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Clustering, Histograms, 
Sampling, MDS, and PCA

Class 11
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Recall: The MRV Model
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Recall: Simplification

� Simplification operators   - today!
� Simplification operands

� Data space (structure level)
� Data item space
� Dimension space
� Topology space

� Visualization space (language level)
� Visualization structure space
� Visual encoding space
� Screen space

4

Simplification operators

� Clustering
� Sampling
� Histogram
� Multidimensional Scaling (Jeong, Min)
� Principal Component Analysis (Tom)
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Clustering

� Definition: Clustering is a division of 
data into groups of similar objects. Each 
group, called a cluster, consists of 
objects that are similar among 
themselves and dissimilar to objects of 
other groups [Ber02].
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Why use clustering in MRV? 

� By visualizing clusters rather than the 
original data the number of visual 
elements displayed can be greatly 
reduced.

� Clustering itself is a pattern discovering 
process. Thus visualizing clusters 
explicitly reveals hidden patterns to 
viewers.
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Major Categories of Clustering 
Algorithms 

� Hierarchical clustering
� Partitioning clustering
� Grid-based clustering
� Human-computer clustering
� Other approaches

Ref: [Ber02]
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Hierarchical Clustering

� Hierarchical clustering builds a cluster 
hierarchy (a tree of clusters, or a 
dendrogram). 
� Every cluster node contains child clusters
� Sibling clusters partition the objects 

covered by their common parent
� Allows exploring data on different levels of 

granularity
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Categories of Hierarchical 
Clustering Approaches
� Agglomerative (bottom-up) Approaches

� Start with one-object clusters and recursively merges two or 
more most appropriate clusters.

� Divisive (top-down) approaches 
� Start with one cluster of all objects and recursively splits the

most appropriate cluster
� Continue until a stopping criterion (frequently, the requested 

number k of clusters) is achieved.

� Distance (or similarity) measures between objects 
are used in traditional hierarchical clustering 
approaches
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Another Categorization

� According to how the distance between 
subsets of objects is decided when 
merging or splitting subsets of objects, 
which is called the linkage metrics.

� Graph methods
� Geometric methods
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Another Categorization (con.)
� Graph (all point) methods

� Minimum, maximum, or average of the distances measured 
for all pairs of objects with one object in the first set and 
another object in the second set as linkage metrics

� Example: SLINK [Sib73], CLINK [Def77].

� Geometric (one centroid) methods
� Central point of a cluster to represent the cluster

� Traditional graph methods suffers from time 
complexity
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CURE: An Efficient Clustering Algorithm 
for Large Databases [Guha at. el. SIGMOD 98]

� Target: datasets with a large number of data 
items and a low number of numerical 
attributes

� Graph + geometric
� Represents a cluster by a certain fixed number of 

points (not all, not one)
� The distance between two clusters: the minimum 

of distances between two representative points

� Random sampling and partitioning
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CURE [GRS98]
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Partitioning Clustering
Partitioning algorithms divide data into several subsets
Major categories:
� Relocation algorithms

Iteratively reassign points between the clusters until an 
objective function is optimized

� Probabilistic clustering
� K-medoid and k-mean methods

� Density-based partitioning
A cluster is defined as a connected dense component growing 

in any direction the density leads
� Density connectivity methods
� Density function methods
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Probabilistic Clustering
� Data: a sample independently drawn from a 

mixture model of several probability 
distributions [MB88]

� The area around the mean of each 
distribution constitutes a natural cluster

� Goal: maximize the overall probability or 
likelihood of the data, given the final clusters

� Examples: EM (Expectation-Maximization) 
method [MB88], FREM [OO02]
� EM methods accommodate categorical variables 

as well as numeric variables.
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K-Medoids Methods
� A cluster is represented by one of its points, 

which is called a medoid
� When medoids are selected, clusters are 

defined as subsets of points close to 
respective medoids

� Objective function is defined as the averaged 
distance or another dissimilarity measure 
between a point and its medoid. 

� Resist outliers well since peripheral cluster 
points do not affect the medoids.

� Example: CLARANS [NH94] for large datasets
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K-Mean Methods

� Represent a cluster by the mean 
(weighted average) of its points, the so 
called centroid

� Objective function: the sum of 
discrepancies between the points and 
their centroids expressed through 
appropriate distance

� Example: Forgy’s algorithm [For65]
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Density-Based Partitioning 
Clustering
� A cluster is defined as a connected dense 

component growing in any direction the 
density leads

� Capable of discovering clusters of arbitrary 
shapes that are not rectangular or spherical

� Book: [Han & Kamber 2001]
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Grid-based Clustering
� Data partitioning is induced by points’

membership in segments (cubes, cells, or 
regions) resulted from space partitioning

� Space partitioning is based on grid-
characteristics accumulated from input data

� Independent of data ordering
� Different attribute types
� Contains features of both partitioning and 

hierarchical clustering

20

Human-Computer Clustering
� Meaningfulness and definition of a 

cluster are best characterized with use 
of human intuition [Agg01].
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Reference

� Survey of Clustering Data Mining 
Techniques    Pavel Berkhin
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Histograms
� A histogram partitions the data space into 

buckets. In each bucket, the data distribution 
is often assumed uniform and recorded using 
simple statistic data. 
� The distribution of each bucket can also be 

approximated using more complex functions and 
statistical data.

