Raster Algorithms

Overview
- Drawing Lines and Circles
- Filling Algorithms
 ⇒ Boundary, Floodfill
 ⇒ Scanline Algorithm
- Clipping Algorithms
 ⇒ Lines - Cohen-Sutherland, Liang-Barsky Algorithm
 ⇒ Polygon - Sutherland-Hodgman
- Anti-aliasing

"The process of converting geometric primitives into their discrete approximations"

Scan Conversion:
⇒ Approximate geometric primitives (analytically defined) by a set of pixels, stored in frame-buffer or memory.

Clipping:
⇒ Only sections of primitives determined to be within a clipping region is drawn (scan-converted).

Speed:
⇒ Algorithms must be very efficient. Why?

Drawing Lines

Given the line end points \((x_0, y_0)\) and \((x_1, y_1)\)

Line Equation

\[y = mx + b \]

To determine

the sequence of points between \((x_0, y_0)\) and \((x_1, y_1)\) on the raster grid (end points are in screen coordinates).

Brute Force Algorithm

for \(i = x_0\) to \(i = x_1\)

\[
\begin{cases}
 \text{y}_i = mx_i + b \\
 \text{PLOT} \ (x_i, \ \text{ROUND} \ (y_i))
\end{cases}
\]

Inefficient: Involves multiply and rounding.
DDA Algorithm

Features
- Exploits the fact that the line equation is a linear function that needs to be evaluated over a regular lattice.
- **Constant** increments in both dimensions to obtain successive points along the line eliminates multiplies in the inner loop.

\[
y_{i+1} = m x_{i+1} + b = m(x_i + \Delta x) + b = (m x_i + b) + m \Delta x = y_i + m(1)
\]

Algorithm:

\[
m = \frac{(y_1 - y_0)}{(x_1 - x_0)}
\]

for \(x_i = x_0\) **to** \(x_i = x_1\)

{
\{
 plot (\(x_i, \text{Round}(y_i)\))
 \(y_i = y_i + m\)
 \(x_i = x_i + 1\)
\}

Inefficient, involves division to compute slope, and rounding.

MidPoint Line Algorithm

For lines and circles, same as Bresenham’s algorithm.

Features:
- Uses only integer operations.
- Uses incremental calculations to determine successive pixels.

Idea

- Determine location of mid point, \(M_i\), with respect to the line.
- Mid points \(M_i\) are computed using incremental calculations.

\[
y = \frac{dy}{dx}.x + B
\]

\[
dx.y = dy.x + B.dx, \text{ or }
\]

\[
F(x, y) = dy.x - dx.y + B.dx = 0
\]

\[
= a.x + b.y + c = 0, \quad (a = dy, b = -dx, c = B .dx)
\]

\[
d = F(x, y) = 0, \quad x, y \text{ on the line}
\]

\[
> 0, \quad x, y \text{ below the line}
\]

\[
< 0, \quad x, y \text{ above the line}
\]
MidPoint Line Algorithm (contd)

Strategy:
- The sign of \(d = F(x, y) \), the decision variable, will determine whether \(A \) or \(B \) is chosen as the next pixel on the line.
- “Insert \(M_i \) into \(F(x, y) \) and check the sign of \(F \).”

Efficient calculation of \(d \) (contd)

Case 1: A is chosen
\[
M_{i+1} = F(x_p + 1, y_p + 1/2) \\
M_{i+1} - M_i = F(x_p + 2, y_p + 1/2) - F(x_p + 1, y_p + 1/2) = a \\
M_{i+1} = M_i + a = M_i + dy
\]

Case 2: B is chosen
\[
M_{i+1} = F(x_p + 2, y_p + 3/2) \\
M_{i+1} - M_i = F(x_p + 2, y_p + 3/2) - F(x_p + 1, y_p + 1/2) = \{a(x_p + 2) + b(y_p + 3/2) + c\} - \{a(x_p + 1) + b(y_p + 1/2) + c\} = (a + b) \\
M_{i+1} = M_i + (a + b) = M_i + dy - dx
\]

Initialization
\[
d = F(x_0 + 1, y_0 + 1/2) = a(x_0 + 1) + b(y_0 + 1/2) + c = (ax_0 + by_0 + c) + a + b/2 = a + b/2
\]
or
\[
d = 2a + b \text{ (only sign of } d \text{ is important)}
\]

Hence
\[
d_1 = 2(a + b) = 2(dy - dx) \\
d_2 = 2a = 2(dy)
\]
Final Algorithm (Quadrant 1 only)

d = 2 dy - dx
\[d_1 = 2 dy - 2 dx\]
\[d_2 = 2 dy\]

for \(x = x_0\) to \(x_1\) by 1
{
 if \(d \leq 0\)
 \[d = d + d_1\]
 else
 \[d = d + d_2\]
 \[y = y + 1\]
 }
plot (x, y)

Drawing Circles

Rotational symmetry makes it sufficient to scanconvert only 1 octant of a circle.

