment	Viable – Non-viable Viable Non-viable Viable Non-viable Non-viable Non-viable Non-viable		Viable Viable Non-viable Viable Non-viable		
	The mental models used in the 'reference assignment' experiment		The mental models	Number of	
	Pre-test	Post-test	used at end of the course	students	
Reference Assignment	Viable Non-viable Non-viable Non-viable Non-viable	– Viable Viable Non-viable Non-viable	Viable Viable Non-viable Viable Non-viable	1 2 1 11 16	

DISCUSSION

- Potential confounding factors
 - Some non-viable models may not have been challenged appropriately by the cognitive conflict portion
 - Interest in study participation might select students with higher drive, or encourage pressure to learn
- Conclusions
 - For straightforward concepts (assignment), cognitive conflict did not seem to add much
 - For harder concepts (reference), cognitive conflict had a more obvious impact
 - Analysis points to success for the proposed teaching model in terms of student understanding

DISCUSSION

- What are your thoughts on the cognitive conflict and constructivist model?
- Have you had experience with these concepts, either in class or otherwise?
- How would you utilize the proposed teaching model in your classrooms or field of study?
- Are there any areas that would not benefit from the proposed model?

FIN

Thank you for your attention and thoughts!