Deep Learning for Semantic Image Segmentation -----Deeplabs

Jianping Fan Dept of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html

Deep Learning for Semantic Image Segmentation

• Deeplab v1, v2, v3

• U-nets

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "<u>Semantic image segmentation with deep convolutional</u> <u>nets and fully connected CRFs</u>," in ICLR, 2015.

Deeplab series

Topics

Introduction

- Semantic Segmentation
- DCNN for segmentation
- 'Holes' algorithm
- Boundary recovery
 - Probabilistic Graphical Models
 - Fully Connected CRFs

Slides credit to Topaz Gilad, 2016 ⁴

What is semantic image segmentation?

- Partitioning an image into regions of meaningful objects.
- Assign an object category label.

Jamie Shotton and Pushmeet Kohli, <u>Semantic Image Segmentation</u>, Computer Vision, pp 713-716, Springer, 2016. Slides credit to Topaz Gilad, 2016

DCNN and image segmentation

- What happens in each standard DCNN layer?
 - StridingPooling

DCNN and image segmentation

Pooling advantages:

- ✓ Invariance to small translations of the input.
- ✓ Helps avoid overfitting.
- ✓ Computational efficiency.

Striding advantages:

- ✓ Fewer applications of the filter.
- ✓ Smaller output size.

DCNN and image segmentation

What are the disadvantages for semantic segmentation?

- **x Down-sampling** causes loss of information.
- **x** The input invariance harms the pixel-perfect accuracy.

DeepLab address those issues by:

- Atrous convolution ('Holes' algorithm).
- **CRFs** (Conditional Random Fields).

Addressing the reduced resolution problem

Possible solution:

'<u>deconvolutional</u>' layers (backwards convolution).

- **x** Additional memory and computational time.
- **x** Learning additional parameters.

Suggested solution:

Atrous ('Holes') convolution

- Remove the down-sampling from the last pooling layers.
- Up-sample the original filter by a factor of the strides:

Atrous convolution for 1-D signal:

$$y[i] = \sum_{k=1}^{K} x[i + r \cdot k]w[k]$$

$$x[i] \text{ 1-D input signal}$$

$$w[k] \text{ filter of length } K$$

$$\text{Introduce zeros}$$

$$\text{between filter values}$$

r rate parameter corresponds to the stride with which we sample the input signal.

y[i] output of atrous convolution.

• Note: standard convolution is a special case for *rate r*=1.

Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 10 <u>CRFs</u>." *arXiv preprint arXiv:1606.00915* (2016).

(b) Dense feature extraction

Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 11 CRFs." arXiv preprint arXiv:1606.00915 (2016).

Filters field-of-view

- Small field-of-view → accurate localization
- Large field-of-view → context assimilation
- 'Holes': Introduce zeros between filter values.
- Effective filter size increases (enlarge the field-of-view of filter):

 $k \times k$ filter to $k_e = k + (k-1)(r-1)$

However, we take into account only the non-zero filter values:

✓ Number of filter parameters is the same.

\checkmark Number of operations per position is the same.

Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 12 <u>CRFs</u>." *arXiv preprint arXiv:1606.00915* (2016).

Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 13 CRFs." arXiv preprint arXiv:1606.00915 (2016).

Boundary recovery

DCNN trade-off:

Classification accuracy \leftrightarrow Localization accuracy

- DCNN score maps successfully predict classification and rough position.
- **x** Less effective for exact outline.

Boundary recovery

- Possible solution: <u>super-pixel</u> representation.
- Suggested Solution: fully connected CRFs.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "<u>Semantic image segmentation with deep convolutional nets and fully</u> <u>connected CRFs</u>," in ICLR, 2015. <u>https://www.researchgate.net/figure/225069465_fig1_Fig-1-Images-segmented-using-SLIC-into-superpixels-of-size-64-256-and-1024-pixels</u>

Slides credit¹ to Topaz Gilad, 2016

Problem statement

- X Random field of input observations (images) of size N.
- $\mathbf{L} = \{l_1, ..., l_M\}$ Set of labels.
- Y Random field of pixel labels.
- *X*_j color vector of pixel j.
- Y_j label assigned to pixel j.

CRFs are usually used to model connections between different images.

Here we use them to **model connection between image pixels**!

