
Education and Information Technologies
https://doi.org/10.1007/s10639-023-11958-4

BRIDGES: Real world data, assignments and visualizations
to engage andmotivate CS majors

David Burlinson1 · Matthew Mcquaigue1 · Alec Goncharow1 ·
Kalpathi Subramanian1,2 · Erik Saule1 · Jamie Payton2 · Paula Goolkasian3

Received: 1 July 2022 / Accepted: 30 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
BRIDGES is a software framework for creating engaging assignments for required
courses such as data structures and algorithms. It provides students with a simplified
API that populates their own data structure implementations with live and real-world
data, and provides the ability for students to easily visualize the data structures they
create as part of routine classroom exercises. The objective is to use the infrastructure
to promote a better understanding of the data structure and its underlying algorithms.
This report describes the BRIDGES infrastructure and provides evaluation data col-
lected over the first five years of the project. In the first 2 years, as we were developing
the BRIDGES projects, our focus was on gathering data to assess whether the addi-
tion of the BRIDGES exercises had an effect on student retention of core concepts
in data structures; and throughout the 5-year duration of the project, student interest
and faculty feedback were collected online and anonymously. A mixed method design
was used to evaluate the project impact. A quasiexperimental design compared stu-
dent cohorts who were enrolled in comparable course sections that used BRIDGES
with those that did not. Qualitative and quantitative measures were developed and
used together with course grades and grade point averages. Interest and relevance
in BRIDGES programming assignments was assessed with additional survey data
from students and instructors. Results showed that students involved in BRIDGES
projects demonstrated larger gains in knowledge of data structures compared to stu-
dents enrolled in comparable course sections, as well as long-term benefits in their
performance in four follow-on required courses. Survey responses indicated that some
investment of time was needed to use BRIDGES, but the extra efforts were associated
with several notable outcomes. Students and instructors had positive perceptions of the
value of engaging in BRIDGES projects. BRIDGES can become a tool to get students
more engaged in critical foundational courses, demonstrating relevance and context
to today’s computational challenges.

B Kalpathi Subramanian
krs@charlotte.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-023-11958-4&domain=pdf
http://orcid.org/0000-0002-7316-2735

Education and Information Technologies

Keywords Real-world data · Data structures · Algorithms · Visualization ·
Engagement · Programming assignments

1 Introduction

Over the last 10 years, enrollments in computer science undergraduate degree pro-
grams in the United States has more than tripled (Computing Research Association,
2018, 2019) with corresponding increases in CS Bachelor’s degrees. This is indeed
welcome, given the the national need for graduates that can contribute to a robust
and innovative twenty-first century workforce. At the same time, it is also critical for
academic programs to ensure retention of majors by providing a curriculum that is
engaging and relevant.

Demonstrating a connection between computing and the real-world has the poten-
tial to increase students’ motivation and interest in computing; grounding teaching
in familiar, concrete, and relevant examples has been shown to improve learning
(Bransford et al., 1999) and has a positive effect on the retention of computing majors,
particularly for women students (Cohoon, 2005). In practice, however, there is little
support for educators who want to incorporate this kind of approach into introduc-
tory computer science courses. With appropriations for higher education continuing
to decline (SHEF, 2019) (with tuition increases to compensate somewhat) and enroll-
ments continuing to rise (Computing Research Association, 2019), departments often
look to scale up the class size to meet student needs within the budget constraints.
Instructors have more students to guide, assignments to grade, and additional course
assistants to coordinate, leaving them with less time to invest in developing new
engaging course materials or to pursue more modern pedagogies. The sophomore
level courses such as data structures and algorithms (that we focus on in this work)
are critical to building a solid foundation for CS students; however, students in these
courses do not always see the connection between their own everyday experiences
with existing information systems that address real-world problems, and the routine
assignments/problems they encounter in course assignments, usually with small or
contrived datasets.1

We introduced in our earlier work (Burlinson et al., 2016) the BRIDGES system
and its role in early CS courses (Strahler et al., 2020; Beckman et al., 2020) which (1)
facilitates student access to live, real-world data sets for use in traditional data struc-
tures programming assignments and (2) makes it possible for students to view and
verify (debug) their own implementations of data structures, by providing visualiza-
tion capabilities. Our goal with BRIDGES was to make the experience of sophomore
level students more relevant and engaging, increase their retention of key founda-
tional knowledge through a careful selection of BRIDGES based course projects,
and, thereby increase their chances of continuing in the major. In our earlier work
we analyzed BRIDGES interventions on two semesters of a data structures course at

1 While the authors could not find a proper academic study to back this claim, it frequently appeared in
confidential student evaluations. Also that statement is consistent with Situated Learning, and the MUSIC
model of engagement.

123

Education and Information Technologies

our institution, and showed improved knowledge gains by comparing the BRIDGES
group to the remaining sections of the data structures course sections. Project surveys
assessing the use of BRIDGES were largely positive.

To date, BRIDGES has been used for over 5 years in data structures courses at
about a dozen institutions in the United States, spanning universities, four year col-
leges, community colleges, and, more recently, high schools (AP CS courses) and
it continues to be actively used. The software has been used by over 1000 students
since its inception. Over the years, the toolkit and API have undergone several major
revisions to improve its robustness and performance. New features have been intro-
duced together with expanded support for the toolkit to be used with C++ and Python
programming languages (the earlier work supported only Java). The team has devel-
oped more detailed documentation, tutorials, and assignment descriptions to provide
instructors with the additional support to demonstrate and connect core CS concepts
to real-world applications.

In this work, we present the current design and architecture of BRIDGES
(Section 3.2), and example projects that can be enabled through the use of frame-
work in data structures and algorithms courses. Our objectives are two-fold, (1) assess
the retention of core concepts in data structures through of use BRIDGES exercises,
and (2) demonstrate long-term gains by tracking the performance of student cohorts in
follow-on core courses. We use a mixed-methods design to evaluate the impact of the
project. Qualitative and quantitative measures were developed and used in conjunction
with course grades and grade point averages for the evaluation. Additional survey data
from students and instructors were used to guage interest and relevance of the newly
developed learning materials. Specifically, we detail both immediate (Section 4.1) and
long-term student knowledge gains (Section 4.2) and student and instructor feedback
(Sections 4.3, 4.4) gathered over the past five years.

2 Related work

In this section we present work that relates to student interest and motivation, existing
assignment collections that target student engagement, use of visualizations and real-
world data in CS curriculum.

Engagement is closely tied to student motivation, and there is a host of work on
understanding student motivation. Jones proposed theMUSICmodel for instructors to
consider in their course design,which consists of eMpowerment,Usefulness,Success,
Interest, and Caring (Jones, 2009). Instructors are recommended to incorporate some
or all of these into their instruction. Blumenfeld and his colleagues (Blumenfeld et al.,
2006, 1991) focus onother determinants ofmotivation and cognitive engagement, such
as Value, Competence, Relatedness, and Autonomy as factors that can help engage
students. For instance, students that see value and relevance in course content exhibit
increased efficacy, sense of belonging and flexibility in pursuing their learning goals.
The usage of real and live data and of visualization in BRIDGES aims at enabling
students to see value and relevance in their course work. In the MUSIC parlance,
BRIDGES assignments target Usefulness by enabling students to work on real world

123

Education and Information Technologies

application, Interest by integrating data set from domains they may care about, and
eMpowerment by enabling students to customize their assignments.

In recent years, active learning techniques have been implemented in classrooms to
promote student engagement, and can include any combination of lab-based instruc-
tion, flipped classroom settings, gamification, peer-learning, or use of multimedia
content (Pirker et al., 2014; Guzdial, 2003; Horton et al., 2014; Latulipe et al., 2015).
These methods combine interesting curriculum content as well as more active partici-
pation of learners (eg., collaboration, hands-on work, peer teaching, rapid feedback) in
improving the student experience in the classroom. Another prominent project is the
POGIL (Process Oriented Guided Inquiry Learning), which combines active learning,
collaboration and team work through highly structured set of activities to promote
engagement and learning. POGIL was first introduced in Chemistry courses and has
gained acceptance in CS over the years (Kussmaul, 2012), especially in early courses
(VanDeGrift, 2017; Hu & Kussmaul, 2021); however, it does require significant effort
to transition from a traditional to a POGIL model. The goal of BRIDGES remains the
same, in terms of increasing student engagement and motivation, but accomplishing it
through delivered content, by bringing in real-world relevance of CS to the classroom
and visualizations of students’ own work, as part of routine class exercises.

