Deep Learning for Image Instance Segmentation
-——-YOLACT & YOLACT++

Jianping Fan
Dept of Computer Science
UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

github repo : https://github.com/dbolya/yolact

Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee, YOLACT: Real-time Instance Segmentation, arXiv:1904.02689, IEEE ICCV 2019

https://arxiv.org/search/cs?searchtype=author&query=Bolya%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Zhou%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Xiao%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C+Y+J
https://arxiv.org/abs/1904.02689
https://github.com/dbolya/yolact

Definition of Image Instance Segmentation

Object Detection Semantic Segmentation Instance Segmentation

/ / ?

Instance segmentation = object detection + semantic segmentation?

Slide fromm Mask R—-CNN Tutorial K. He. ICCV 2017

Scene understanding

person, sheep, dog

Image classification

Semantic segmentation Instance segmentation

Instance-level Object Understanding Today

He, Gkioxari, Dollar, Girshick. Mask R-CNN. InICCV 2017

Two-Stage Approaches for Image Instance Segmentation

The two stage detector like Mask-RCNN is a representative two-stage
Instance segmentation approach that:

1. First generates candidate region-of-interests (ROIS)
2. Then classifies and segments those ROIs in the second stage.

The next few work followed on improving the FPN features or addressing
the incompatibility between a mask’s confidence score and its
localization accuracy.

¢-Stage Models

Stage 2
Stage 1 Calculating Segmentation

Object Proposal Mask, Class Confidence and
Bounding Box offset

Fig. Working of Mask R-CNN

YOLACT Architecture

Mask Coeffic t
- '\\ etectiol r etection
+ 4
!]} [Ll
ra ' ||
Perso Racket

[1
| |
’ Cca

|

I J

/ | L Protonet

/ =
. ™= 000000 e i
J

Performing mask segmentation of objects is much harder than
obtaining bounding box of objects in object detection

Overall Model Architecture

No explicit loss on the prototypes

- -
./ %

"\ ‘\ \\

" ,\~ 1 ;

Unbounded, large overpowering activations

Protonet RelU for interpretability

Overall Model Architecture

Prediction Head
Networks

Protonet

4

4
0

Person

Detection 1 petection 2

Overall Model Architecture

Detection 1 petection 2

+! +
AT
| \

Racket

Prediction Head . WxH
Networks

Person

Protonet Binary Cross Entropy
Limask = BCE(M:Mgt)

Overall Model Architecture

A
Class | [RENES
ol | Vs

Detection 1 petection 2

e

Person Rachat

Prediction Head
Networks Mask || Xka

Bounding
Box

Protonet

_ Lmask
Lmask areag,

To preserve small

’ objects

Training : With GT bounding box
Test : With predicted bounding box

Overall Model Architecture

Only for training : Train underlying layers with Semantic Segmentation
Increase feature richness, No inference time penalty
1%1 conv

oo | | € channels
+ sigmoid

The drawback of the two-stage architectures (such as Mask
RCNN) are:

1. Two stage detectors have high accuracy but low performance
2. Dependent on Feature Localisation to generate/ produce

masks of the objects

To address these issues, YOLACT uses a single stage detector
extension which performs instance segmentation by breaking
Into subtasks , they forgo explicitly the localization step.

The network learns to localize masks on its own where visually ,
spatially and semantically similar instances appear in the
prototypes .

The number of prototype masks in YOLACT is independent
of the number of categories, this leads to distributed
representation in the prototype space , this behavior leads to
following advantages:

. Some prototype spatially partition the image

. Some localize the instances

. Some detect instance contours

. Some encode position-sensitive directional maps

. Some do the combo of the above operations

O WD

YOLACT adds a mask branch to the one-stage detectors without an
explicit localization step, where the complex task of instance
segmentation is divided into two simpler, parallel tasks that can be
assembled to form the final masks.

1. First branch obtains a set of image-sized “prototype masks” that do
not depend on any one instance by using an FCN method.

2. Second branch adds an an extra head to the object detection
branch to predict a vector of “mask coefficients” for each anchor
that encode an instance’s representation in the prototype space.