Probabilistic Graphical Models

Graphical Model

Factorization - a distribution over many variables represented as a product of local functions, each depends on a smaller subset of variables.

$$p(\mathbf{x},\mathbf{y}) = Z^{-1} \prod_{a \in F} \psi_a \left(x_{N(a)}, y_{N(a)} \right)$$

Probabilistic Graphical Models

G(V, F, E)

Undirected vs. Directed

 $p(y_1, y_2, y_3) = \Psi_1(y_1, y_2)\Psi_1(y_2, y_3)\Psi_1(y_1, y_3)$

Directed

Fully connected CRFs

Definition:

$$P(\mathbf{Y}|\mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{a=1}^{A} \psi_a(\mathbf{Y}_a | \mathbf{X})$$

Z(X) - is an input-dependent normalization factor.

Factorization (energy function):

$$E(\mathbf{y} | \mathbf{X}) = \sum_{i=1}^{N} \psi_i(y_i | \mathbf{X}) + \sum_{i \neq j} \psi_{i,j}(y_i, y_j | \mathbf{X})$$

• y - is the label assignment for pixels.

P. Krahenbuhl and V. Koltun, "Efficient inference in fully connected CRFs with Gaussian edge potentials," in NIPS, 2011.
C. Sutton and A. McCallum, "An introduction to Conditional Random Fields", Foundations and Trends in Machine Learning, vol. 4, No. 4 (2011) 267–373

Potential functions in our case

$$\psi_i(y_i \mid \mathbf{X}) = -\log(p(y_i \mid \mathbf{X}))$$

• $p(y_i|X)$ - is the label assignment probability for pixel *i* computed by DCNN.

$$\psi_{i,j}\left(y_{i}, y_{j} \mid \mathbf{X}\right) = \mathbf{1}_{y_{i} \neq y_{j}} \cdot \left[\theta_{1} \exp\left(-\frac{\left\|s_{i} - s_{j}\right\|^{2}}{2\sigma_{a}^{2}} - \frac{\left\|x_{i} - x_{j}\right\|^{2}}{2\sigma_{b}^{2}}\right) + \theta_{2} \exp\left(-\frac{\left\|s_{i} - s_{j}\right\|^{2}}{2\sigma_{\gamma}^{2}}\right)\right]_{smoothness \ kernel}$$

- s_i position of pixel *i*.
- x_i intensity (color) vector of pixel *i*.
- θ_1 , θ_2 learned parameters (weights).
- $\sigma_a^2, \sigma_b^2, \sigma_\gamma^2$ hyper parameters (what is considered "near" / "similar").

Potential functions in our case

- Bilateral kernel nearby pixels with similar color are likely to be in the same class.
- σ_a^2, σ_b^2 what is considered "near" / "similar").

Potential functions in our case

- $\mathbf{1}_{y_i \neq y_j}$ uniform penalty for nearby pixels with different labels.
 - **x** Insensitive to compatibility between labels!

Boundary recovery

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "<u>Semantic image segmentation with deep convolutional nets and fully</u> 24 <u>connected CRFs</u>," in ICLR, 2015.

DeepLab

• Group:

➢ <u>CCVL</u> (Center for Cognition, Vision, and Learning).

- Basis networks (pre-trained for <u>ImageNet</u>):
 - \succ VGG-16 (Oxford Visual Geometry Group, ILSVRC 2014 1st).
 - \geq <u>ResNet-101</u> (Microsoft Research Asia, ILSVRC 2015 1st).

Code: <u>https://bitbucket.org/deeplab/deeplab-public/</u>

Pyramid Pooling Model

Spatial Pyramid Pooling:

- Feature map: a×a
- Pyramid level: n×n
- Window size: [a/n]
- Stride: $\lfloor a/n \rfloor$

Pyramid Pooling Model

Ablation Study

• Auxiliary Loss

Loss Weight α	Mean IoU(%)	Pixel Acc.(%)
ResNet50 (without AL)	35.82	77.07
ResNet50 (with $\alpha = 0.3$)	37.01	77.87
ResNet50 (with $\alpha = 0.4$)	37.23	78.01
ResNet50 (with $\alpha = 0.6$)	37.09	77.84
ResNet50 (with $\alpha = 0.9$)	36.99	77.87

Ablation Study

• PSPNet:

Method	Mean IoU(%)	Pixel Acc.(%)
ResNet50-Baseline	37.23	78.01
ResNet50+B1+MAX	39.94	79.46
ResNet50+B1+AVE	40.07	79.52
ResNet50+B1236+MAX	40.18	79.45
ResNet50+B1236+AVE	41.07	79.97
ResNet50+B1236+MAX+DR	40.87	79.61
ResNet50+B1236+AVE+DR	41.68	80.04