The goal of courses and curriculum is the overall education and academic success
of students. To that end, materials that capture the imagination of incoming students
and reinforce their interest andmotivation in computing are particularly valuable. This
is a common thread in popular assignment repositories, such as Nifty Assignments
(Parlante, 2018), Peachy Parallel Assignments (NSF/IEEE-TCPP Curriculum Initia-
tive, 2018-2022), ModelAI (AAAI, 2018), Groovy Graphics Assignments (Groovy
Graphics Assignments, 2023) and EngageCSEdu (Monge et al., 2015; NCWIT, 2018),
all of which contain the ‘fun’ factor and some relevance to real-world data. Nifty
assignments always include aspects of student engagement as part of the assignment
review (Parlante, 2021), as do game-themed assignments (Drake & Sung, 2011; Sung
et al., 2008). Layman reported a study that analyzes a collection 200 assignments in
CS1 and Software Engineering courses from over 70 CS programs (Layman et al.,
2007). They classified the CS1 assignments that 1) were games, 2) had little practical
context (not games), 3) had practical context, and 4) had social relevance. Their study
found that over 40% of the assignments had no practical or meaningful context, with
the rest distributed between games and those with a practical context. A key factor that
distinguishes our approach is the integration of many of these engagement factors (use
of real-world data integrated with the assignment, data structure visualizations, inter-
active games), while not being distracted from using external tools to accommodate
them; for instance, assignments that incorporate visualizations or images typically
require using an external toolkit, or are restricted to a specific language, limiting their
usage.

Related to our work are the engagement approaches that are classified under the
category of Socially Relevant Computing; Buckley’s work incorporates real-world sci-
entific applications into both their introductory and senior capstone courses to make
them more interesting and relevant (Buckley et al., 2008). Bart’s RealTime Web pro-
vides a set of flexible client libraries to request, parse and return real-time data from
a number of web sources, such as Yelp, weather reports, Yahoo Finance, etc. (Bart et

123

Education and Information Technologies

al., 2014). The use of media (audio, images, movies) computation in early CS courses
(Guzdial and Ericson, 2016) and the use of interdisciplinary projects (Havill, 2021)
are examples of using more engaging projects in the classroom. Our approach goes
even further to make the course material relevant; in addition to providing easy access
to real-world datasets, BRIDGES facilitates instantaneous visualizations of the data
structures that are built by the students themselves, that can help in the understanding
of the data structure and the algorithms that operate on them.

Visualizations have long been promoted as a way to deepen student understanding
of data structures and algorithms (Baecker, 1998; Pierson and Rodger, 1998; Brown
and Sedgewick, 1984); Previous efforts to increase engagement have shown promise
for the use of visual programming (e.g., Scratch and Alice) (Resnick et al., 2009;
Dann et al., 2005) for making the first programming steps easier and more engaging.
In addition to providing a graphical interface for piecing together programs, these
systems let students build graphically interesting programs and encourage them to
explore, experiment, and play. Formal evaluations of Alice (Moskal et al., 2004) have
shown increased performance and retention in the programming courses and improved
attitudes toward computing, especially for at-risk students.

3 The BRIDGES system

At its core, BRIDGES is a toolkit that enables students in early CS courses (CS1, CS2,
Data Structures, Algorithm Analysis) to implement routine course projects assigned
by the instructor by providing easy to use functional interfaces to external datasets
that can be used as part of an assignment. Secondly, rather than just use console
output, BRIDGES provides the capability to build and display visualizations of the
data structures that students implement as part of their assignment. Figure 1 illustrates
the core of a BRIDGES student program. It consists of creating the BRIDGES object,
extracting an external data set through a function call, building the data structure, and
incorporating attributes of the data into the data structure. The data structure can then
be visualized using a function call. Figure 1 also illustrates some example data sets
and visualizations supported by BRIDGES, such as IMDB actor/movie data in a graph
application using Breadth First Search (BFS), OpenStreet map data used in a graph
application, USGS earthquake Tweet data used in a binary search tree, and an image
represented using a K-D (spatial search) tree.

3.1 An example BRIDGES program

Figure 2 provides an example of a BRIDGES program, showing the main calls and
steps. The BRIDGES class encapsulates the details of the communication between the
client and the server and uses additional helper classes in its implementation.

• Initialization. This step creates a BRIDGES object and takes several parameters,
including an assignment number, a user id (generated by the user when he/she
creates a BRIDGES account) and an API key for authentication. These parameters
are used in forming a custom web link for the visualization.

123

Education and Information Technologies

Fig. 1 BRIDGES System Overview. A user constructs programs typical of early CS courses
(CS1/CS2/Algorithms/Data Structures) using the BRIDGES client classes (Fig. 3) in Java, C++ or Python.
The representation of the output (data structure, game grid, etc.) is sent to the server by the client and stored
in a database after parsing and authentication. The output visualization is then displayed on a web browser
with a specific link provided to the user. Depending on the assignment and user requests, external data may
be extracted from a number of different sources by the server, as illustrated above

• Data Structure Construction. In this step, the user constructs and manipulates
any of the BRIDGES supported data structures using the BRIDGES client classes
as part of their programming assignment (see Section 3.2.1).

• Specification of Data Structure Type. This step specifies the handle to the data
structure that will be transmitted to the BRIDGES server for visualization. This
can be the head of a linked list, root of a tree, graph adjacency list, array object,
or a symbol collection.

• Visualization.This step results in the creation of a representation of the previously
specified data structure (implemented using a JSON string) and its transmission
to the BRIDGES server using an HTTP post request. If this is successful, the
assignment is then stored in a database (aMongoDB in the current implementation)
and a customweb link is returned to the user for viewing the result. The assignment
can also be viewed from the user’s project gallery at any time. This step can be
repeated any number of times: the data structure can be modified, the handle
respecified, followed by visualization. Also, a sequence of visualizations can be
generated from a BRIDGES program and these will be displayed as an array of

123

Education and Information Technologies

Fig. 2 An Example BRIDGES program. Consists of an initialization step to specify assignment number,
user name and api key (for authentication). This is followed by user’s construction of the data structure
using BRIDGES client classes and specifying visual attributes. The final 2 steps involve specifying a handle
to the data structure (tree root, graph, head of a linked list, etc.) and initiating the visualization modules

visualizations. For example, insertion of multiple values into a binary search tree
can be viewed by generating a visualization after each value is inserted into the
tree.

3.2 BRIDGES design

3.2.1 BRIDGES client

The BRIDGES client consists of a set of building blocks that are needed by students in
early CS courses to complete typical programming assignments. We currently support
assignments for CS1, CS2, Algorithm Analysis, and Data Structures courses, with
bindings for Java, C++, and Python. As seen in Fig. 3a, BRIDGES provides support
for arrays, lists, tree structures, graphs, game grid (for building simple interactive
games), a symbol collection (for drawing simple shapes) and plotting tools. Central
to BRIDGES is the element hierarchy, illustrated in Fig. 3b. The Element hierarchy
provides the basic node structures for many of the data structures, e.g., linked list
node, binary tree node, graph structure with methods to add vertices and edges, etc.
The Element hierarchy roughly follows the structure of the nodes described in Cliff
Shaffer’s textbooks (Shaffer, 2011a, 2011b).