3. Then by linearly combining the First branch and Second branch we
generate the masks of instances which have be passed from NMS

Prototypes

The concept of using prototypes have been used extensively
In the vision community , they are mainly used for obtaining
the features whereas the current author has used to assemble
masks for instance segmentation which are specific to each

iImage then having global prototypes for entire dataset

Protonet: Network for Proto-type Generation

Fig. 3: Protonet Architecture The labels denote feature size and
channels for an image size of 550 x 550. Arrows indicate 3 X 3
conv layers, except for the final conv which is 1 X 1. The increase

in size 1s an upsample followed by a conv. Inspired by the mask
branch in [2].

17

The prototype generation branch (protonet) predicts a set of k
prototype masks for the entire image according to the following
design choices:

1. Taking protonet from deeper backbone features which produces
robust and high quality masks so from FPN -P3 the last layer
having k channels is considered, then it is up-sampled to one
fourth the dimensions of the input image to increase performance
on small objects.

2. Individual prototype losses are not considered explicitly but
Instead the final mask loss after assembly.

3. Relu or non -linearity operation is performed on the protonet’s
output to keep it unbound as it allows the network to produce

large, overpowering activation's on prototypes it is very confident
about for the background

Prototype Generation

Mask Assembly

Mask Coefficients
#

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Step 1 : Pratotype Generation

- Also known as Pronet |)=z,)

- Itis a Fully Convolutional Network

- Last layer produces k prototypes

- No explicit loss |

- We leave the prototypes output being unbounded

| |138x 138 | | 138138

=256 ' >k

»

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Step 1 : Mask Coefficients (In Parallel)

7

- Produces c + 4 + k coefficients

-
X“

Class

‘ Box

v P

‘ V
' 7 4

" &

' £

. Mask |

- Use tanh on k mask coefficients .
p B 4
Y ——
y = tank
RetinaNet [] Ours
-2 -1 1 2
PR e as ade/ohaa'ehweeasstind 1 ~f

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Prediction Head

Class

M = o(PCT)

Class

Box

Box

Mask;

RetinaNet [25] Ours

Fig. 4: Head Architecture We use a shallower prediction head
than RetinaNet [25] and add a mask coefficient branch. This is for
¢ classes, a anchors for feature layer F;, and k prototypes. See
Figure 3 for a key.

Mask Coefficients

In anchor based object detectors there are two branches in their
prediction head.

1. To predict c class confidences

2. The other to predict 4 bounding box regressors.

To obtain the mask coefficient prediction, a third branch is simply
added In parallel that predicts k mask coefficients, one
corresponding to each prototype, thus instead of producing 4 + ¢
coefficients per anchor, we produce 4 + c + k.

Mask Assembly

The mask assembly steps produce the instance masks are given below:

1. Combining the prototype branch and mask coefficient branch by
using a linear combination of the former with the latter as
coefficients.

2. Applying a sigmoid nonlinearity to produce the final masks.

3. The combination is done using using a single matrix multiplication
and sigmoid: M = o(PCT)

where P is an hxw xk matrix of prototype masks and C is a n x k matrix of mask coefficients for n instances
surviving NMS and score thresholding.

Step ¢ - Mask Assembly

M => Mask i ;
- P =>Prototype (h x w x k) PO f
- C=> Mask Coefficients (n x k)
- Sigmoid J

Fig: Sigmoid Function

M = o(PCT)

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Protonet Behavior

Fig. 5: Prototype Behavior The activations of the same six
prototypes (y axis) across different images (x axis). Prototypes 1-3
respond to objects to one side of a soft, implicit boundary (marked
with a dotted line). Prototype 4 activates on the bottom-left of
objects (for instance, the bottom left of the umbrellas in image d);
prototype 5 activates on the background and on the edges between
objects; and prototype 6 segments what the network perceives to
be the ground in the image. These last 3 patterns are most clear in
1images d-f.

26

Protonet Behavior

Prototype Behavior The activations of the same six prototypes across
different images. Prototypes 1, 4, and 5 are partition maps with
boundaries clearly defined in image a, prototype 2 is a bottom-left
directional map, prototype 3 segments out the background and provides
Instance contours, and prototype 6 segments out the ground.

