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Clustering, Histograms, 
Sampling, MDS, and PCA

Class 11
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Recall: The MRV Model
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Recall: Simplification

Simplification operators   - today!
Simplification operands

Data space (structure level)
Data item space
Dimension space
Topology space

Visualization space (language level)
Visualization structure space
Visual encoding space
Screen space

4

Simplification operators

Clustering
Sampling
Histogram
Multidimensional Scaling (Jeong, Min)
Principal Component Analysis (Tom)
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Clustering

Definition: Clustering is a division of 
data into groups of similar objects. Each 
group, called a cluster, consists of 
objects that are similar among 
themselves and dissimilar to objects of 
other groups [Ber02].

6

Why use clustering in MRV? 

By visualizing clusters rather than the 
original data the number of visual 
elements displayed can be greatly 
reduced.
Clustering itself is a pattern discovering 
process. Thus visualizing clusters 
explicitly reveals hidden patterns to 
viewers.



4

7

Major Categories of Clustering 
Algorithms 

Hierarchical clustering
Partitioning clustering
Grid-based clustering
Human-computer clustering
Other approaches

Ref: [Ber02]

8

Hierarchical Clustering

Hierarchical clustering builds a cluster 
hierarchy (a tree of clusters, or a 
dendrogram). 

Every cluster node contains child clusters
Sibling clusters partition the objects 
covered by their common parent
Allows exploring data on different levels of 
granularity
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Categories of Hierarchical 
Clustering Approaches

Agglomerative (bottom-up) Approaches
Start with one-object clusters and recursively merges two or 
more most appropriate clusters.

Divisive (top-down) approaches 
Start with one cluster of all objects and recursively splits the
most appropriate cluster
Continue until a stopping criterion (frequently, the requested 
number k of clusters) is achieved.

Distance (or similarity) measures between objects 
are used in traditional hierarchical clustering 
approaches

10

Another Categorization

According to how the distance between 
subsets of objects is decided when 
merging or splitting subsets of objects, 
which is called the linkage metrics.
Graph methods
Geometric methods
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Another Categorization (con.)
Graph (all point) methods

Minimum, maximum, or average of the distances measured 
for all pairs of objects with one object in the first set and 
another object in the second set as linkage metrics
Example: SLINK [Sib73], CLINK [Def77].

Geometric (one centroid) methods
Central point of a cluster to represent the cluster

Traditional graph methods suffers from time 
complexity

12

CURE: An Efficient Clustering Algorithm 
for Large Databases [Guha at. el. SIGMOD 98]

Target: datasets with a large number of data 
items and a low number of numerical 
attributes
Graph + geometric

Represents a cluster by a certain fixed number of 
points (not all, not one)
The distance between two clusters: the minimum 
of distances between two representative points

Random sampling and partitioning
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CURE [GRS98]

14

Partitioning Clustering
Partitioning algorithms divide data into several subsets
Major categories:

Relocation algorithms
Iteratively reassign points between the clusters until an 

objective function is optimized
Probabilistic clustering
K-medoid and k-mean methods

Density-based partitioning
A cluster is defined as a connected dense component growing 

in any direction the density leads
Density connectivity methods
Density function methods
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Probabilistic Clustering
Data: a sample independently drawn from a 
mixture model of several probability 
distributions [MB88]
The area around the mean of each 
distribution constitutes a natural cluster
Goal: maximize the overall probability or 
likelihood of the data, given the final clusters
Examples: EM (Expectation-Maximization) 
method [MB88], FREM [OO02]

EM methods accommodate categorical variables 
as well as numeric variables.

16

K-Medoids Methods
A cluster is represented by one of its points, 
which is called a medoid
When medoids are selected, clusters are 
defined as subsets of points close to 
respective medoids
Objective function is defined as the averaged 
distance or another dissimilarity measure 
between a point and its medoid. 
Resist outliers well since peripheral cluster 
points do not affect the medoids.
Example: CLARANS [NH94] for large datasets
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K-Mean Methods

Represent a cluster by the mean 
(weighted average) of its points, the so 
called centroid
Objective function: the sum of 
discrepancies between the points and 
their centroids expressed through 
appropriate distance
Example: Forgy’s algorithm [For65]

18

Density-Based Partitioning 
Clustering

A cluster is defined as a connected dense 
component growing in any direction the 
density leads
Capable of discovering clusters of arbitrary 
shapes that are not rectangular or spherical
Book: [Han & Kamber 2001]
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Grid-based Clustering
Data partitioning is induced by points’
membership in segments (cubes, cells, or 
regions) resulted from space partitioning
Space partitioning is based on grid-
characteristics accumulated from input data
Independent of data ordering
Different attribute types
Contains features of both partitioning and 
hierarchical clustering

20

Human-Computer Clustering
Meaningfulness and definition of a 
cluster are best characterized with use 
of human intuition [Agg01].
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Reference

Survey of Clustering Data Mining 
Techniques    Pavel Berkhin
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Histograms
A histogram partitions the data space into 
buckets. In each bucket, the data distribution 
is often assumed uniform and recorded using 
simple statistic data. 