• Element This is the foundational class in BRIDGES. Arrays, lists, tree, and graph
nodes are constructed using instances of Element. Elements have a unique id, a
label, and visual properties, such as size, shape, opacity, and color. An element can

123

Education and Information Technologies

Fig. 3 BRIDGES Object Hierarchy

also be linked to another element, as would be needed for trees, linked lists and
graphs. Links have attributes such as color, thickness, opacity, and label. Elements
are declared with a generic parameter, that can be used to hold application specific
data (Tweet, actor, movie, earthquake, book, game, etc.). All subclasses inherit the
visual attributes held in Element.

123

Education and Information Technologies

• List Elements. A number of different types of lists are supported, as seen in
the element object hierarchy in Fig. 3b. SLElement, DLElement support single
and doubly linked list elements, while CircSLelement, CircDLelement are for
supporting circular linked lists. MLelement supports multilists.

• Tree Elements A number of tree structures are supported in BRIDGES. At the
highest level we have TreeElement, which is a general tree node with an arbitrary
number of children. Derived from the tree element are the BinTreeElement and
BSTElement, for binary trees and binary search trees, respectively, the latter adding
a key value to the element. The AVL tree element adds attributes to support a
balance factor and tree height, while the KDTreeElement supports spatial search
structures with a partitioning dimension attribute.

• Graphs. Graph implementation in BRIDGES includes both adjacency list and
adjacency matrix (GraphAdjList, GraphAdjMatrix) representations. The adja-
cency list uses the singly linked elements (SLElement) to represent the lists and
maps (hash tables) to access the adjacency lists of a graph node in constant time.
The adjacency matrix implementation is similar, except that it uses maps to access
any graph node in constant time (twodimensionalmap).Graphs use generic param-
eters for the key, permitting any orderable type (int, float, string, etc.) to be used
as a key value to access graph nodes.

• Array. Arrays (Array1D, Array2D, Array3D) represent a list of type Element
and support the normal indexing operations of arrays as defined in programming
languages; however, each element of a BRIDGES array supports visual attributes.
Currently, 1D, 2D and 3D arrays are supported

• Symbol. This class supports a set of simple shapes for drawing arbitrary shapes
as part of an assignment (for instance, Towers of Hanoi), or for any assignment
that lets students build arbitrary shapes as a warm up and engaging exercise early
in the course. Currently, BRIDGES supports Circle, Rectangle, Polyline, Polygon
and a Text Label (to annotate shapes). Shapes have location information and can
be transformed (translate, scale, and rotate) and grouped to build complex shapes.

• Grid. This class is the basis for assignments that operate on a grid structure, such
as 1D signals and 2D images. The ColorGrid subclass is for use with 2D images
and can form the basis for image related exercises.

• Visualizers. Each element supports visual attributes, implemented through two
visualizer classes, ElementVisualizer and LinkVisualizer. ElementVisualizer sup-
ports attributes for each element and include color, size, opacity and shape.
LinkVisualizer provides attributes for links between elements and include color,
opacity, thickness and a label.

Implementation. Implementation of the element hierarchy follows the implementa-
tion examples in Shaffer (2011a, b). However, by using the object definitions above,
the basic data structure elements can now be augmented with visual attributes and used
by the visualizationmodules. BRIDGESAPI currently supports Java, C++ and Python
bindings. The Java implementation uses Java Generics, while the C++ implementation

123

Education and Information Technologies

uses C++ templates. The Python typing structure naturally allows extensions to differ-
ent types (duck typing).Generic implementationsmake it possible to handle real-world
datasets where indexing by string (Twitter or Facebook user name, for example) is
needed for graph implementations, bypassing a remapping to integer vertex indices. A
second advantage is the ability to incorporate application specific datasets as a generic
parameter to the base classes.

The BRIDGES client is also responsible for building a representation of the data
structure (we use the JSON format) to be transmitted to the server. This action is per-
formedwith each call to visualize the specified data structure. Additional functionality
of the client includes preparing and formatting the URL for accessing external data
as well as the URL to view the data structure visualization. The client also provides
modules for formatting the received data for each external data source in the form of
objects (Java, C++, or Python) for ease of use by the user.

3.2.2 BRIDGES server

The BRIDGES server has the following functions:

• Access to Real-World Data. Accessing real-world datasets such as social net-
works (Twitter, Facebook) can be quite complex, require authentication, handling
download limits, and possibly require permissions. BRIDGES provides an easy
to use interface (typically, a single function call) to acquire the data from external
data sources. We have implemented interfaces to a number of datasets, including
Twitter, IMDB, OpenStreetMap, NOAA Elevation maps, US geological Survey
(earthquake data), Genius API (song lyrics) and Project Gutenberg; these have
been incorporated into course projects. Queried data from the various sources
is cached in a Mongo database, or a local cache for queries that might be used
repeatedly.

• Visualization. The BRIDGES server is responsible for receiving data structure
representations (in JSON string format) from the client and generating a visual
representation; students are provided a web link, when their program executes
successfully. All such requests are authenticated, parsed and stored in the Mon-
goDB database. Uploaded assignments can be accessed with a direct url or via the
user gallery, and can be made public or private, allowing users to share some visu-
alizations and hide others for later review ormodification. Visualizations of arrays,
lists, tree structures, graphs, and shape collections are supported by BRIDGES.

Implementation The server-side implementation is a Node.js application, utilizing
Jade templating, a MongoDB database, Javascript, and a variety of popular Javascript
libraries, such as D3 (Bostock et al., 2011), jQuery, and Underscore.js. The database
is used to keep a record of all users, projects, and cached datasets.

123

Education and Information Technologies

Fig. 4 BRIDGES Project Evaluation Plan

4 Evaluation plan

The funded project collected data over five years and involved two phases using a
mixed method design outlined in Fig. 4. The first phase was focused on developing
and testing BRIDGES projects on two cohorts of students enrolled in Data Structures
atUNCCharlotte during the Fall 2014 and Spring 2015 semesters, while the the second
phase extended that testing to other colleges and universities whose instructors agreed
to use the BRIDGES infrastructure for class projects.

As we were developing the BRIDGES projects, our focus was on gathering data
to assess whether the addition of the BRIDGES exercises had an effect on student
retention of core concepts in data structures. Qualitative and quantitative measures
were developed and used together with course grades and grade point averages in
a quasiexperimental design implemented in one of the sophomore-level data struc-
ture courses taught at our university. A knowledge test was developed as an outcome
measure and validated to determine how much of the core concepts in data structures
were learned and retained. By administering different versions of the test during the
first and last weeks of the semester, we could assess immediate gains in knowledge
of data structures in the BRIDGES section, in comparison to other sections of the
same course that did not participate in the BRIDGES projects. Since there was no
coordination among the different instructors of the various sections regarding grading
standards, course syllabii, etc., an achievement test specific to data structures’ core
concepts was essential for the comparison. The comparison group for the BRIDGES
section was comprised of all the other sections of the data structures course taught at
UNC Charlotte during the Fall 2014 and Spring 2015 semesters. Participation in the
BRIDGES project were limited such that the students took the pre/post knowledge

123

Education and Information Technologies

tests; and their instructors assisted with the development and validation of the knowl-
edge test and provided their final course grades. In all other respects, the instructors
of the comparison group engaged in their typical teaching techniques, which may or
may not have involved homework projects.

Additionally, surveys were developed to collect data online and anonymously from
students and instructorswho participated in theBRIDGESproject. The student surveys
administered after each of the projects were completed used open-ended questions to
determine if the students could identify the data structure concepts involved in the
projects and could reflect on its importance to programming, multiple choice items
to determine how long it took to complete the project, and the level of programming
required, and Likert scaled items to assess student perceptions of their interest in the
project and its relevance to their careers. Instructor feedback was obtained through
instructor surveys at the end of each semester; but, also with formative evaluations
when instructors were interviewed in advance of each semester to plan course content
and project assignments.

The second phase of the project evaluation assessed long-term gains in student
performance by comparing the course grades of the students in sections with and
without the BRIDGES intervention in four follow-on core CS courses. This plan
provided important data about the effectiveness of the BRIDGES intervention on
retention of data structure concepts when compared to other sections of the course
that did not use the intervention; but it is limited by the fact that there were a number
of other sections of the same course, each with their own instructor, and statistical
comparisons were of limited value in explaining differences because of unequal group
sizes and varying instructor standards and expectations.