� Histograms are used to capture important 
information about the data in a concise 
representation [WS03]

� Selectivity estimation
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One-Dimensional Histograms

24

Selectivity Estimation for M-D 
Datasets
� 1-D histograms

� Dimension independent assumption
� Project data set to each dimension and construct a 

1-D histogram upon each projection
� For a given multi-dimensional range (query), the 

number of data items falling into this range 
(selectivity of the query) is estimated in this way: 
� Project the query on each dimension, estimate the 

selectivity of each one-dimensional query using the 1-D 
histograms

� Multiply the selectivities from all one-dimensional queries 
to get the selectivity of the multi-dimensional query
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Selectivity Estimation for M-D 
Datasets

� M-D histograms
� A multi-dimensional histogram partitions 

the data space into buckets in the multi-
dimensional space. In each bucket, the 
data distribution is often assumed to be 
uniform and recorded using simple statistic 
data.
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Accuracy Comparison of 1-D 
and M-D approaches 
� Assumption: All histograms are accurate
� Comparison: M-D ☺ 1-D /
� Reason: 1-D approach is based on attribute 

independent assumption, which is often false in M-D 
space

� Example: 
t.A = t.B for all tuples
1O% tuples have t.A = t.B = 0.5
Query “count tuples whose t.A = 0.5 & t.B = 0.5”
� Answer of 1-D approach: 1%    /
� Answer of M-D approach: 10%  ☺

� However, accuracy of M-D histograms degrades fast 
with increasing dimensionality!
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Finite VS. Real Domains 

� Finite domains:
� Data distribution can be accurately expressed.
� Number of distinct values in a bucket is often 

recorded so that frequency of each distinct value 
combination can be estimated.

� Real domains:
� Infinite possible distinct values
� Not many values will appear more than once.
� Data distribution can hardly be accurately 

expressed.
� Density of a bucket is often recorded and used.
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Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000) 

� Target: Selectivity estimation for real 
datasets (GENHIST)

� Motivation: 
� Smaller bucket estimates density better but 

increases bucket number
� Large bucket number causes more partially 

intersected buckets 
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Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000)

� Key ideas:
� Use rectangular buckets
� Allow buckets to overlap 

and have variable sizes
� density = sum of density 

of overlapping buckets
� Construction: 

� Iteratively smooth data 
density by removing 
some data points from 
denser areas to form 
buckets

� Regular grids are used in 
each iteration. Grids are 
coarser in later iterations.  

Density_Bucket_2 = 1 

Density_Bucket_1 = 2 

density = 3 

density = 1 
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Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000)



16

31

Paper: Approximating Multi-Dimensional 
Aggregate Range Queries over Real Attributes
(D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. 2000)

� Advantages:
� Compact - more regions with different densities can 

be expressed using the same number of buckets
� True multi-dimensional – buckets are constructed 

according to density of the M-D space
� Disadvantages:

� Uniform parameter setting degrades performance 
for some datasets.

� It requires multiple passes of the whole dataset.
� It can’t adapt to underlying data distribution change 

as dynamic histograms.
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Self-Tuning Histograms

� Paper 1: Self-tuning 
histograms: Building 
histograms without 
looking at data
(A. Aboulnaga and 
S. Chaudhuri. 1999)

STGrid

� Paper 2: STholes: A 
multidimensional 
workload-aware 
histogram
(N. Bruno, S. 
Chaudhuri, and L. 
Gravano. 2003)

STHoles
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Self-Tuning Histograms

� Drawbacks of traditional (static) M-D 
histograms that access whole datasets to 
construct the histograms
� High construction and maintaining cost
� Waste resources (use assumption that all queries 

are equally likely)
� Key ideas of Self-Tuning (S-T) histograms

� Construct and refine histograms using query 
results without accessing the dataset

� Allocate more resources to heavily queried areas

34

Self-Tuning Histograms 

� Life circle of S-T histograms has two stages:
1. A coarse histogram is built without accessing the 

data.
2. The coarse histogram is refined using query 

feedbacks
Compare estimation and actual query results to find 

inaccurate buckets and adjust them

� Advantages of S-T histograms:
� Cheaper
� (May be) more accurate
� Adaptive to changes
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Differences between 
STGrid and STHoles