Slide credit to Kaicheng Wang

Experiment Details

- "Poly" learning rate as DeepLabv2
 - rate = $(1 \frac{iter}{\max_iter})^{power}$, with power=0.9
 - (start_lr end_lr)*rate + end_lr
- Augmentation
 - Mirror
 - Resize between 0.5 2
 - Gaussian blur

Validation on ADE20K

Method	Mean IoU(%)	Pixel Acc.(%)
FCN [26]	29.39	71.32
SegNet [2]	21.64	71.00
DilatedNet [40]	32.31	73.55
CascadeNet [43]	34.90	74.52
ResNet50-Baseline	34.28	76.35
ResNet50+DA	35.82	77.07
ResNet50+DA+AL	37.23	78.01
ResNet50+DA+AL+PSP	41.68	80.04
ResNet269+DA+AL+PSP	43.81	80.88
ResNet269+DA+AL+PSP+MS	44.94	81.69

Validation on ADE20K

Slide credit to Kaicheng Wang

PASCAL VOC2012

Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mIoU
FCN [26]	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
Zoom-out [28]	85.6	37.3	83.2	62.5	66.0	85.1	80.7	84.9	27.2	73.2	57.5	78.1	79.2	81.1	77.1	53.6	74.0	49.2	71.7	63.3	69.6
DeepLab [3]	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	71.6
CRF-RNN [41]	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	72.0
DeconvNet [30]	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	72.5
GCRF [36]	85.2	43.9	83.3	65.2	68.3	89.0	82.7	85.3	31.1	79.5	63.3	80.5	79.3	85.5	81.0	60.5	85.5	52.0	77.3	65.1	73.2
DPN [25]	87.7	59.4	78.4	64.9	70.3	89.3	83.5	86.1	31.7	79.9	62.6	81.9	80.0	83.5	82.3	60.5	83.2	53.4	77.9	65.0	74.1
Piecewise [20]	90.6	37.6	80.0	67.8	74.4	92.0	85.2	86.2	39.1	81.2	58.9	83.8	83.9	84.3	84.8	62.1	83.2	58.2	80.8	72.3	75.3
PSPNet	91.8	71.9	94. 7	71.2	75.8	<u>95.2</u>	<u>89.9</u>	95.9	39.3	90.7	71.7	90.5	94.5	88.8	89.6	72.8	89.6	64.0	85.1	76.3	82.6
CRF-RNN [†] [41]	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	74.7
BoxSup† [7]	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	75.2
Dilation8 [†] [40]	91.7	39.6	87.8	63.1	71.8	89.7	82.9	89.8	37.2	84.0	63.0	83.3	89.0	83.8	85.1	56.8	87.6	56.0	80.2	64.7	75.3
DPN [†] [25]	89.0	61.6	87.7	66.8	74.7	91.2	84.3	87.6	36.5	86.3	66.1	84.4	87.8	85.6	85.4	63.6	87.3	61.3	79.4	66.4	77.5
Piecewise [†] [20]	94.1	40.7	84.1	67.8	75.9	93.4	84.3	88.4	42.5	86.4	64.7	85.4	89.0	85.8	86.0	67.5	90.2	63.8	80.9	73.0	78.0
FCRNs [†] [38]	91.9	48.1	93.4	69.3	75.5	94.2	87.5	92.8	36.7	86.9	65.2	89.1	90.2	86.5	87.2	64.6	90.1	59.7	85.5	72.7	79.1
LRR^{\dagger} [9]	92.4	45.1	94.6	65.2	75.8	95.1	89.1	92.3	39.0	85.7	70.4	88.6	89.4	88.6	86.6	65.8	86.2	57.4	85.7	77.3	79.3
DeepLab [†] [4]	92.6	60.4	91.6	63.4	76.3	95.0	88.4	92.6	32.7	88.5	67.6	89.6	92.1	87.0	87.4	63.3	88.3	60.0	86.8	74.5	79.7
PSPNet [†]	95.8	72.7	95.0	78.9	84.4	94.7	92.0	95.7	43.1	91.0	80.3	91.3	96.3	92.3	90.1	71.5	94.4	66.9	88.8	82.0	85.4

