

Class 10

1

Challenges of High Dimensional Datasets

High dimensional datasets are common: digital libraries, bioinformatics, simulations, process monitoring, and surveys

Example:

- Ticdata2000 dataset: 86 dimensions
- OHSUMED dataset: 215 dimensions
- SkyServer dataset: 361 dimensions

Challenges of visualizing high dimensional datasets:

- Clutter on the screen
- Difficult user navigation in the data space

215*215 = 46,225 plots

215 axes

3

Approach 1: Visual Hierarchical Dimension Reduction (VHDR)

J. Yang, M.O. Ward, E.A. undensteiner and S. Huang

Presented at VisSym'03

Motivation - Dimension Reduction

Idea:

- Project a high-dimensional dataset to a lowerdimensional subspace
- Visualize data items in the lower-dimensional subspace

Existing Approaches:

- Principal Component Analysis
- Multidimensional Scaling
- Kohonen's Self Organizing Map

Problems:

- Information loss
- No intuitive meaning of generated dimensions
- Little user interaction allowed.

)

Key Ideas of VHDR

- Use dimension hierarchy to convey dimension relationships
- Allow users to learn the dimension hierarchy
- Allow users to select dimensions or dimension clusters to form subspaces of interests

7

VHDR Framework

- Step 1: build dimension hierarchy
- Step 2: navigate and manipulate dimension hierarchy
- Step 3: interactively select clusters from dimension hierarchy to form lowerdimensional subspaces

Build Dimension Hierarchy

- Automatic dimension clustering
 - Cluster dimensions according to dissimilarities* among them
 - *Dissimilarity measure of how dimensions are dissimilar to each other
- Manual hierarchy modification
- Discussion:
 - How to calculate dissimilarity between two dimensions?
- Ref
 - ANKERST, M., BERCHTOLD, S., AND KEIM, D. A. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. *InfoVis'98*

Dimension Cluster Representation

Representative Dimension - a dimension that represents a cluster of dimensions

Approaches to assigning or generating a representative dimension:

- 1. Select a dimension from the cluster
- 2. Average all dimensions in the cluster
- Use principal component analysis to generate weighted sum of dimensions within a cluster

Generality

VHDR is a general framework that can be extended to multiple display techniques

We have applied VHDR to:

- Parallel Coordinates
- Star Glyphs
- Scatterplot Matrices
- Dimensional Stacking
- Hierarchical Parallel Coordinates
- Hierarchical Star Glyphs
- Hierarchical Scatterplot Matrices
- Hierarchical Dimensional Stacking

21

Case studies

- AAUP Dataset: 14 dimensions, 1,131 data items
- Census-Income-Part Dataset: 42 dimensions, 20,000 data items
- Ticdata2000 dataset: 86 dimensions, 5,822 data items
- OHSUMED dataset: 215 dimensions, 298 data items

າາ

Other Clustering Approach

Visualization of Large-Scale Customer
Satisfaction Surveys Using a Parallel
Coordinate Tree
D. Brodbeck et. al. Infovis 2003

23

Approach 2: Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration of High Dimensional Datasets

Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner

Presented at InfoVis'03

25

Overview of Our DM Approach

- General: includes dimension ordering, dimension spacing and dimension filtering
- Interactive: allows user interactions throughout the whole process
- Hierarchical: groups dimensions into a hierarchy and builds most algorithms and user interactions upon this hierarchy

Dimension Hierarchies

- Dimension hierarchy: similar dimensions form cluster, clusters are grouped into hierarchy
- Dimension hierarchy generation: automatic dimension clustering, manual hierarchy modification

A dimension hierarchy of a 5-dimensional dataset

Dimension Ordering (3)

Order dimensions according to different purposes:

- Similarity-oriented ordering: put similar dimensions close to each other
- Importance-oriented ordering: map more important dimensions to more significant positions or attributes. The order of importance can be decided by Principal Component Analysis (PCA).