� STGrid: keeps rigid grid partitioning
� Refine – split and merge rows of buckets 
� Unrelated buckets will be split.   
� Refine based on unidimensional statistic 

� STHoles: Allows a bucket to be inside 
another one
� Refine – drill holes and merge similar buckets 
� Unrelated buckets won’t be affected
� Refine based on M-D information

(a)

(b)

(c)

Example: 

(a) Original data set   (b) STGrid (c) STHoles

Figures are used without users’ permission
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Sampling

� The process of selecting some part of a 
population to observe so that one may 
estimate something about the whole 
population [Tho92]

� Input
� A = (a1, a2, ..., ak) 

� Output: 
� B = (ai1, ai2 , ..., aim)

1 <= ij <= k, for 1 <= j <= m < k.
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Simple Random Sampling

� Simple random sampling - a sampling 
procedure that assures that each 
element in the population has an equal 
chance of being selected.

38

Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling 
(P.J. Haas and C. König. 2004)

� Motivation:
� Row-level sampling is accurate but expensive.
� Page-level sampling is cheap but less precise. 

� Bi-level sampling with sampling rate q
� Sample pages at rate p (p >= q)
� Sample rows of sampled pages at rate r = q/p

� Challenges: 
� How to set p and r to trade off speed and 

precision? 
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Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling 
(P.J. Haas and C. König. 2004)

� Solution for aggregation queries:
� Calculate precision using standard error of 

unbiased estimator of an aggregation 
query 

� Calculate speed using I/O cost models
� Solve the optimization problems, such as 

For a given sampling rate and maximum 
processing cost, minimize the standard error

40

Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling 
(P.J. Haas and C. König. 2004)

� Conclusion:
� PHI, the measure of variability of values within a 

page relative to the variability of values between 
pages, plays a center role in the optimal solution 
of p and r.

� PHI < 1, the sampling is as row-like as possible
� PHI >= 1, the sampling is as page-like as possible

� This paper proposes a heuristic approach to 
estimate p and r using a small number of 
statistic data
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Paper 1: A Bi-Level Bernoulli Scheme 
for Database Sampling                 
(P.J. Haas and C. König. 2004)

� Sampling rate is distributed to row-level and 
page-level sampling rate

� Bernoulli sampling is used – if a page or row 
is selected is decided by the sampling rate 
and is independent from other pages or rows.
� It requires to rescan the whole dataset if sampling 

rate changes. 
� It is discrete in nature
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Paper 2: Efficient Biased Sampling for 
Approximate Clustering and Outlier Detection in 
Large Data Sets                                           
(G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. 2003)

� Motivation:
� A large sample is needed for detecting 

small clusters using uniform random 
sampling.

� Key ideas:
� Estimate the density of the dataset
� Bias sampling rate according to local 

density so that clusters or outliers can be 
detected using a relatively small sample
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Paper 2: Efficient Biased Sampling for 
Approximate Clustering and Outlier Detection in 
Large Data Sets
(G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. 2003)

� Strategies:
� Oversample dense regions to identity clusters
� Oversample sparse regions to identify outliers

� Biased probability calculation function:
c * f a

a: biasing factor
� a = 0: uniform sampling
� a < 0: favors sparse regions
� a > 0: favors dense regions 
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Scenarios to Use Biased 
Sampling in MRV

� If outliers or clusters need to be 
detected

� If a data set contains a number of 
unreliable objects (for example, data 
items that contain many missing values

� If a user finds and marks interesting 
objects in interactive exploration and 
wants

� In a focus + context display
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Paper 2: Efficient Biased Sampling for 
Approximate Clustering and Outlier Detection in 
Large Data Sets  
(G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. 2003)

� Information loss measure:
� Number of missed clusters

� Sampling rate changes:
� Sampling rate changes with data density in 

M-D space
� If transition of density in M-D space is 

continuous, transition of sampling rate is 
continuous.
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Paper 3: Dynamic Sample Selection for 
Approximate Query Processing
(B. Babcock, S. Chaudhuri, and G. Das. 2003)

� Motivation: 
An appropriately biased sample provides good 
accuracy for a particular set of queries but not for 
the others.

� Key ideas: 
� Pre-process the dataset to build and store a set of 

biased samples
� Construct an appropriately biased sample from 

them for a give query
� Gain: processing speed and accuracy  
� Cost: pre-processing and disk space
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Paper 3: Dynamic Sample Selection for 
Approximate Query Processing
(B. Babcock, S. Chaudhuri, and G. Das. 2003)

Proposed technique: 
Small group sampling for aggregation queries 
with group-bys.