The distribution of each bucket can also be 
approximated using more complex functions and 
statistical data.

Histograms are used to capture important 
information about the data in a concise 
representation [WS03]
Selectivity estimation
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One-Dimensional Histograms

24

Selectivity Estimation for M-D 
Datasets

1-D histograms
Dimension independent assumption
Project data set to each dimension and construct a 
1-D histogram upon each projection
For a given multi-dimensional range (query), the 
number of data items falling into this range 
(selectivity of the query) is estimated in this way: 

Project the query on each dimension, estimate the 
selectivity of each one-dimensional query using the 1-D 
histograms
Multiply the selectivities from all one-dimensional queries 
to get the selectivity of the multi-dimensional query



13

25

Selectivity Estimation for M-D 
Datasets

M-D histograms
A multi-dimensional histogram partitions 
the data space into buckets in the multi-
dimensional space. In each bucket, the 
data distribution is often assumed to be 
uniform and recorded using simple statistic 
data.

26

Accuracy Comparison of 1-D 
and M-D approaches 

Assumption: All histograms are accurate
Comparison: M-D ☺ 1-D 
Reason: 1-D approach is based on attribute 
independent assumption, which is often false in M-D 
space
Example: 
t.A = t.B for all tuples
1O% tuples have t.A = t.B = 0.5
Query “count tuples whose t.A = 0.5 & t.B = 0.5”

Answer of 1-D approach: 1%    
Answer of M-D approach: 10%  ☺

However, accuracy of M-D histograms degrades fast 
with increasing dimensionality!
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Finite VS. Real Domains 

Finite domains:
Data distribution can be accurately expressed.
Number of distinct values in a bucket is often 
recorded so that frequency of each distinct value 
combination can be estimated.

Real domains:
Infinite possible distinct values
Not many values will appear more than once.
Data distribution can hardly be accurately 
expressed.
Density of a bucket is often recorded and used.

28

Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000) 

Target: Selectivity estimation for real 
datasets (GENHIST)
Motivation: 

Smaller bucket estimates density better but 
increases bucket number
Large bucket number causes more partially 
intersected buckets 
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Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000)

Key ideas:
Use rectangular buckets
Allow buckets to overlap 
and have variable sizes
density = sum of density 
of overlapping buckets

Construction: 
Iteratively smooth data 
density by removing 
some data points from 
denser areas to form 
buckets
Regular grids are used in 
each iteration. Grids are 
coarser in later iterations.  

Density_Bucket_2 = 1 

Density_Bucket_1 = 2 

density = 3 

density = 1 

30

Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000)
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Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000)

Advantages:
Compact - more regions with different densities can 
be expressed using the same number of buckets
True multi-dimensional – buckets are constructed 
according to density of the M-D space

Disadvantages:
Uniform parameter setting degrades performance 
for some datasets.
It requires multiple passes of the whole dataset.
It can’t adapt to underlying data distribution change 
as dynamic histograms.

32

Self-Tuning Histograms

Paper 1: Self-tuning 
histograms: Building 
histograms without 
looking at data
(A. Aboulnaga and 
S. Chaudhuri. 1999)

STGrid

Paper 2: STholes: A 
multidimensional 
workload-aware 
histogram
(N. Bruno, S. 
Chaudhuri, and L. 
Gravano. 2003)

STHoles
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Self-Tuning Histograms

Drawbacks of traditional (static) M-D 
histograms that access whole datasets to 
construct the histograms

High construction and maintaining cost
Waste resources (use assumption that all queries 
are equally likely)

Key ideas of Self-Tuning (S-T) histograms
Construct and refine histograms using query 
results without accessing the dataset
Allocate more resources to heavily queried areas

34

Self-Tuning Histograms 

Life circle of S-T histograms has two stages:
1. A coarse histogram is built without accessing the 

data.
2. The coarse histogram is refined using query 

feedbacks
Compare estimation and actual query results to find 

inaccurate buckets and adjust them

Advantages of S-T histograms:
Cheaper
(May be) more accurate
Adaptive to changes
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Differences between 
STGrid and STHoles