Dimension Ordering (4)

Challenges for ordering high dimensional datasets:

- Similarity-oriented ordering is NP-Complete
- It is hard to decide the order of the importance of a large number of dimensions using PCA

Our solution: reduce the complexity of the ordering problem using the dimension hierarchy

- Order each dimension cluster
- the order of the dimensions is decided in a depthfirst traversal of the dimension hierarchy

Dimension Spacing (1)

Idea of dimension spacing:

 Convey dimension relationship information by varying the spacing between adjacent axes

Dimension Filtering (1)

Idea of dimension filtering:

- Similar dimensions can be omitted;
- Unimportant dimensions can be omitted.

Conclusion

Main contributions of our approach:

- Improves the manageability of dimensions in high dimensional data sets and reduces the complexity of the ordering, spacing and filtering tasks;
- Allows flexible user interactions for dimension ordering, spacing and filtering with dimension hierarchies.

4∩

Approach 3: Value and Relation (VaR) Display

Jing Yang, Anilkumar Patro, Shiping Huang, Nishant Mehta, Matthew O. Ward and Elke A. Rundensteiner

Presented at InfoVis'04

41

Motivation

Challenges:

- Can high dimensional datasets be visualized without dimension reduction to avoid information loss?
- Can dimension relationships be visualized in the same display as data values?

Challenge - Visualization without Dimension Reduction

Visualize SkyServer dataset (361 dimensions) using existing techniques:

- Parallel Coordinates: 361 axes
- Scatterplot Matrix: 130,321 scatterplots
- <u>Pixel-Oriented techniques without overlaps</u>: 50,000 data items: 18,050,000 pixels (23 times of number of pixels in a 1024*768 screen)

Hint:

Use Pixel-Oriented techniques and allow overlaps

43

Challenge - Dimension Relationship Visualization

- Sorting dimensions in a 1D or 2D grid [Ankerst 98]
 - Not effective beyond hundreds of dimensions
- Spacing between dimensions [Yang 2003]
 - Only relationships of adjacent dimensions are revealed

Pixel-Oriented: Sort 50 dimensions in a 2D grid [Ankerst 98]

Challenge - Dimension Relationship Visualization (con.)

Recall data item relationship visualization:

MDS: SPIRE Galaxies [Wise:95]

Hint:

Using MDS to layout dimensions

SPIRE Galaxies: Map data items to a 2D display using MDS [Wise: 95]

Value and Relation Display

Features:

- Explicitly conveys data values without dimension reduction
- Explicitly conveys dimension relationships
- Provides a rich set of interaction tools

SkyServer dataset: 361 dimensions, 50,000 data items

Overlap Detection and Reduction

- Extent Scaling
- Dynamic Masking
- Zooming and Panning
- Showing Names
- Layer Reordering
- Manual Relocation
- Automatic Shifting

SkyServer Dataset

Selection

Goal:

Select dimensions for further interaction or visualization

Selection tools in VaR display:

- Manual selection flexibility
- Automatic selection efficiency
 - Select related dimensions
 - Select unrelated dimensions

Discussion

Is 2D MDS the only approach to layout dimensions?

■ 3D MDS, SOM, ...

Is pixel-oriented technique the only choice for generating dimension glyphs?

Histogram, Scatterplot, ...

Is correlation the most informative relationship between dimensions?

User defined distances

55

Possible Applications of VaR Display

- Interactively exploring high dimensional data
 - Revealing data item relationships
 - Revealing dimension relationships
- Guiding automatic data analysis
 - Assessing results
 - Manually tuning parameters
- Human-driven dimension reduction
 - Constructing subspaces using selection tools
 - Visualizing subspaces in VaR or other displays

Case studies

- AAUP Dataset: 14 dimensions, 1,131 data items
- Census-Income-Part Dataset: 42 dimensions, 20,000 data items
- OHSUMED dataset: 215 dimensions, 298 data items
- SkyServer dataset: 361 dimensions, 50,000 data items

57

Example

Census-Income-Part dataset: (bottom left) a group of dimensions recording people's migration and moving status in the last year.

VHDR vs. VaR

Similarity:

- Both scale to high-dimensional datasets
- Both visually reveal dimension relationships

Differences:

- VaR visualizes dimension relationships in the same display as data values
- VHDR visualize dimension relationships and data values in separated displays