Because we extended the use of the BRIDGES infrastructure to other universi-
ties and colleges throughout the United States in the second phase of the project, we
used the surveys to provide important data about student and instructor perceptions
of interest and relevance of the project, relative ease of use, and other relevant issues
associated with the experience of using the BRIDGES infrastructure. Students com-
pleted a brief BRIDGES assignment survey each time they completed a BRIDGES
project, and instructors were asked to complete the Instuctor surveys anonymously
and online at the end of the semester.

4.1 BRIDGES intervention in data structures courses: Knowledge gains

In our CS program, students take the data structures course at the beginning of their
sophomore year, followed by an algorithm analysis course. Typical enrollment in each
of the sections of the course is around 50. The BRIDGES intervention was performed
in one section of the data structures course in Fall 2014 and Spring 2015 semester. The
other sections of the course were used to provide the data for the comparison group.
The GPA’s of the students who were enrolled in all of the sections were compared
prior to their participation in the course. Data are presented in Table 1.

123

Education and Information Technologies

Table 1 Quasiexperimental Results

Measure BRIDGES Comparison t test p
Group Group

Fall 2014 Cohort

N 54 200

GPApre−course 2.21(1.01) 2.76 (1.03) t < 1 n.s.

Knowledgepre 33.47 (11.6) 32.03 (80.8) t < 1 n.s.

Knowledgepost 72.16 (18.0) 54.87 (14.09) 5.81 0.001

Knowledgegains 36.75 (20.06) 22.57 (15.13) 4.21 0.001

Spring 2016 Cohort

N 49 113

GPApre−course 2.56(0.96) 2.97 (0.72) 2.7 0.009

Knowledgepre 35.55 (10.67) 31.60 (7.79) 2.06 0.044

Knowledgepost 74.44 (13.81) 53.76 (13.82) 6.95 0.001

Knowledgegains 39.12 (14.6) 22.00 (13.28) 5.33 0.001

Data in table represent means (SD) and test results. Note. n.s = nonsignificant

4.1.1 BRIDGES Projects

Three BRIDGES projects were assigned in the Fall 2014 semester:

• Queue: In this project students implement and test the Queue Abstract Data Type,
followed by using USGIS Earthquake Tweet data (US GIS earthquake Tweets) as
part of a queue application. Helper classes were provided to parse the quake data to
simplify the data processing tasks. Students had to complete two tasks, (a) Given
a fixed size queue, incoming tweet data were enqueued; if the queue became full,
then the oldest tweets were dequeued and snapshots of the queue visualizations
were to be demonstrated, (b) Given a fixed size queue, incoming data items were
to be filtered by quake magnitude prior to entering the queue. Various thresholds
should be experimented with and queue snapshots were to be visualized.

• Binary Search Tree. This project continued to use the earthquake Tweet data, but
inserted the records (quake magnitude as the search key) into a binary search tree,
followed by visualization of the tree structure. Tasks on the search tree included
(a) modifying the insertion algorithm to display insertion path, (b) implement
the find algorithm and demonstrate (visually) searching for a quake of a partic-
ular magnitude. Figure 5b illustrates the binary search tree sorted by earthquake
magnitudes.

• Graph (Bacon Number Computation). This project involved building a graph
using a reduced version of the IMDB dataset and implementing the Breadth First
Search algorithm on a graph to compute the Bacon Number of an actor in an
actor-movie graph (Sedgewick &Wayne, 2017). The project used a curated IMDB
dataset containing 1815 actor-movie pairs. Tasks involved building the actor-movie
graph, determining the Bacon Number (Sedgwick & Wayne, 2020) of any actor
in the graph, and highlighting the path from the queried actor to the Kevin Bacon

123

Education and Information Technologies

Fig. 5 BRIDGES Project Examples Used in the Course Interventions

node. Figure 5c illustrates the actor-movie graph and the path from the actorDenzel
Washington to Kevin Bacon.

Four BRIDGES projects were assigned in the Spring 2015 semester.

• Singly Linked List. The IMDB actor-movie dataset was used in this project.
Students had to read in the dataset and build a sorted linked list of the unique set of
actors; the data field of each node would contain the list of movies corresponding
to the actor. Tasks included finding a specific actor, followed by highlighting the
node (if found), adding in new actor-movie pairs and removing an actor. Figure 5a
illustrates the singly linked list sorted by actor names.

• Stacks: Expression Evaluation. This project required students to build a linked
list-based stack using BRIDGES elements. The stack was then used to evaluate
expressions. BRIDGES visualizations were used to display the contents of the
stack after each operation.

• Binary Search Tree. This project was similar to the project from the Fall 2014
with slight changes in the required tasks.

• Graph (Bacon Number Computation). Identical to the Fall 2014 graph project.

Figure 5 shows examples of BRIDGES projects used in our interventions.

4.1.2 Development of the knowledge test

The knowledge tests were developed from items submitted that covered one of the
6 core areas of data structures by five data structures course instructors; the 6 areas
included Fundamentals, Lists/Stacks/Queues, Binary Trees and Binary Search Trees,
Graphs, Heaps, andGeneral: ComparingData Structures. To establish content validity,
the five data structure instructors were asked to rate the appropriateness of each of the
items on a 5-point scale (where 1 = not appropriate to 5 = very appropriate). Itemswere
included in the test bank only if the average instructor ratings were four or above. The

123

Education and Information Technologies

final item bank consisted of 105multiple choice and 43 short-answer items. Test scores
were computed by summing the item scores where each multiple-choice item received
two points and each short answer 5 points. The item bank was used each semester by
a program evaluator to create knowledge tests consisting of 45 multiple-choice and 5
short answer items. Each test included 50 items and was administered by a proctor.
Different tests (with items matched in content) were used for the pre/post tests. Item
analyses were used tomeasure test reliability and item difficulty. The results from both
semesters showed that the tests had acceptable reliability (KR20 =.70) with items that
varied in difficulty. Students from five sections of the Fall 2014 data structures course
and three sections of the Spring 2015 participated in the knowledge test. Instructors
were unaware of the items used in the test prior to its administration. In addition,
regression analyses showed that the knowledge test when taken at the end of the
semester was found to be strongly related to the final grades of the students in the data
structures course, the post knowledge test score accounted for 35% of the variance in
Fall 2018 final course grades, and 20% of the variance in Spring 2019 grades.

In order to assess the immediate gains from using the BRIDGES software in the
data structures course, we compared the performance gains on the knowledge test for
students who participated in the section that included the BRIDGES intervention with
those enrolled in sections that did not include the intervention. Table 1 presents the
means (SD) of the knowledge tests together with other statistical results. For the Fall
2014 cohort, the students enrolled in the BRIDGES section were not found to differ
significantly from the other 4 sections on their GPA at the beginning of the semester
nor did the comparison groups differ on their pretest knowledge test scores. However,
post-test knowledge scores were found to differ significantly. Data from the Spring
2015 showed some group difference in both pre and post test measures. Pretest GPAs
were lower in the BRIDGES group, but the pre knowledge score was higher. Post
knowledge score was higher in the BRIDGES Group.

When the post knowledge test scores are subtracted from the pre knowledge test
scores for each of the students, we get a measure of the knowledge gains and those data
are represented by the box plots in Fig. 6 for both cohorts. Across the semesters, there
are significant gains for both comparison groups, and it is apparent that the BRIDGES
group showed larger gains than the control group, and for both of these semesters

(a) Fall 2014 (b) Spring 2015

Fig. 6 Knowledge Gains using BRIDGES. Plot on the left is the intervention group and the plot on the right
is the control group

123

Education and Information Technologies

the gains in performance on the knowledge test for the BRIDGES group were greater
than in the other group. Since each section of the course was taught by a different
instructor, the knowledge gains for the groups could be explained at least partially by
the differences in instructor emphasis on the knowledge tests; the BRIDGES instructor
used part of the knowledge test for the final exam while the other instructors used it
as a classroom exercise that did not count toward the final grade. Therefore, it is
not possible to definitively pinpoint BRIDGES as a reason for increased knowledge
gains. However, the data show that there were immediate gains in retention of the
core concepts that were enhanced somewhat by the students who were enrolled in the
section with the BRIDGES intervention.