PASCAL VOC2012

Cityscapes

Method	road	swalk	build.	wall	fence	pole	tlight	sign	veg.	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU
CRF-RNN [41]	96.3	73.9	88.2	47.6	41.3	35.2	49.5	59.7	90.6	66.1	93.5	70.4	34.7	90.1	39.2	57.5	55.4	43.9	54.6	62.5
FCN [26]	97.4	78.4	89.2	34.9	44.2	47.4	60.1	65.0	91.4	69.3	93.9	77.1	51.4	92.6	35.3	48.6	46.5	51.6	66.8	65.3
SiCNN+CRF [16]	96.3	76.8	88.8	40.0	45.4	50.1	63.3	69.6	90.6	67.1	92.2	77.6	55.9	90.1	39.2	51.3	44.4	54.4	66.1	66.3
DPN [25]	97.5	78.5	89.5	40.4	45.9	51.1	56.8	65.3	91.5	69.4	94.5	77.5	54.2	92.5	44.5	53.4	49.9	52.1	64.8	66.8
Dilation10 [40]	97.6	79.2	89.9	37.3	47.6	53.2	58.6	65.2	91.8	69.4	93.7	78.9	55.0	93.3	45.5	53.4	47.7	52.2	66.0	67.1
LRR [9]	97.7	79.9	90.7	44.4	48.6	58.6	68.2	72.0	92.5	69.3	94.7	81.6	60.0	94.0	43.6	56.8	47.2	54.8	69.7	69.7
DeepLab [4]	97.9	81.3	90.3	48.8	47.4	49.6	57.9	67.3	91.9	69.4	94.2	79.8	59.8	93.7	56.5	67.5	57.5	57.7	68.8	70.4
Piecewise [20]	98.0	82.6	90.6	44.0	50.7	51.1	65.0	71.7	92.0	72.0	94.1	81.5	61.1	94.3	61.1	65.1	53.8	61.6	70.6	71.6
PSPNet	98. 6	86.2	92.9	50.8	58.8	64.0	75.6	79.0	93.4	72.3	95.4	86.5	71.3	95.9	68.2	79.5	73.8	69.5	77.2	78.4
LRR [‡] [9]	97.9	81.5	91.4	50.5	52.7	59.4	66.8	72.7	92.5	70.1	95.0	81.3	60.1	94.3	51.2	67.7	54.6	55.6	69.6	71.8
PSPNet [‡]	98.6	86.6	93.2	58.1	63.0	64.5	75.2	79.2	93.4	72.1	95.1	86.3	71.4	96.0	73.5	90.4	80.3	69.9	76.9	80.2

City	SC	aŗ								
Method	road	swal	and the second s		and the second se	IS	train	mbike	bike	mIoU
CRF-RNN [41]	96.3	73.9			and the set	.5	55.4	43.9	54.6	62.5
FCN [26]	97.4	78.4			The law is a second second	.6	46.5	51.6	66.8	65.3
SiCNN+CRF [16]	96.3	76.8	THE PARTY AND	A CARL BURGER OF A CARL BURGER OF A		.3	44.4	54.4	66.1	66.3
DPN [25]	97.5	78.:				.4	49.9	52.1	64.8	66.8
Dilation10 [40]	97.6	79.1	- (0)			.4	47.7	52.2	66.0	67.1
LRR [9]	97.7	79.9				.8	47.2	54.8	69.7	69.7
DeepLab [4]	97.9	81.3				.5	57.5	57.7	68.8	70.4
Piecewise [20]	98.0	82.0	Instantial and instantial and instantial	. Stalither all a light a stal	المتنجع فلا الم	.1	53.8	61.6	70.6	71.6
PSPNet	98.6	86.2				.5	73.8	69.5	77.2	78.4
LRR [‡] [9]	97.9	81.:				.7	54.6	55.6	69.6	71.8
PSPNet [‡]	98.6	86.0		5		.4	80.3	69.9	76.9	80.2
	1									I
			(a) Image	(b) Ground Truth	(c) PSPNet	Sli	ide cred	it to Kaicł	າeng W;	ang

Dilated Convolution

- Innovation: Tiny represented feature map
- Removing striding \rightarrow Receptive field decreases
- Solution: Dilated convolution
 - Resolution + Receptive Field

