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Definition of Image Instance Segmentation

Object Detection Semantic Segmentation Instance Segmentation

/ / ?

Instance segmentation = object detection + semantic segmentation?

Slide fromm Mask R—-CNN Tutorial K. He. ICCV 2017



Scene understanding

person, sheep, dog

Image classification

Semantic segmentation Instance segmentation



Instance-level Object Understanding Today

He, Gkioxari, Dollar, Girshick. Mask R-CNN. InICCV 2017




Problems of ResNet and Dilated Convolution

ResNet




Problems of ResNet and Dilated Convolution

Dilated convolutions

ResNet:

It suffers from downscaling of the
feature maps which is not good for
semantic segmentation.

Dilated (Atrous) Convolution:

It can help to keep the resolution of
output feature maps larger, atrous
filters are computationally
expensive to train and quickly
reach memory limits even on
modern GPUs.


https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8

Problems of ResNet and Dilated Convolution

Convolution Dilated Convolution




Problems of ResNet and Dilated Convolution

Atrous Convolution

rate=1 rate = 2 rate =3

. Small field of view cause accurate localization

¢ Large field of view cause to context assimilation



Dilated convolutions

* “Multi-Scale Context Aggregation by Dilated Convolutions”, Fisher Yu, Vladlen Koltun, 23 Nov, 2015
* a.k.a stroud convolution, convolution with holes
* Enlarge the size of receptive field without losing resolution

Q Output

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

The figure is from “WaveNet: A Generative Model for Raw Audio”



Problems of ResNet and Dilated Convolution

DeeplLab v3 Architecture
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RefineNet
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RefineNet
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Overall Architecture of RefineNet

RefineNet uses the ResNet as the backbone. Along the ResNet,

different resolutions of feature maps go through Residual Conv Unit

(RCU). Pre-Activation ResNet is used.
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Overall Architecture of RefineNet

RefineNet uses the ResNet as the backbone. Along the ResNet,

different resolutions of feature maps go through Residual Conv Unit

(RCU). Pre-Activation ResNet is used.

RCU: Residual block is used but with batch normalization removed.
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Overall Architecture of RefineNet

RefineNet uses the ResNet as the backbone. Along the ResNet,

different resolutions of feature maps go through Residual Conv Unit

(RCU). Pre-Activation ResNet is used.

RCU: Residual block is used but with batch normalization removed.

Fusion: Then multi-resolution fusion is used to merge the feature
maps using element-wise summation.
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Overall Architecture of RefineNet

RefineNet uses the ResNet as the backbone. Along the ResNet,

different resolutions of feature maps go through Residual Conv Unit

(RCU). Pre-Activation ResNet is used.

RCU: Residual block is used but with batch normalization removed.

Fusion: Then multi-resolution fusion is used to merge the feature
maps using element-wise summation.

Chained Residual Pooling: The output feature maps of all pooling
blocks are fused together with the input feature map through
summation of residual connections. It aims to capture background
context from a large image region.
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Overall Architecture of RefineNet

Output Conv: Another RCU is placed to employ non-linearity
operations on the multi-path fused feature maps to generate features
for further processing or for final prediction.
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Overall Architecture of RefineNet
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Overall Architecture of RefineNet

(b) (c)

(b)-(d) general outline of original RCU, CRP and fusion blocks



Overall Architecture of RefineNet

CONV
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(g)

(e)-(g) light-weight RCU, CRP and fusion blocks. In the interests of brevity,
we only visualize 2 convolutional layers for the CRP blocks (instead of 4 used
in the original architecture).



Dilated convolutions

* For example, the feature maps of ResNet are
downsampled 5 times, and 4 times in the 5 are done by
convolutions with stride of 2 (only the first one is by
pooling with stride of 2)

ResNet

1/32 1/32




Dilated convolutions

* By using dilated convolutions instead of vanilla
convolutions, the resolution after the first pooling can be
kept as the same to the end

Dilated convolutions

—




Dilated convolutions

Dilated convolutions

But, it is still 1/8...




RefineNet

* “RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic
Segmentation”, Guosheng Lin, Anton Milan, Chunhua Shen, lan Reid, 20 Nov. 2016
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RefineNet

Each intermediate feature map is refined through “RetineNet module”

RefineNet
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Different RefineNet Variants

Single RefineNet

Prediction

(a)

Single RefineNet model: It takes all four inputs from the four blocks
of ResNet and fuses all-resolution feature maps in a single process.
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Different RefineNet Variants

2-cascaded RefineNet

> | F1

— . | RefineNet

/16 pAyy ——>

1/32 %

Prediction
(b)
2-Cascaded RefineNet: It employs only two RefineNet modules
iInstead of four. The bottom one, RefineNet-2, has two inputs

from ResNet blocks 3 and 4, and the other one has three inputs, two

coming from the remaining ResNet blocks and one from RefineNet-2.
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Different RefineNet Variants

4-cascaded 2-scale RefineNet

Prediction
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4-Cascaded 2-Scale RefineNet has the best results
due to the larger capacity of the network, but it also
results in longer training times.

o3| gy

4-Cascaded 2-Scale RefineNet:
2 scales of the image as input and
respectively 2 ResNets to
generate feature maps. The input
Image Is scaled to a factor of 1.2
and 0.6 and fed into 2
Independent ResNets.
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(a) Test Image (b) Ground Truth (¢) Prediction
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(a) Test Image (b) Ground Truth (¢) Prediction
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