OTHER IMPROVEMENTS

* Fast NMS

* Semantic Segmentation Loss

1. generating a set of prototypes masks

2. predicting the sub instance mask co efficient

Fast NMS
I R R R R

X12

X23 X24 X25
X34 X35
X45

v B~ W N -

29

Standard NMS : In most object detectors NMS Is used to suppress
duplicate detections. The NMS operation is performed sequentially,
that is for each of the c classes in the dataset, sort the detected
boxes descending by confidence, and then for each detection remove
all those with lower confidence than it that have an loU overlap
greater than some threshold. Though its is fast it Is a large barrier
when it comes to obtained 30 fps

Fast NMS: To remove the sequential nature of the traditional NMS
the author introduces the Fast NMS where every instance can be
decided to be kept or discarded in parallel , to perform this we use
already -removed detections to suppress other detections, which is
not possible in traditional NMS.

Steps of Fast NMS

The following steps are followed

1.

Compute a ¢ X n x n pairwise loU matrix X for the top n
detections

Batched sorting in descending order by score for each of c
classes.

Computation of loU which can be easily vectorized. Then, find
which detections to remove by checking if there are any higher-
scoring detections with a corresponding loU greater than some
threshold t.

Implementation of Fast NMS :

1. First setting the lower triangle and diagonal of X to O, wich can be
performed in one batched triu call.

2. Taking the column-wise max,to compute a matrix K of maximum
loU values for each detection.

ﬁFL.J: — lll.{-.’l_}{{;'ir},--,-_hj jl 1"-,-"I1'!L Jr

3. Thresholding this matrix with t (K < t) will indicate which detections
to keep for each class.

NMS (Non Maximum Suppression]

e Most Object Detectors uses traditional NMS or Sequential NMS
Makes sure each object is detected only once

Sort the detected boxes in descending order by Confidence

Discard values less than a certain threshold

Discard the values greater than threshold loU values

O O O O

e Fast-NMS

o A new version of NMS
o Decides to either discard or keep parallely
o Allows already removed detections to suppress other detections

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Fast-NMS

e First we compute a pairwise loU matrix (X) using,
o c*n*n
o c=classes
o n=top n detections sorted in descending order

e Second, remove detections for

o Confidence values less than a threshold ‘t’
o loU values greater than a threshold 't

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Fast-NMS contd..

e Second step implemented using:
o Setting lower triangle and diagonal of X to be 0.

Xpis =0 VS>> 3

m Where
e X =pairwise loU matrix
o Taking the column-wise max
m Where K= Matrix of maximum loU values

Kyj = max(Xgij) Vk,j

e Detections to keep given by threshold matrix t (K<t)

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

NMS: Non-Maximum Suppression

mustard(0 82)
mustard(0 94)y mustard(0 93)
mustard(0 9%)

: orangeJuice(0,91)
Buttbutter(0 92) - .
ounenL U)w ?

i
] \ butter(0 89}
Y t:

..............

St s |
¥ scoem < Seaeh) 0 2)
-

Sort scores in descending error.

The boxes with an IoU > threshold with the boxes of high scores will be erased.

We keep the box if IoU < threshold

Ba) oY seie B2 sod bl 03 b1 wMe a2 1t ate
‘,w ’ 13 E.-_ .’d-'qcy.‘. '..‘.-..-5.
g b e 19 aekras Bowivomary g B A M
11

NS aigontsrs wut

Soores B0 200 S

TSN DO

—-_——— - -

Segmentation Loss

 Since each pixel can be assighed to more than one class we
use sigmoid and ¢ channels

* This loss is given a weight of 1 and results in a +0.4 mAP
boost.

Loss Function
Three losses are used to train the model:

1. classification loss Lcls
2. box regression loss L box

3. mask loss L mask

To compute mask loss, they simply take the pixel-wise binary cross
entropy between assembled masks M and the ground truth masks

M gt : L mask = BCE(M, M gt).

L 0SSes

Three types of losses:

N

o i - - exp(c?)
Classification Loss Leons(2,0) == D oilog(@) ~) log(@) where &= to

1€ Pos i€Neg

Confidence Loss

- Box Regression Loss Ly = { x| il > e

—x° if|x| L a

|a|
N
Live(x. 1, g) = E E .rfjsnlunlhu & — ai")
i€ Pos me{cx,cy.w. h}
95" = (g5= — dg™)/dy G5Y = (a5 — d5¥)/db
9
~ w S v b
(IJ IOQ’ ((Iu) -(Ij IUL’ ((Ih

Localization Loss

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

L 0sses (Continue...)