Atrous Convolution

- Convolution with holes
- Also called dilated convolution

(b) Dense feature extraction

ResNet Base

layer name	output size	18-layer	34-layer	152-layer					
conv1	112×112			7×7, 64, stride 2	2				
				3×3 max pool, stric	le 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹			

image 7x7 conv, 64, /2 ¥ pool, /2 + 3x3 conv, 64 * 3x3 conv, 64 * 3x3 conv, 64 ÷ 3x3 conv, 64 +-3x3 conv, 64 * 3x3 conv, 64 ****** 3x3 conv, 128, /2 * 3x3 conv, 128 +-----3x3 conv, 128 ¥ 3x3 conv, 128 + 3x3 conv, 128 ¥ 3x3 conv, 128 + 3x3 conv, 128 * 3x3 conv, 128 ****** 3x3 conv, 256, /2 ¥ 3x3 conv, 256 ********* 3x3 conv, 256 + 3x3 conv, 256 * 3x3 conv, 256 ٠ 3x3 conv, 256 + 3x3 conv, 256 * 3x3 conv, 256 + 3x3 conv, 256 * 3x3 conv, 256 + 3x3 conv, 256 ¥ 3x3 conv, 256 +----3x3 conv, 512, /2 ¥ 3x3 conv, 512 * 3x3 conv, 512 * 3x3 conv, 512 +---3x3 conv, 512 * 3x3 conv, 512 ¥ avg pool *

fc 1000

34-layer residual

DRN structure

\mathcal{G}_{1}^{4} , \mathcal{G}_{1}^{5} striding removed \rightarrow Dilated convolution

Slide credit to Kaicheng Wang

Prediction Model

• Instantaneously used for classification and localization

Slide credit to Kaicheng Wang

- Gridding artifacts
 - Nearby pixels receive information from different grid

- Gridding artifacts
 - Nearby pixels receive information from different grid

(b) ResNet-18

(c) DRN-A-18

- Removing <u>max pooling</u>
- Adding layers

• Removing residual connections

Experimental result

- Classification :
 - ImageNet 2012

	1 c	rop	10 c	rops	D
Model	top-1	top-5	top-1	top-5	P
ResNet-18	30.43	10.76	28.22	9.42	11.7M
DRN-A-18	28.00	9.50	25.75	8.25	11.7M
DRN-B-26	25.19	7.91	23.33	6.69	21.1M
DRN-C-26	24.86	7.55	22.93	6.39	21.1M
ResNet-34	27.73	8.74	24.76	7.35	21.8M
DRN-A-34	24.81	7.54	22.64	6.34	21.8M
DRN-C-42	22.94	6.57	21.20	5.60	31.2M
ResNet-50	24.01	7.02	22.24	6.08	25.6M
DRN-A-50	22.94	6.57	21.34	5.74	25.6M
ResNet-101	22.44	6.21	21.08	5.35	44.5M

Table 1: Image classification accuracy (error rates) on the ImageNet 2012 validation set. Lower is better. P is the number of parameters in each model.

Experimental result

•	Cityscapes
---	------------

	Road	Sidewalk	Building	Wall	Fence	Pole	Light	Sign	Vegetation	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	Motorcycle	Bicycle	mean IoU
ORN-A-50	96.9	77.4	90.3	35.8	42.8	59.0	66.8	74.5	91.6	57.0	93.4	78.7	55.3	92.1	43.2	59.5	36.2	52.0	75.2	67.3
DRN-C-26	97.4	80.7	90.4	36.1	47.0	56.9	63.8	73.0	91.2	57.9	93.4	77.3	53.8	92.7	45.0	70.5	48.4	44.2	72.8	68.0
ORN-C-42	97.7	82.2	91.2	40.5	52.6	59.2	66.7	74.6	91.7	57.7	94.1	79.1	56.0	93.6	56.0	74.3	54.7	50.9	74.1	70.9

Experimental result

DeepLabv3

- Introducing
 - Multigrid
 - Image-level features encoding global context
 - \rightarrow Global average pooling

Multigrid

- Dilated defect
 - Local information missing
- Solution
 - Different dilation rates

Global Average Pooling

- Valid weight decreases as sampling rate increases
- \rightarrow Global average pooling

DeepLab V3 for Semantic Image Segmentation

Atrous (or dilated) convolutions are regular convolutions with a factor that allows us to expand the filter's field of view.

Consider a 3x3 convolution filter for instance. When the dilation rate is equal to 1, it behaves like a standard convolution. But, if we set the dilation factor to 2, it has the effect of enlarging the convolution kernel.

Cascaded with Atrous

• Duplicating with atrous

(a) Going deeper without atrous convolution.

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when *output_stride* = 16. Figure 3. Cascaded modules without and with atrous convolution.