4.2 Longterm gains using BRIDGES: Student progression in themajor

Long term gains in student achievement were assessed by comparing the performance
of the students enrolled in the sections of the data structures courses with and without
the BRIDGES intervention. The longitudinal analysis followed the two cohorts as they
progressed through their major in four follow-on required core courses: Analysis of
Algorithms, Operating Systems, Software Engineering and Computer Architecture.
This approach of looking at the performance of students in follow-on courses has been
shown to be an effective indicator for student performance in earlier work (Stroebe,
2016).

Figure 7 compares the percent of students from each of the groups with and without
BRIDGES who achieved a grade of C or better in the required follow-on courses in
computer science. The grade of C or better was chosen because it was required for
progression in the major. It can be seen that for both the Fall 2014 and Spring 2015
cohorts, the percent of students who passed the follow-on course with a grade of C or
better was equal to or greater for the students who participated in the BRIDGES inter-
vention. Since data structures is a required prerequisite in all of the follow-on courses,

Fig. 7 Comparing long-term student achievement between students who used the BRIDGES toolkit in
the Data Structures course vs. Comparison group. The evaluation was performed with 2 cohorts of stu-
dents (Fall 14, Spring 15). The students were tracked through four follow-on core courses in Computer
Science (Analysis of Algorithms, Operating Systems, Software Engineering, and Computer Architecture).
BRIDGES cohorts were either the same or outperformed the comparison groups in both Fall 14 and Spring
15 semesters

123

Education and Information Technologies

these data suggest that providing an engaging experience when learning fundamental
concepts can have benefits that extend throughout the student’s progress through the
computer science major.

4.3 Student feedback from project surveys

After completion of each of the BRIDGES homework assignments, students signed
on to a Qualtrics web site to fill out the BRIDGES Assignment Survey anonymously.
From the students who were enrolled in the BRIDGES intervention from 2014 to
2018, we received 456 responses to the student surveys. Class response rate varied
from 50 to 100% participation depending upon the instructor’s emphasis placed on the
importance of the survey as well as time in the semester that the BRIDGES assignment
was completed. Questions consisted of open-ended items that required the students to
reflect on concepts learned by the assignment, its significance, and its impact on their
programming skills; multiple-choice items that recorded the amount of time spent on
the assignment, sources used for help, and items that required use of a 5-point Likert
scale to rate relevance of the project, if the project increased their interest in computer
science, and the importance of the homework assignment. Appendix A lists all of the
items in the student survey.

4.3.1 Qualitative analysis of open-ended items

Student answers to the three open-ended questions (Questions 1, 2, and 3 of Appendix
A) were subjected to a content analysis which identified the main themes noted in each
of the responses and how often the themes appeared within certain response groups.
Two raters, who were senior computer science majors, read the 456 responses made
by the students enrolled in the BRIDGES intervention at our university as well at one
of 10 other participating colleges and universities. The raters worked independently
to classify the student comments according to positive/negative thematic content and
to note frequency of occurrence. The ratings from the two raters were averaged and
there was 95% agreement among the two raters.

The themes are presented in Table 2 ranked from the most to least frequent for each
of the open-ended questions and by positive/negative content. With each, we were
interested in comparing responses from our institution’s students to those students
from other universities and colleges, looking at whether there were any changes as
they progressed through the semester with the 1st, 2nd or 3rd BRIDGES assignments.
Although there was some variation in the assignments across semesters and between
institutions, it is clear from the data that the majority of students were able to clearly
identify the essential concept that was learned in each of the assignments. Sixty-seven
per cent of the comments for the 1st, 80% of the 2nd, and 85% of the 3rd accurately
identified the concept that was under study in each of the assignments. In addition,
there was an overwhelmingly positive response (greater than 90%) by our institution’s
students as well as students from the other institutions when asked to identify why the
concept was important and how it improved their understanding of programming. The
students suggested that the concepts demonstrated value and usefulness, that theywere

123

Education and Information Technologies

Ta
bl
e
2

C
on
te
nt

A
na
ly
si
s.
Po

si
tiv

e
an
d
N
eg
at
iv
e
th
em

es
fr
om

st
ud
en
tp

ro
je
ct
su
rv
ey
s
ov
er

th
re
e
as
si
gn
m
en
ts
in

da
ta
st
ru
ct
ur
es

co
ur
se
s,
fr
om

Fa
ll
20
14

th
ro
ug

h
Sp

ri
ng

20
18

at
ou

r
in
st
itu

tio
n
an
d
a
nu

m
be
r
of

ex
te
rn
al
in
st
itu

tio
ns

th
at
us
ed

B
R
ID

G
E
S.

T
he

nu
m
be
rs
in

th
e
ta
bl
e
re
pr
es
en
th

ow
of
te
n
ea
ch

th
em

e
oc
cu
rr
ed

in
th
e
st
ud
en
tr
es
po
ns
es

A
ss
ig
nm

en
t1

A
ss
ig
nm

en
t2

A
ss
ig
nm

en
t3

T
he
m
es

O
ur

E
xt
.

T
he
m
es

O
ur

E
xt
.

T
he
m
es

O
ur

E
xt
.

In
st
.

In
st
.

In
st
.

In
st
.

In
st
.

In
st
.

(a
)W

ha
ti
s
th
e
es
se
nt
ia
lc
on
ce
pt
(s
)
th
at

w
as

le
ar
ne
d
by

co
m
pl
et
in
g
th
is
as
si
gn
m
en
t?

Po
si
tiv

e
U
se

L
in
ke
d
L
is
ts

33
92

U
se

G
ra
ph
s

26
0

U
se

Se
ar
ch

A
lg

35
14

(D
FS

/B
FS

)

U
se

Q
ue
ue
s(
1)

20
0

U
se

St
ac
ks

22
0

U
se

G
ra
ph
s

34
0

U
se

B
R
ID

G
E
S(
1)

20
10

U
se

T
re
es

16
36

U
se

T
re
es

31
16

V
is
ua
liz
e
D
at
a(
1)

7
12

U
se

Se
ar
ch

16
24

U
se

B
R
ID

G
E
S

8
16

A
lg
(D

FS
/B
FS

)

D
at
a
M
an
ip
ul
at
io
n

2
0

U
se

B
R
ID

G
E
S

11
5

V
is
ua
liz
e
D
at
a

5
0

U
se

T
re
es

1
5

V
is
ua
liz
e
D
at
a

10
11

U
se

R
ec
ur
si
on

5
4

U
se

St
ac
ks

1
0

U
se

R
ec
ur
si
on

1
11

U
se

Q
ue
ue
s

1
2

Se
ar
ch

Tw
itt
er

1
0

U
se

L
in
ke
d
L
is
ts

0
2

U
se

E
xt
er
na
lL

ib
ra
ry

0
1

R
un

T
im

e
C
om

pl
ex
ity

0
1

U
se

R
ec
ur
si
on

0
5

R
un

tim
e
C
om

pl
ex
ity

0
6

N
eg
at
iv
e

N
ot

Im
pr
es
se
d

3
2

U
ns
ur
e

2
0

U
nr
el
at
ed

R
es
po
ns
e

0
1

by
B
R
ID

G
E
S

U
nr
el
at
ed

R
es
po
ns
e

1
1

123

Education and Information Technologies

Ta
bl
e
2

co
nt
in
ue
d

A
ss
ig
nm

en
t1

A
ss
ig
nm

en
t2

A
ss
ig
nm

en
t3

T
he
m
es

O
ur

E
xt
.

O
ur

E
xt
.