Mask Loss - Pixel-wise Binary Cross Entropy

Mgt: Lmask = BCE(M, Mgt).

Slide credit to Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

YOLACT++

* Fast Mask Re-Scoring Network

e Deformable Convolution with Intervals

* Optimized Prediction Head

Fast Mask Re-Scoring Network

1x1
XC

5%5 5X5
18x18 %128 XC
35x35 x3p o4
69%69 x16

x8

138x138
%1

Fig. 6: Fast Mask Re-scoring Network Architecture Our mask
scoring branch consists of 6 conv layers with ReLU non-linearity
and 1 global pooling layer. Since there is no feature concatenation
nor any fc layers, the speed overhead is only ~1 ms.

42

Optimized Prediction Head

* keeping the scales unchanged while increasing the anchor aspect
ratios from [1,1/2,2] to [1,1/2,2,1/3,3]

* keeping the aspect ratios unchanged while increasing the scales per
FPN level by threefold ([1x, 23x, 23x]).

RESULTS

Method Backbone FPS Time AP APsq AP75 APS APM APL
PA-Net [14] R-50-FPN 4.7 2128 36.6 58.0 39.3 16.3 38.1 53.1
RetinaMask [50] R-101-FPN 6.0 166.7 3477 554 36.9 14.3 36.7 50.5
FCIS [3] R-101-C5 6.6 151.5 29.5 51.5 30.2 8.0 31.0 49.7
Mask R-CNN [2] R-101-FPN 8.6 116.3 35.7 58.0 37.8 15.5 38.1 524
MS R-CNN [15] R-101-FPN 8.6 116.3 38.3 58.8 41.5 17.8 40.4 54.4
YOLACT-550 R-101-FPN 335 298 29.8 485 31.2 9.9 31.3 47.7
YOLACT-400 R-101-FPN 45.3 22.1 249 420 254 5.0 25.3 45.0
YOLACT-550 R-50-FPN 45.0 22.2 28.2 46.6 29.2 9.2 203 44 8
YOLACT-550 D-53-FPN 40.7 24.6 28.7 46.8 30.0 9.5 29.6 45.5
YOLACT-700 R-101-FPN 234 427 31.2 50.6 32.8 12.1 33.3 47.1
YOLACT-550++ R-50-FPN 33.5 29.9 34.1 53.3 36.2 11.7 36.1 53.6
YOLACT-550++ R-101-FPN 273 36.7 346 538 36.9 11.9 36.8 55.1

44

Yolact and Yolact++

zebra: 0.81

zebra: 0.75 YOLACT YOL_ACT++
{ "(/
YOLACT \Y
Wz "
5 fruck: 0.49
A - -
zebra: 1.00 suitcase: 0.99 e . suitcase: 1.00
zebra: 1.Qo
{(7)
YOLACT++ (’

J '))' z

(b) ()

Fig. 10: YOLACT vs. YOLACT++ (a) shows the rank of each detection in the image. As YOLACT++ has a fast mask re-scoring
branch, its detections with better masks are ranked higher than those of YOLACT (see the leftmost giraffe). Since YOLACT++ is
equipped with deformable convolutions in the backbone and has a better anchor design, the box recall, mask quality, and classification
confidence are all increased. Specifically, (b) shows that both the box prediction and instance segmentation mask of the left zebra is
more precise. (¢) shows increased detection recall and improved class confidence scores.

45

PP T

0

D Erson: 1.

P e

"-I"'
T

s " St

zebra: 0.81
zebra: 0.75

4
\ ’;
7
Z

8
’
.

se it

-t

WO s

The advantages of YOLACT include:

1. Lightweight assembly process due to parallel structure

2. Marginal amount of computational overhead to one-stage
detectors like ResNetl101

3. Masks quality are high

4. Generic concept of adding of generating prototypes and

mask coefficients

Why is YOLACT faster

Single Stage Model

Prototype Masks and Mask Coefficients are calculated parallely and independently.

Other methods have an explicit localization step (Ex : ROIAlign in Mask R-CNN)

YOLACT learns about localizing instances by itself and bypasses the explicit localization step.