Parallel ASPP

Training Protocol

- Learning rate
 - Poly, same as DeepLabv2
- Crop size
 - Large crop size needed for large rate
- Batch normalization
 - Large batch needed

Going Deeper

Table 2. Going deeper with atrous convolution when employing ResNet-50 and ResNet-101 with different number of cascaded blocks at *output_stride* = 16. Network structures 'block4', 'block5', 'block6', and 'block7' add extra 0, 1, 2, 3 cascaded modules respectively. The performance is generally improved by adopting more cascaded blocks.

Multigrid

• Different rate within block4 to block7

Multi-Grid	block4	block5	block6	block7
(1, 1, 1)	68.39	73.21	75.34	75.76
(1, 2, 1)	70.23	75.67	76.09	76.66
(1, 2, 3)	73.14	75.78	75.96	76.11
(1, 2, 4)	73.45	75.74	75.85	76.02
(2, 2, 2)	71.45	74.30	74.70	74.62

Table 3. Employing multi-grid method for ResNet-101 with different number of cascaded blocks at *output_stride* = 16. The best model performance is shown in bold.

PASCAL VOC 2012

Method	mIOU
Adelaide_VeryDeep_FCN_VOC [73]	79.1
LRR_4x_ResNet-CRF [20]	79.3
DeepLabv2-CRF [10]	79.7
CentraleSupelec Deep G-CRF [7]	80.2
HikSeg_COCO [68]	81.4
Deep Layer Cascade (LC) [43]	82.7
TuSimple [72]	83.1
Large_Kernel_Matters [58]	83.6
Multipath-RefineNet [45]	84.2
ResNet-38_MS_COCO [74]	84.9
PSPNet [80]	85.4
DeepLabv3	85.7

Table 7. Performance on PASCAL VOC 2012 test set.

PASCAL VOC 2012

Table 7. Performance on PASCAL VOC 2012 test set.

- Feature reuse \rightarrow Parameter Saving
- Alleviate vanishing gradient

- Feature reuse \rightarrow Parameter Saving
- Alleviate vanishing gradient

[Residual Networks Behave Like Ensembles of Relatively Shallow Networks]

DenseNet

ResNet

 $x_l = H_l([x_0, x_1, \dots, x_{l-1}])$

 $x_l = H_l(x_{l-1}) + x_{l-1}$

Frame	eworł	\rightarrow BN \rightarrow ReLU \rightarrow 1×1 \rightarrow DropOut \rightarrow BN \rightarrow ReLU \rightarrow 3×3 \rightarrow DropOutTransition Layer	→ BN→ ReLU→ 1×1→ DropOut →BN→ ReLU→ 3×3→ DropOut→						
Input	Dense Bl	ock 1 Pooling Dense Block 2 Pooling Pooling Pooling Prediction							
Layers	Output Size	DenseNet- $121(k = 32)$ DenseNet- $169(k = 32)$ DenseNet- $201(k = 32)$ DenseNet- $161(k = 48)$							
Convolution	112×112	7×7 conv, stride 2							
Pooling	56×56	3×3 max pool, stride 2							
Dense Block (1)	56×56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$							
Transition Layer	56×56	1×1 conv							
(1)	28×28	2×2 average pool, stride 2							
Dense Block (2)	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$							
Transition Layer	28×28	1×1 conv							
(2)	14×14	2×2 average pool, stride 2							
Dense Block (3)	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 36$							
Transition Layer	14×14	1×1 conv							
(3)	7×7	2×2 average pool, stride 2							
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$							
Classification	1×1	7×7 global average pool							
Layer		1000D fully-connected, softmax							

DenseNet-BC

- DenseNet-B
 - \rightarrow BN-ReLU-Conv(1×1) \rightarrow BN-ReLU-Conv(3×3) \rightarrow
 - Reduce to 4k feature maps
- DenseNet-C
 - Reducing feature maps at transition layers

Experimental Result

Experimental Result

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
ResNet [11]	110	1.7M	-	6.61	-	-	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC ($k = 40$)	190	25.6M	-	3.46	-	17.18	-

DeepLab V3 for Semantic Image Segmentation

Reference

- ParseNet: Looking wider to see better
- Pyramid Scene Parsing Network
- Dilated Residual Network
- DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
- Rethinking Atrous Convolution for Semantic Image Segmentation
- Understanding Convolution for Semantic Segmentation
- Spatial pyramid pooling in deep convolutional networks for visual recognition
- Residual Networks Behave Like Ensembles of Relatively Shallow Networks
- Densely Connected Convolutional Networks