O
ur

E
xt
.

In
st
.

In
st
.

In
st

In
st
.

In
st

In
st
.

(b
)W

hy
is
th
is
(e
ss
en
ti
al

co
nc
ep
t(
s)
)
im
po

rt
an

t?

Po
si
tiv

e
D
em

on
st
ra
te
s
va
lu
e/
us
ef
ul
ne
ss

15
28

27
18

32
4

It
is
a
fu
nd

am
en
ta
lC

on
ce
pt

23
32

21
11

20
2

H
el
ps

to
im

pr
ov
e
un

de
rs
ta
nd

in
g

21
33

15
14

14
6

Pr
ov
id
es

ex
pe
ri
en
ce

to
al
lo
w
fo
r
fu
tu
re

us
e

17
13

12
5

8
5

Pr
ov
id
es

ac
ce
ss

to
a
ne
w
to
ol

2
13

6
3

7
3

N
eg
at
iv
e

N
ot

Su
re

6
3

2
0

2
1

In
co
he
re
nt

R
es
po

ns
e

2
2

2
1

1
0

R
eq
ui
re
d
fo
r
co
ur
se

1
0

1
0

1
0

It
is
no

t
0

1
0

0
0

0

(c
)
H
ow

do
es

th
e
co
nc
ep
tc
on

tr
ib
ut
e
to

un
de
rs
ta
nd

in
g
ho

w
to

pr
og
ra
m
?

Po
si
tiv

e
Im

pr
ov
es

un
de
rs
ta
nd

in
g
of

co
nc
ep
t/p

ro
bl
em

16
63

24
27

32
9

Pr
ov
id
es

m
or
e
to
ol
s
to

ch
oo

se
fr
om

12
12

17
5

18
3

Pr
ov
id
es

ex
pe
ri
en
ce

fo
r
fu
tu
re

us
e

9
4

11
5

9
1

Pr
ov
id
es

op
po

rt
un

ity
to

ap
pl
y
co
nc
ep
t(
s)

7
10

7
7

13
1

It
is
fu
nd

am
en
ta
l

10
16

7
4

3
3

Im
pr
ov
es

ef
fic
ie
nc
y

11
10

6
5

2
1

Pr
ov
id
es

ex
pe
ri
en
ce

w
ith

ex
te
rn
al
co
de

1
2

6
2

1
0

N
eg
at
iv
e

It
do
es

no
t

2
3

4
0

4
0

C
on

fu
se
d

6
3

2
0

2
1

U
ns
ur
e

1
0

5
1

2
0

123

Education and Information Technologies

fundamental concepts and helped to improve understanding. When asked to identify
how the concept contributed to programming, improved understanding of the problem,
providingmore tools and experience for future usewere the prevalent responses. There
were only minor variations in responses among different universities and colleges and
among the three different assignments.

4.3.2 Rating scale andmultiple-choice item responses

The percent of students who agreed that the BRIDGES project increased their interest
in computer science, andwas relevant or trivial to their career goal (Questions 11, 12, 13
in Appendix A) are presented in Fig 7. These questions were answered using a 5-point
Likert scale, which ranged from strongly agree to strongly disagree. Throughout the 5
years that BRIDGES has been under development, a majority of the students agreed
that the assignments were relevant and increased their interest in computing, with only
aminority expressing the opposite view that the exercises were trivial and not essential
to computing. As the software became more stable after the first few semesters of use,
and changes were made to address some of the student and instructor issues, there was
a noticeable rise in the percent of the students who expressed positive responses to the
assignments. The number of students and instructors participating in BRIDGES had
noticeably increased over the years and the resulting data are also more stable, as can
be seen by the trend in the last 2-3 semesters, with the exception of a unexplainable
rise in the percent of students who rated the projects as trivial in the last semester.

Also, noteworthy in the student responses to the project assignment surveys was the
amount of time that they reported to complete the BRIDGES assignments. Averaging
across all five years of data, we found that 13% indicated spending 3 hrs or less, 31%
4-6 hrs, 24% 7-9 hrs, and 32% reported spending 10 or more hours completing their
assignments. Although there was some noticeable variability across the assignments,
it is significant that so many of the students reported putting a lot of time into com-
pleting each and every one of the BRIDGES projects that were assigned. Moreover,
42% of the students on average indicated that the assignments required more pro-
gramming experience than they had. Taken together these student responses suggest
that the BRIDGES homework assignments required some effort to complete and were
perceived as difficult by a number of students (Fig. 8).

4.4 Instructor feedback

Instructor surveys were used to obtain anonymous feedback about the instructor’s
experiences incorporating the BRIDGES software into their courses. These surveys
were used by four instructors who were not part of the BRIDGES development team.
The 5-item online survey asked instructors to rate the difficulty of incorporating the
software into the course for themselves and their students and to rate the degree
to which they thought that it improved the classroom experience. On average, the
instructors indicated a moderate amount of difficulty for themselves; but a lot of
difficulty for the students. However, the majority (75%) of the instructors noted that
it was somewhat easy to incorporate the BRIDGES assignments into the classroom

123

Education and Information Technologies

Fig. 8 Student Feedback - Fall 2014 to Spring 2019

lectures and there was consensus from all that it improved the classroom experience
for the students. Open-ended comments cited the BRIDGES infrastructure as a strong
systemwith the main benefit as being able to visualize data structures; and when asked
to suggest improvements, they requested better documentation at the web site for the
students.

5 Discussion

Student and instructor survey responses indicated that some investment of time was
needed to use the BRIDGES infrastructure in the data structures course. Instructors
required a moderate amount of time to incorporate the projects into their course, while
the students needed a greater investment of time to complete the required minimum of
three homework assignments using the BRIDGES software. However, the increased
efforts spent on completing the BRIDGES assignments were associated with several
notable outcomes. Both groups had overwhelmingly positive perceptions of the bene-
fits of engaging in the BRIDGES projects. Students reported positively on the ability
to visualize the assignment outputs, working with a API and data sets that peeked
their interests in the course topics. Instructors noted that it was easy to incorporate the
BRIDGES software into their course and that the classroom experience was improved
as a result. Students also understood that the projects were related to their career goals
and that it helped to develop their programming skills.

More objective measures showed that the students involved in the BRIDGES inter-
vention showed larger gains in knowledge of the content material in data structures
when compared to students enrolled in comparable sections of the course. Perhaps
more indicative of the benefits of the BRIDGES intervention for the students, how-
ever, is the fact that when you compare the BRIDGES students to those enrolled in

123

Education and Information Technologies

comparable sections of the same course across two semesters, we found that for both
cohorts a larger percent of the BRIDGES students passed with a grade of C or better
in four of the follow-on courses that were required for progression in the computer
science major, suggesting that those students developed to a greater degree the neces-
sary level of CS core concepts and associated programming skills in their foundation
course to succeed in the major relative to students enrolled in comparable sections
of the course without the BRIDGES intervention. This shows that the students per-
ceived the value of the assignments, which support the idea that the intervention was
beneficial.

6 Limitations and conclusions

However, since the data collected were from field-based studies with a quasi-
experimental design, there are some limitations that prevent us from making
generalizations about what some of the immediate and long-term performance gains
resulted from. Although all the students were enrolled in the same course at the same
institution and a common knowledge test was used to assess short-term learning gains,
the instructors were different and variation in their grading standards may have played
an important role in the student outcomes: especially, since the comparison groups
were comprised of multiple sections, each with their own instructor. Also, group sizes
were not comparable, with many more students in the comparison group than in the
BRIDGES group. Both of these factors would preclude any additional statements
about the reasons for the group differences in outcomes. It is also possible that the
increased difficulty of the assignments and increased time spent on assignments may
help to explain the better outcomes for BRIDGES students.