MidPoint Circle Algorithm

\[F(x, y) = x^2 + y^2 - R^2 = 0\] (circle centered at the origin)

\[d = F(x, y)\]
\[> 0, \quad x, y \text{ on the circle}\]
\[< 0, \quad x, y \text{ outside the circle}\]
\[= 0, \quad x, y \text{ inside the circle}\]
Midpoint Circle Alg.: Initialization

\[(x_0, y_0) = (0, R)\]
\[F(1, R - 1/2) = 1 + R^2 + 1/4 - R - R^2\]
\[= 5/4 - R\]

Efficiency

The algorithm can be made more efficient (Refer Foley/van Dam).

FloodFill Algorithm

Interior pixels are defined by a unique color.

FloodFill (x, y, InteriorColor, NewColor)

\{
 if pixel_color (x, y) EQUALS InteriorColor
 \{
 set_pixel (x, y, NewColor)
 FloodFill (x-1, y, InteriorColor, NewColor)
 FloodFill (x+1, y, InteriorColor, NewColor)
 FloodFill (x, y+1, InteriorColor, NewColor)
 FloodFill (x, y-1, InteriorColor, NewColor)
 \}
\}
Boundary Fill Algorithm

Boundary pixels are defined by a unique color.

BoundaryFill (x, y, BoundaryColor, NewColor)
{
 if (pixel_color (x, y) NOT_EQUAL_TO BoundaryColor) AND (pixel_color (x, y) NOT_EQUAL_TO NewColor)
 {
 set_pixel (x, y, NewColor)
 BoundaryFill (x-1, y, BoundaryColor, NewColor)
 BoundaryFill (x+1, y, BoundaryColor, NewColor)
 BoundaryFill (x, y+1, BoundaryColor, NewColor)
 BoundaryFill (x, y-1, BoundaryColor, NewColor)
 }
}

The Scanline Polygon Fill Algorithm

Approach
- Exploit the geometry of the polygon.
- Use scanline and edge coherence for efficient filling.

Algorithm
for each scanline
{
 Calculate Intersections between scanline and all polygon edges
 Sort Intersections on X.
 Fill pixels between pairs of intersection points.
}

The Scanline Polygon Fill Algorithm: Special Cases

1. Horizontal Edges: Discard all horizontal edges
2. Scanline passing through a vertex:
 - scanline α: no problem, scanline β: wrong results
 - Solution: check for local extrema (in Y)
 - if local maxima/minima count two intersections
 else count one intersection
 - Implementation: if vertex does not conform to a local extrema, shorten edge by 1 pixel in Y

Improving Performance

- Use edge and scanline coherence.
- Implemented using an Edge Table (ET) and an Active Edge Table (AET)

Edge Record
{
 Integer y_upper /* y coordinate at upper end point */
 Integer x_int /* x coordinate of intersection with edge */
 Float recip_slope /* 1/m */
 Pointer next; /* to next edge record */
}
Algorithm

Initialize /* take care of special cases */
AET = NULL
for y = min_row to max_row
{
 add all edge records in ET[y] to AET
 if (AET NOT_EQUAL_TO NULL)
 {
 Sort AET on x /* x coordinates of intersection points */
 Fill pixel runs.
 Delete edge records for whom y = y.upper
 Update x_int values by adding 1/m
 }
}

Line Clipping

Problem Definition

Given a clip region and a line segment, determine the sections of the line interior to the region.

Simplification

Clip region (window) is an upright rectangle.
Line Clipping Alg: Strategy

if end points are inside clip region
 entire line segment is visible
else
 calculate intersections between line segment and clip region
 output segments interior to clip region
end

Note:
• we deal with line segments, not infinite lines.
• Slope-Intercept form \((y = mx + c)\) of line equation is not convenient
• Parametric representation preferred.

Cohen-Sutherland Clipping Algorithm

Idea:
Consider clip region to be the intersection of half-spaces.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
<th>B</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>0001</td>
<td>0101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0000</td>
<td>0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>0010</td>
<td>0110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding a point:

- code0[0] = \(x_0 < x_{\text{min}}\)
- code0[1] = \(x_0 > x_{\text{max}}\)
- code0[2] = \(y_0 < y_{\text{min}}\)
- code0[3] = \(y_0 > y_{\text{max}}\)

and similarly for \((x_1, y_1)\)

Algorithm

Calculate codes of both end points.
done = FALSE
while not done
{
 if (all 4 codes of both endpoints equal zero)
 "Accept line segment", done = TRUE
 else if (bit-wise logical AND of code0 and code1 is non-zero)
 "Reject line segment", done = TRUE
 else
 {
 choose end point \(P\) outside clip window
 Intersect line segment with clip window
 Discard line segment from \(P\) to intersection point
 compute codes of the new (clipped) line segment
 }
}
Example

Trivial Accept: No!
Trivial Reject: \((1000 \& 0001) = 0000\). NO!