STGrid: keeps rigid grid partitioning
Refine – split and merge rows of buckets 
Unrelated buckets will be split.   
Refine based on unidimensional statistic 

STHoles: Allows a bucket to be inside 
another one

Refine – drill holes and merge similar buckets 
Unrelated buckets won’t be affected
Refine based on M-D information

(a)

(b)

(c)

Example: 

(a) Original data set   (b) STGrid (c) STHoles

Figures are used without users’ permission

36

Sampling

The process of selecting some part of a 
population to observe so that one may 
estimate something about the whole 
population [Tho92]
Input

A = (a1, a2, ..., ak) 

Output: 
B = (ai1, ai2 , ..., aim)

1 <= ij <= k, for 1 <= j <= m < k.
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Simple Random Sampling

Simple random sampling - a sampling 
procedure that assures that each 
element in the population has an equal 
chance of being selected.

38

Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling 
(P.J. Haas and C. König. 2004)

Motivation:
Row-level sampling is accurate but expensive.
Page-level sampling is cheap but less precise. 

Bi-level sampling with sampling rate q
Sample pages at rate p (p >= q)
Sample rows of sampled pages at rate r = q/p

Challenges: 
How to set p and r to trade off speed and 
precision? 
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Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling 
(P.J. Haas and C. König. 2004)

Solution for aggregation queries:
Calculate precision using standard error of 
unbiased estimator of an aggregation 
query 
Calculate speed using I/O cost models
Solve the optimization problems, such as 
For a given sampling rate and maximum 

processing cost, minimize the standard error

40

Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling 
(P.J. Haas and C. König. 2004)

Conclusion:
PHI, the measure of variability of values within a 
page relative to the variability of values between 
pages, plays a center role in the optimal solution 
of p and r.
PHI < 1, the sampling is as row-like as possible
PHI >= 1, the sampling is as page-like as possible

This paper proposes a heuristic approach to 
estimate p and r using a small number of 
statistic data
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Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling                 
(P.J. Haas and C. König. 2004)

Sampling rate is distributed to row-level and 
page-level sampling rate
Bernoulli sampling is used – if a page or row 
is selected is decided by the sampling rate 
and is independent from other pages or rows.

It requires to rescan the whole dataset if sampling 
rate changes. 
It is discrete in nature
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Paper 2: Efficient Biased Sampling for 
Approximate Clustering and Outlier Detection in 
Large Data Sets                                           
(G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. 2003)

Motivation:
A large sample is needed for detecting 
small clusters using uniform random 
sampling.

Key ideas:
Estimate the density of the dataset
Bias sampling rate according to local 
density so that clusters or outliers can be 
detected using a relatively small sample
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Paper 2: Efficient Biased Sampling for 
Approximate Clustering and Outlier Detection in 
Large Data Sets
(G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. 2003)

Strategies:
Oversample dense regions to identity clusters
Oversample sparse regions to identify outliers

Biased probability calculation function:
c * f a

a: biasing factor
a = 0: uniform sampling
a < 0: favors sparse regions
a > 0: favors dense regions 
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Scenarios to Use Biased 
Sampling in MRV

If outliers or clusters need to be 
detected
If a data set contains a number of 
unreliable objects (for example, data 
items that contain many missing values
If a user finds and marks interesting 
objects in interactive exploration and 
wants
In a focus + context display
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Paper 2: Efficient Biased Sampling for 
Approximate Clustering and Outlier Detection in 
Large Data Sets  
(G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. 2003)

Information loss measure:
Number of missed clusters

Sampling rate changes:
Sampling rate changes with data density in 
M-D space
If transition of density in M-D space is 
continuous, transition of sampling rate is 
continuous.
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Paper 3: Dynamic Sample Selection for 
Approximate Query Processing
(B. Babcock, S. Chaudhuri, and G. Das. 2003)

Motivation: 
An appropriately biased sample provides good 
accuracy for a particular set of queries but not for 
the others.

Key ideas: 
Pre-process the dataset to build and store a set of 
biased samples
Construct an appropriately biased sample from 
them for a give query

Gain: processing speed and accuracy  
Cost: pre-processing and disk space
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Paper 3: Dynamic Sample Selection for 
Approximate Query Processing
(B. Babcock, S. Chaudhuri, and G. Das. 2003)

Proposed technique: 
Small group sampling for aggregation queries 
with group-bys.
Pre-process: Build a small group table for 
each eligible column, and an overall sample 
table
Query: Decompose a query to the overall 
sample table and one or more small group 
tables, and compose the final answer from 
these answers.