Another important consideration is that when BRIDGES was used in the data
structure courses, the focus had been on the software aspects of implementing data
structures. An equally important aspect of this course is in understanding the com-
putational complexity of data structures and their underlying algorithms, as well as
the knowledge needed to choose a data structure for a given problem. Early versions
of BRIDGES did not address this part of a normal data structures course. Thus, the
knowledge gains of students from using BRIDGES also relied on coverage of these
theoretical concepts by the instructors and were assessed separately. Over the past two
years, we have extended BRIDGES to topics typically covered in courses on algo-
rithm analysis, and emphasizing benchmarking (sorting, graph algorithms on large
datasets); this not only promotes the engagement aspects of BRIDGES, but also shows
by example, the computational complexity of data structures and algorithms through
direct experiments on real-world data. By integrating benchmarking features within
BRIDGES, students can focus on algorithm implementation and running experiments
on very large datasets, leaving the more tedious work on drawing plots from their
implementation outputs to BRIDGES. Additionally, as an aid to instructors, we now
maintain a repository of BRIDGES assignments, in a manner similar to other assign-
ment repositories, with learning goals, descriptions, scaffolded code, and expected
solutions.

123

Education and Information Technologies

Taken together the evaluation data show that the BRIDGES infrastructure provides
a valuable and engaging tool for instruction in some of the foundational comput-
ing content associated with a major in computer science. We have demonstrated that
BRIDGES provides an engaging experience for sophomore level students in data
structures courses, improves their retention of foundational CS knowledge and their
progression in the major. Over the past 5 years, we concentrated on using the tool
in the sophomore level data structures course. Looking forward, we will extend the
development and use of BRIDGES software to assist in the preparation level of incom-
ing students. In large CS programs, students can enter the program with very diverse
computational skills and/or preparation levels. For instance, our own program has a
significant number of transfer students (with varying preparation levels) entering the
program at the sophomore level from nearby community colleges, and instructors face
significant challenges in adapting the curriculum to serve the needs of all students.
With the addition of a BRIDGES Game API as well as adapting many of the Nifty
assignments (that focus on freshmen CS), BRIDGES now supports CS1 and CS2
learning goals and topics (conditionals, loops, simple data structures) across all three
programming languages. This will be of benefit to those students who can use the
existing assignments from earlier courses as a means to ‘catch up’.

Work on developing and extending BRIDGES is moving forward on several fronts.
We are building a repository of BRIDGES assignments (BRIDGES Development
Team, 2022); this provides a resource for instructors looking for interesting BRIDGES
based assignments, with detailed descriptions, scaffolded code, expected output and
solutions (provided on request to instructors). This also helps minimize the time
instructors using BRIDGES spend in building assignments for their courses. Secondly,
we continue to incorporate new datasets with appropriate assignments. Two examples
of these are (1) OpenStreetMap (OpenStreetMap, 2020), which can be used in graph
assignments (shortest path, BFS, DFS algorithms) and spatial query based assign-
ments (Quadtrees, K-D Trees), and, (2) building an Audio API, that lets users choose
and process songs from an external source, for instance, the Genius API (Genius API,
2023). Finally, we are looking into extending BRIDGES into upper division courses
such as Operating Systems and Databases. We believe BRIDGES can play a role in
building modules that can help reinforce complex computational concepts and their
underlying algorithms.

A project assignment survey

The assignment survey consists of a four short answer questions and nine five point
Likert (Agreement) Scale questions as follows:

1. What is the essential concept that was learned by completing the assignment?
[Short Answer]

2. Why is it important? [Short Answer]
3. How does the concept contribute to understanding how to program? [Short

Answer]

123

Education and Information Technologies

4. Rate the level of Java/C++/Pythonprogrammingexperience requiredby the assign-
ment relative to your experience [more experience than I have, about right for my
experience level, less experience than I have]

5. Please rate the amount of experience that you have had in Java/C++/Python pro-
gramming [none, a little, moderate]

6. Indicate the total number of hours that you spent completing the assignment [0-
3,4-6,7-9, 10 or more]

7. While working on the assignment, rate the degree to which you relied on each of
the following sources for help. [multiple sources specified]

8. For the question above, if you indicated that you were getting help from other
internet site(s) or other source, please write in that site or other source. [Short
answer]

9. I am comfortable talking with and seeking help from the teaching assistant. [5-
point Likert]

10. I got enough help from the teaching assistant. [5-point Likert]
11. The assignment was relevant to my career goals. [5-point Likert]
12. The assignment was trivial and not essential to learning about computing. [5-point

Likert]
13. The assignment increased my interest in computing. [5-point Likert]

Acknowledgements Thismaterial is based uponwork supported by the National Science Foundation under
Grant Nos. 1245841, 1726809, 2142381

Data Availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request

References

AAAI (2018). Model AI Assignments. Model AI Assignments. http://modelai.gettysburg.edu/
Baecker, R. (1998). Sorting out sorting: A case study of software visualization for teaching computer science

Sorting out sorting: A case study of software visualization for teaching computer science. Software
visualization: Programming as a multimedia experience, 1, 369–381.

Bart, A.C., Tilevich, E., Hall, S., Allevato, T. & Shaffer, C.A. (2014). Transforming Introductory Computer
ScienceProjects viaReal-timeWebDataTransforming introductory computer science projects via real-
time web data. Proceedings of the 45th ACM Technical Symposium on Computer Science Education
Proceedings of the 45th acm technical symposium on computer science education pp. 289–294.

Beckman,A.,Mcquaigue,M.,Goncharow,A.,Burlinson,D., Subramanian,K., Saule, E.&Payton, J. (2020).
Engaging Early Programming Students with Modern Assignments Using BRIDGES Engaging early
programming students with modern assignments using bridges. Proc. ccsc central plains. Journal of
Computer Sciences in Colleges.

Blumenfeld, P., Kempler, T. &Krajcik, J. (2006). Motivation and cognitive engagement in learning environ-
ments. Sawyer, R. (Ed.), The Cambridge Handbook of Learning Sciences (p. 475–488). Cambridge,
MA: Cambridge University Press.

Blumenfeld, P. C., Soloway, E., Marx, R., Krajcik, J., Guzdial, M., & Palincsar, A. (1991). Motivating
project-based learning: Sustaining the doing, supporting the learning.Educational Psychologist, 26(3–
4), 369–398.

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 data-driven documents. IEEE Transactions on Visual-
ization and Computer Graphics, 17(12), 2301–2309.

Bransford, J. D., Brown, A. L., & Cocking., R.R. (1999). How people learn: Brain, mind, experience and
school. Washington, DC: National Academy Press.

123

http://modelai.gettysburg.edu/

Education and Information Technologies

BRIDGES Development Team (2022). BRIDGES Assignment Repository. http://bridgesuncc.github.io/
newassignments.html

Brown, M., & Sedgewick, R. (1984). A system for algorithm animation. Proceedings of the 11th annual
conference on computer graphics and interactive techniques SIGGRAPH ’84, 18(3), 177–186.

Buckley, M., Nordlinger, J., & Subramanian, D. (2008). Socially relevant computing. Proceedings of the
39th SIGCSE technical symposium on computer science education (pp. 347–351).

Burlinson, D., Mehedint, M., Grafer, C., Subramanian, K., Payton, J., Goolkasian, P., & Kosara, R. (2016).
Bridges: A system to enable creation of engaging data structures assignments with real-world data and
visualizations. Proceedings of ACM SIGCSE 2016 (pp. 18–23).

Cohoon, J. (2005). Just get over it or just get on with it. Women and information technology: Research on
under-representation. Cambridge, MA: MIT Press.

Computing Research Association (2018). CRA Taulbee Survey, 2018–2019. https://cra.org/wp-content/
uploads/2019/05/2018-Taulbee-Survey.pdf

Computing Research Association (2019). CRA Taulbee Survey, 2019–2020. https://cra.org/wp-content/
uploads/2020/05/2019-Taulbee-Survey.pdf

Dann, W. P., Cooper, S., & Pausch, R. (2005). Learning to Program with Alice. Prentice Hall.
Drake, P., & Sung, K. (2011). Teaching introductory programming with popular board games. Proceedings

of ACM SIGCSE 2011 (pp. 619–624).
Genius API (Accessed Jan 2020). https://docs.genius.com/#/getting-started-h1
Groovy Graphics Assignments (Accessed July 2019). https://blog.siggraph.org/tag/groovy-graphics-

assignments/
Guzdial, M. (2003). A media computation course for non-majors. Proceedings of the iticse 2003 (pp.