� Pre-process: Build a small group table for 
each eligible column, and an overall sample 
table

� Query: Decompose a query to the overall 
sample table and one or more small group 
tables, and compose the final answer from 
these answers.
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Paper 3: Dynamic Sample Selection for 
Approximate Query Processing
(B. Babcock, S. Chaudhuri, and G. Das. 2003)

� Information loss measure:
� Group loss 
� Average squared relative error of the estimator

� Sampling rate is different for overall sample 
table and small groups: 
� Sampling rate of overall sample table is decided 

by input parameters
� Sampling rate of small groups is 100%.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

� Goal: summarize the relationships between 
random sampling and visualization.

� Why random sampling benefits visualization? 
� Fasten interactions
� Reduce clutter

� Why random sampling is acceptable in 
visualization?
� Gestalt visual processing often depends on 

approximate rather than exact properties of data.
� A dataset itself is often a sample from the real 

world.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

� When random sampling can be applied in 
visualization?
� Visualization based on aggregate or summary 

statistics can use sampled data to give 
approximations

� Visualization containing points or lines that could 
saturate the display can use sampled data to 
avoid saturation and reveal features and 
relationships.

� Sampling can be used to reduce the data set to a 
size that allows detailed visualization such as 
thumbnails of individual items.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

� Information loss:
� Measure - how the visualization obtained from the 

sample is distinguishable from that obtained from 
the full data set.

� Users should be aware of the information loss –
use error bars, blurred edges, and ragged displays

� Sampling rate changes: 
� Smooth transitions between different resolutions 

are beneficial
� Example: when sampling rate increases, keep the 

data points in the previous view on the screen.
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Paper 4: By Chance - Enhancing Interaction with 
Large Data Sets through Statistical Sampling
(A. Dix and G. Ellis. 2002)

Example - Astral Telescope Visualizer
� Users can interactively change the zoom 

value of a 2D scatterplot display. 
� The sampling rate increases automatically 

with the increase of the square of the zoom 
value.

� Extra points are sampled and previously 
sampled data points in the zoomed area are 
remained after a zoom in operation.

� It permits smooth transition between 
sampling rates.
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Distinct Measures of 
Information Loss

� Standard error (sqare root of the 
variance) of the unbiased estimator

� Cluster loss
� Group loss 
� Average squared relative error
� How the visualization obtained from the 

sample is distinguishable from that 
obtained from the full data set.
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A Scenario: Small Change in 
Sampling Rate Causes Significant 
Information Loss

Page-level Bernoulli sampling with large pages
� Bernoulli sampling cause randomness in 

sample size
� Page-level Bernoulli sampling magnifies this 

fluctuations by a factor equal to the number 
of rows per page
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MRV Example: Biased-Sampling 
Based Hierarchical Displays

56

Biased-Sampling Based 
Hierarchical Displays
� Motivation:

� Large datasets clutter the screen in visualization
� Target: 

� Reduce clutter using random sampling 
� Allow users to exam details within context

� Key ideas:
� Pre-construct a group of samples that reflect 

patterns of the dataset 
� Dynamically construct a sample using pre-

constructed samples according to users’ focus of 
interest and display it
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Biased-Sampling Based 
Hierarchical Displays
� Approach:

� Construct a hierarchical cluster tree upon a 
dataset according to the similarity among the 
data items

� Each node of the tree carries a sample
� Provide users an interface to select focus of 

interests and preferred levels of detail from the 
tree

� Dynamically construct a sample from the 
samples in the nodes according to users’
selection and display it
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Biased-Sampling Based 
Hierarchical Displays

� Sample of a node:
� Contains data items belongs to the 

cluster 
� Biased to clusters or outliers
� Do not contain data items in samples of 

its ascendant nodes
� Dynamic sample:

� The sum of samples of selected nodes 
and their ascendant nodes
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(a)-(d): The BSBH parallel coordinates displays of the AAUP dataset 
(14 dimensions, 1161 data items) with increasing LODs.
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(a)-(d): The BSBH scatterplot matricies displays of the Cars 
dataset (7 dimensions, 392 data items) with increasing LODs.
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(a)-(d): The BSBH dimensional stacking displays of the Cars 
dataset with increasing LODs.
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(a) and (b): The Hierarchical Parallel Coordinates displays of the Cars dataset with two 
adjacent LODs. There is a visual jitter between (a) and (b). For example, the cluster in 
the top left of (a) disappears in (b). (c) and (d): The counterpart of (a) and (b) in the 
BSBH parallel Coordinates displays. The display changes smoothly from (c) to (d).
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(a): A focus-in-context view of the AAUP dataset in the Hierarchical Parallel
Coordinates display. There is a jump of LOD between the focus and context. 
(b): The counter part of (a) in the BSBH parallel coordinates display. The LOD 
changes smoothly from the focus to the context.