48

Paper 3: Dynamic Sample Selection for 
Approximate Query Processing
(B. Babcock, S. Chaudhuri, and G. Das. 2003)

Information loss measure:
Group loss 
Average squared relative error of the estimator

Sampling rate is different for overall sample 
table and small groups: 

Sampling rate of overall sample table is decided 
by input parameters
Sampling rate of small groups is 100%.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

Goal: summarize the relationships between 
random sampling and visualization.
Why random sampling benefits visualization? 

Fasten interactions
Reduce clutter

Why random sampling is acceptable in 
visualization?

Gestalt visual processing often depends on 
approximate rather than exact properties of data.
A dataset itself is often a sample from the real 
world.

50

Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

When random sampling can be applied in 
visualization?

Visualization based on aggregate or summary 
statistics can use sampled data to give 
approximations
Visualization containing points or lines that could 
saturate the display can use sampled data to 
avoid saturation and reveal features and 
relationships.
Sampling can be used to reduce the data set to a 
size that allows detailed visualization such as 
thumbnails of individual items.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

Information loss:
Measure - how the visualization obtained from the 
sample is distinguishable from that obtained from 
the full data set.
Users should be aware of the information loss –
use error bars, blurred edges, and ragged displays

Sampling rate changes: 
Smooth transitions between different resolutions 
are beneficial
Example: when sampling rate increases, keep the 
data points in the previous view on the screen.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

Example - Astral Telescope Visualizer
Users can interactively change the zoom 
value of a 2D scatterplot display. 
The sampling rate increases automatically 
with the increase of the square of the zoom 
value.
Extra points are sampled and previously 
sampled data points in the zoomed area are 
remained after a zoom in operation.
It permits smooth transition between 
sampling rates.
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Distinct Measures of 
Information Loss

Standard error (sqare root of the 
variance) of the unbiased estimator
Cluster loss
Group loss 
Average squared relative error
How the visualization obtained from the 
sample is distinguishable from that 
obtained from the full data set.
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A Scenario: Small Change in 
Sampling Rate Causes Significant 
Information Loss

Page-level Bernoulli sampling with large pages
Bernoulli sampling cause randomness in 
sample size
Page-level Bernoulli sampling magnifies this 
fluctuations by a factor equal to the number 
of rows per page
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MRV Example: Biased-Sampling 
Based Hierarchical Displays

56

Biased-Sampling Based 
Hierarchical Displays

Motivation:
Large datasets clutter the screen in visualization

Target: 
Reduce clutter using random sampling 
Allow users to exam details within context

Key ideas:
Pre-construct a group of samples that reflect 
patterns of the dataset 
Dynamically construct a sample using pre-
constructed samples according to users’ focus of 
interest and display it
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Biased-Sampling Based 
Hierarchical Displays

Approach:
Construct a hierarchical cluster tree upon a 
dataset according to the similarity among the 
data items
Each node of the tree carries a sample
Provide users an interface to select focus of 
interests and preferred levels of detail from the 
tree
Dynamically construct a sample from the 
samples in the nodes according to users’
selection and display it
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Biased-Sampling Based 
Hierarchical Displays

Sample of a node:
Contains data items belongs to the 
cluster 
Biased to clusters or outliers
Do not contain data items in samples of 
its ascendant nodes

Dynamic sample:
The sum of samples of selected nodes 
and their ascendant nodes
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(a)-(d): The BSBH parallel coordinates displays of the AAUP dataset 
(14 dimensions, 1161 data items) with increasing LODs.

60

(a)-(d): The BSBH scatterplot matricies displays of the Cars 
dataset (7 dimensions, 392 data items) with increasing LODs.
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(a)-(d): The BSBH dimensional stacking displays of the Cars 
dataset with increasing LODs.

62

(a) and (b): The Hierarchical Parallel Coordinates displays of the Cars dataset with two 
adjacent LODs. There is a visual jitter between (a) and (b). For example, the cluster in 
the top left of (a) disappears in (b). (c) and (d): The counterpart of (a) and (b) in the 
BSBH parallel Coordinates displays. The display changes smoothly from (c) to (d).
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(a): A focus-in-context view of the AAUP dataset in the Hierarchical Parallel
Coordinates display. There is a jump of LOD between the focus and context. 
(b): The counter part of (a) in the BSBH parallel coordinates display. The LOD 
changes smoothly from the focus to the context.