104–108).
Guzdial, M., & Ericson, B. (2016). Introduction to Computing and Programming in Python, A Multimedia

Approach (4th ed.). Pearson.
Havill, J. (2021). Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Pro-

gramming (2nd ed.). Boca Raton, Florida: CRC Press.
Horton, D., Craig, M., Campbell, J., Gries, P., & Zingaro, D. (2014). Comparing outcomes in inverted and

traditional CS1. Proceedings of the ITICSE 2014(pp. 261–266).
Hu,H.H.,&Kussmaul, C. (2021). Improving online collaborative learningwith pogil practices.Proceedings

of the 52nd ACM Technical Symposium on Computer Science Education (p. 1330). New York, NY,
USA: Association for Computing Machinery.

Jones, B. (2009). Motivating Students to Engage in Learning: The MUSICModel of Academic Motivation.
International Journal of Teaching and Learning in Higher Education, 21(2), 272–285.

Kussmaul, C. (2012). Process oriented guided inquiry learning (pogil) for computer science. Proceedings
of the 43rd acm technical symposium on computer science education (pp. 373–378). New York, NY,
USA: Association for Computing Machinery.

Latulipe, C., Long, N.B., & Seminario, C.E. (2015). Structuring flipped classes with lightweight teams and
gamification. Proceedings of the acm sigcse 2015 (pp. 392–397).

Layman, L., Williams, L., & Slaten, K. (2007). Note to self: Make assignments meaningful. Proceedings
of the ACM SIGCSE (pp. 459–463).

Monge, A., Quinn, B.A., & Fadjo, C.L. (2015). Engagecsedu: CS1 and CS2 materials for engaging and
retaining undergraduate cs students. Proceedings of ACM SIGCSE (pp. 271–271). Retrieved from
https://www.engagecsedu.org/

Moskal, B., Lurie, D., Cooper, S. (2004). Evaluating the effectiveness of a new instructional approach.
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (pp. 75–79).

NCWIT (2018). https://www.engage-csedu.org/
NSF/IEEE-TCPP Curriculum Initiative (2018-2022). Peachy parallel assignments. https://grid.cs.gsu.edu/

tcpp/curriculum/?q=peachy.
OpenStreetMap (2020). Openstreetmap. Retrieved from https://openstreetmap.org/
Parlante, N. (2018). Nifty assignments. Retrieved from http://nifty.stanford.edu/
Parlante, N. (2021). Nifty assignments review guidelines. Retrieved from https://sigcse2020.sigcse.org/

reviewers/nifty-review-guidelines.html
Pierson,W.C., &Rodger, S.H. (1998).Web-based animation of data structures using JAWAA.ACMSIGCSE

bulletin (vol. 30, pp. 267–271).
Pirker, J., Riffnaller-Schiefer, M., & Gütl, C. (2014). Motivational active learning: Engaging university

students in computer science education. Proceedings of ITICSE (pp. 297–302).

123

http://bridgesuncc.github.io/newassignments.html
http://bridgesuncc.github.io/newassignments.html
https://cra.org/wp-content/uploads/2019/05/2018-Taulbee-Survey.pdf
https://cra.org/wp-content/uploads/2019/05/2018-Taulbee-Survey.pdf
https://cra.org/wp-content/uploads/2020/05/2019-Taulbee-Survey.pdf
https://cra.org/wp-content/uploads/2020/05/2019-Taulbee-Survey.pdf
https://docs.genius.com/#/getting-started-h1
https://blog.siggraph.org/tag/groovy-graphics-assignments/
https://blog.siggraph.org/tag/groovy-graphics-assignments/
https://www.engagecsedu.org/
https://www.engage-csedu.org/
https://grid.cs.gsu.edu/ tcpp/curriculum/?q=peachy
https://grid.cs.gsu.edu/ tcpp/curriculum/?q=peachy
https://openstreetmap.org/
http://nifty.stanford.edu/
https://sigcse2020.sigcse.org/reviewers/nifty-review-guidelines.html
https://sigcse2020.sigcse.org/reviewers/nifty-review-guidelines.html

Education and Information Technologies

Sedgwick, R., & Wayne, K. (2020). Case Study: Small World Phenomenon. https://introcs.cs.princeton.
edu/java/45graph/

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., &Kafai, Y. (2009).
Scratch: Programming for All. Communications of the ACM, 52(11), 60–67.

Sedgewick, R., & Wayne, K. (2017). Introduction to programming in java. Retrieved from (A Case Study:
Small World Phenomenon http://introcs.cs.princeton.edu/java/home/

Shaffer, C. (2011a). Data structures and algorithm analysis in c++. doverpublications.com: Dover Publica-
tions.

Shaffer, C. (2011b). Data structures and algorithm analysis in java. doverpublications.com: Dover Publica-
tions.

SHEF (2019). State Higher Education Finance (SHEF) Report. (Available:https://shef.sheeo.org/report/)
Strahler, J., Mcquaigue, M., Goncharow, A., Burlinson, D., Subramanian, K., Saule, E., & Payton, J. (2020).

Real-world assignments at scale to reinforce the importance of algorithms and complexity. Proceedings
of ccsc north east. Journal of Computer Sciences in Colleges.

Stroebe, W. (2016). Why good teaching evaluations may reward bad teaching: On grade inflation and
other unintended consequences of student evaluations. Perspectives on Psychological Science, 11(6),
800–816.

Sung, K., Rosenberg, R., Panitz, M., & Anderson, R. (2008). Assessing gamethemed programming assign-
ments for CS1/2 courses. Proceedings of GDCSE (pp. 51–55) New York, NY, USA: ACM.

VanDeGrift, T. (2017). POGIL activities in data structures: What do students value? Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (p. 597–602). New York,
NY, USA: Association for Computing Machinery.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://introcs.cs.princeton.edu/java/45graph/
https://introcs.cs.princeton.edu/java/45graph/
http://introcs.cs.princeton.edu/java/home/
https://shef.sheeo.org/report/

Education and Information Technologies

Authors and Affiliations

David Burlinson1 ·Matthew Mcquaigue1 · Alec Goncharow1 ·
Kalpathi Subramanian1,2 · Erik Saule1 · Jamie Payton2 · Paula Goolkasian3

David Burlinson
burlinsond2@gmail.com

Matthew Mcquaigue
mmcquaig@charlotte.edu

Alec Goncharow
agoncha1@charlotte.edu

Erik Saule
esaule@charlotte.edu

Jamie Payton
payton@temple.edu

Paula Goolkasian
pagoolka@charlotte.edu

1 Computer Science, UNC Charlotte, Charlotte, NC, USA

2 Computer Science, Temple University, Philadelphia, PA, USA

3 Psychological Sciences, UNC Charlotte, Charlotte, NC, USA

123

http://orcid.org/0000-0002-7316-2735

	BRIDGES: Real world data, assignments and visualizations to engage and motivate CS majors
	Abstract
	1 Introduction
	2 Related work
	3 The BRIDGES system
	3.1 An example BRIDGES program
	3.2 BRIDGES design
	3.2.1 BRIDGES client
	3.2.2 BRIDGES server

	4 Evaluation plan
	4.1 BRIDGES intervention in data structures courses: Knowledge gains
	4.1.1 BRIDGES Projects
	4.1.2 Development of the knowledge test

	4.2 Longterm gains using BRIDGES: Student progression in the major
	4.3 Student feedback from project surveys
	4.3.1 Qualitative analysis of open-ended items
	4.3.2 Rating scale and multiple-choice item responses

	4.4 Instructor feedback

	5 Discussion
	6 Limitations and conclusions
	A project assignment survey
	Acknowledgements
	References