Pick end point with non-zero code - A (can also pick B)
Intersect with left boundary (corresponding to the first non-zero bit)
\[t = \frac{x_{\text{min}} - x_0}{x_1 - x_0} \]
\[y = y_0 + t(y_1 - y_0) = y_0 + \frac{x_{\text{min}} - x_0}{x_1 - x_0}(y_1 - y_0) \]
Intersection \(I_1 = (x_{\text{min}}, y), \quad x_0 = x_{\text{min}}, y_0 = y\)

Polygon Clipping

Using a Line Clipper
- Apply Cohen Sutherland algorithm to each segment of polygon
- Insufficient, as polygons can become fragmented after clipping
- Polygons must remain polygons after clipping

Example (contd.)

Code \((I_1) = 0000\), Code \((B) = 0001\)

Cannot trivially accept or reject, choose end point B
Intersect with top boundary, \(y = y_{\text{max}}\)
\[t = \frac{y_{\text{max}} - y_1}{y_0 - y_1} \]
\[x = x_1 + t(x_0 - x_1) = x_1 + \frac{y_{\text{max}} - y_1}{y_0 - y_1}(x_0 - x_1) \]
Intersection \(I_2 = (x, y_{\text{max}})\)
Calculate codes of \(I_1\) and \(I_2\)
Trivially accept the segment \((I_1, I_2)\)
Liang-Barsky Clipping Algorithm

A special case of the Cyrus-Beck clipping algorithm.

Features

- In general, more efficient than the Cohen-Sutherland algorithm.
- Most of the operations are performed in parametric space.

Intersections between a line and the clipping boundaries are distinguished as entering or exiting the boundary \((t_{\text{enter}}\text{ and } t_{\text{exit}})\).

If \(\max(t_{\text{enter}}) < \min(t_{\text{exit}})\) and the interval is a subset of \((0, 1.0)\), then the line segment intersects the interior of the clipping region.

Liang-Barsky Clipping: Details

A point \((x, y)\) is in the interior if

\[
\begin{align*}
xw_{\text{min}} &\leq x_0 + t\Delta x \leq xw_{\text{max}} \\
yw_{\text{min}} &\leq y_0 + t\Delta y \leq yw_{\text{max}}
\end{align*}
\]

which can be rewritten as

\[
\begin{align*}
&tp_k \leq q_k, \quad k = 1, 2, 3, 4 \\
p_1 = -\Delta x, &\quad q_1 = x_0 - xw_{\text{min}} \\
p_2 = \Delta x, &\quad q_2 = xw_{\text{max}} - x_0 \\
p_3 = -\Delta y, &\quad q_3 = y_0 - yw_{\text{min}} \\
p_4 = \Delta y, &\quad q_4 = yw_{\text{max}} - y_0
\end{align*}
\]

Intersection

\[
t = \frac{q_k}{p_k}
\]

- \(p_k = 0\): line parallel to the \(k\)th clipping boundary; if \(q_k < 0.0\), line is trivially rejected.
- \(p_k < 0\): line proceeds from outside to inside across clipping boundary.
- \(p_k > 0\): line proceeds from inside to outside across clipping boundary.
Algorithm

\[t_{\text{min}} = 0.0, \ t_{\text{max}} = 1.0 \]

\[
\text{if ClipBoundary (} p_1, q_1, &t_{\text{min}}, &t_{\text{max}}) \\
\quad \text{if ClipBoundary (} p_2, q_2, &t_{\text{min}}, &t_{\text{max}}) \\
\quad \quad \text{if ClipBoundary (} p_3, q_3, &t_{\text{min}}, &t_{\text{max}}) \\
\quad \quad \quad \text{if ClipBoundary (} p_4, q_4, &t_{\text{min}}, &t_{\text{max}})
\]

\[
\{ \quad \text{if (} t_{\text{min}} > 0.0) \} \\
\quad \{ \text{pt1.x} = \text{pt1.x} + t_{\text{min}} \times dx \\
\quad \text{pt1.y} = \text{pt1.y} + t_{\text{min}} \times dy
\}
\]

\[
\{ \quad \text{if (} t_{\text{min}} < 1.0) \} \\
\quad \{ \text{pt2.x} = \text{pt2.x} + t_{\text{max}} \times dx \\
\quad \text{pt2.y} = \text{pt2.y} + t_{\text{max}} \times dy
\}
\]

“draw line from pt1 to p2”