Image Segmentation

Jianping Fan
 Dept of Computer Science UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Outlines

- Seeded Region Growing
- K-Means Clustering
- Graph Cut \& Normalized Cut

Definitions

- Based on sets.
- Each image R is a set of regions R_{i}.
- Every pixel belongs to one region.
- One pixel can only
 region.

$$
R=\bigcup_{i=1}^{S} R_{i} \quad R_{i} \bigcap R_{j}=\varnothing
$$

Basic Formulation

Let R represent the entire image region. Segmentation partitions R into n subregions, $R_{1}, R_{2}, \ldots, R_{n}$, such that:
a) $\bigcup_{i=1}^{n} R_{i}=R$
b) $\quad R_{i}$ is a connected region, $i=1,2, \ldots, n$.
c) $\quad R_{i} \cap R_{j}=\phi$ for all i and $j, i \neq j$
d) $\quad P\left(R_{i}\right)=$ TRUE for $i=1,2, \ldots, n$.
e) $\quad P\left(R_{i} \cup R_{j}\right)=F A L S E$ for $i \neq j$.
a) Every pixel must be in a region
b) Points in a region must be connected.
c) Regions must be disjoint.
d) All pixels in a region satisfy specific properties.
e) Different regions have different properties.

Region growing

- Groups pixels into larger regions.
- Starts with a seed region.
- Iterative process
- How to start?
- How to iterate?
- When to stop?
- Grows region by merging

Finish neighboring pixels.

Similarity Criteria

- Homogeneity of regions is used as the main segmentation criterion in region growing.
- gray level
- color, texture

Choice of criteria affects segmentation results dramatically!

- shape
- model
- etc.

Region Growing

- Inter-Pixel Similarity Calculation
(a) Pixel Neighborhood Similarity Calculation

$(x-1, y-1)$	$(x, y-1)$	$(x+1, y-1)$
$(x-1, y)$	(x, y)	$(x+1, y)$
$(x-1, y+1)$	$(x, y+1)$	$(x+1, y+1)$

Region Growing

- Inter-Pixel Similarity Calculation
(1) Inter-Pixel Similarity

$$
D[(x, y),(x-1, y-1)]=|I(x, y)-I(x-1, y-1)|
$$

(2) Binary Classification

$$
S(x, y)=\left\{\begin{array}{l}
1, \text { similar, } D[(x, y),(x-1, y-1)]<T \\
0, \text { dissimilar }, D[(x, y),(x-1, y-1)] \geq T
\end{array}\right.
$$

Region Growing

- Threshold Determination for Decision Making Relationships among neighboring pixels can defined as: similar versus dissimilar

Region Growing

- Ihreshold Determination for Decision Making

Entropy for similar and dissimilar pixels:

$$
\begin{gathered}
H(\bar{T})=\max _{T-0,1 \ldots \ldots M}\left\{H_{\mathrm{nsc}}(T)+H_{\mathrm{sc}}(T)\right\} . \\
P_{\mathrm{nsc}}(i)=\frac{f_{i}}{\sum_{h-0}^{T} f_{h}}, \quad 0 \leqslant i \leqslant T,
\end{gathered}
$$

Region Growing

- 'Ihreshold Determination for Decision Making

$$
\begin{aligned}
H_{\mathrm{nsc}}(T+1)= & -\sum_{i=0}^{T+1} \frac{f_{i}}{P_{0}(T+1)} \log \frac{f_{t}}{P_{0}(T+1)} \\
= & -\frac{P_{0}(T)}{P_{1}(T+1)} \sum_{i=0}^{T+1} \frac{f_{i}}{P_{0}(T)} \log \left\{\frac{f_{i}}{P_{0}(T)} \frac{P_{0}(T)}{P_{0}(T+1)}\right\} \\
= & \frac{P_{0}(T)}{P_{0}(T+1)} H_{\mathrm{as}}(T)-\frac{f_{T+1}}{P_{0}(T+1)} \log \frac{f_{T+1}}{P_{0}(T+1)} \\
& -\frac{P_{0}(T)}{P_{0}(T+1)} \log \frac{P_{0}(T)}{P_{0}(T+1)} \\
H_{\mathrm{sc}}(T+1)= & -\sum_{i=T+2}^{M} \frac{f_{i}}{P_{1}(T+1)} \log \frac{f_{i}}{P_{1}(T+1)} \\
= & -\frac{P_{1}(T)}{P_{1}(T+1)} \sum_{t=T+2}^{M} \frac{f_{i}}{P_{1}(T)} \log \left\{\frac{f_{i}}{P_{1}(T)} \frac{P_{1}(T)}{P_{1}(T+1)}\right\} \\
= & \frac{P_{1}(T)}{P_{1}(T+1)} H_{s o}(T)+\frac{f_{T+1}}{P_{1}(T+1)} \log \frac{f_{T+1}}{P_{1}(T+1)} \\
& -\frac{P_{1}(T)}{P_{1}(T+1)} \log \frac{P_{1}(T)}{P_{1}(T+1)} .
\end{aligned}
$$

Gray-Level Criteria

- Comparing to Original Seed Pixel
- Very sensitive to choice of seed point.
- Comparing to Neighbor in Region
- Allows gradual changes in the region.
- Can cause significant drift.
- Comparing to Region Statistics
- Acts as a drift dampener.
- Other possibilities!

- Seed Fixel
\uparrow Direction of Growth
(a) Start of Growing a Region

- Gown Fivels
* Fixels Being

Considered
(b) Growing Process After a Few Iterations

Region merging

- Algorithm
- Divide image into an initial set of regions.
- One region per pixel.
- Define a similarity criteria for merging regions.
- Merge similar regions.
- Repeat previous step until no more merge operations are possible.

Region Growing

- Region Growing Results

Region Growing

Region Growing

- Region Growing Results

Integrating Multi-modal Features for Region Growing

Image Segmentation

Integrating Multi-modal Features for Region Growing

- Image Segmentation

Integrating Multi-modal Features for Region Growing

- Image Segmentation

Integrating Multi-modal Features for Region Growing

- Image Segmentation

Integrating Multi-modal Features for Region Growing

Image Segmentation

Integrating Multi-modal Features for Region Growing

Observations

- Only segmentation from visual information cannot support automatic image understanding \& interpretation!
- Image segmentation results may not make sense to human beings!

Seeded Image Segmentation

- Color image segmentation polices:
- Threshold
- Boundary-based
- Region-based
- Hybrid techniques

Hybrid techniques

- Seeding region growing (SRG)
- Different merging order possibility

Automatic seed selection algorithm

- Condition 1:
- A seed pixel candidate must have the similarity higher than a threshold values.
- Condition 2:
- A seed pixel candidate must have the maximum relative Euclidean distance to its eight neighbors less than a threshold value.

Automatic seed selection algorithm

 Calculate the maximum ${ }_{8}$ distance to its neighbors as : $d_{\text {max }}=\max _{i=1} d_{i}$$$
d_{i}=\frac{\sqrt{\left(Y-Y_{i}\right)^{2}+\left(C_{b}-C_{b_{i}}\right)^{2}+\left(C_{r}-C_{r_{i}}\right)^{2}}}{\sqrt{Y^{2}+C_{b}^{2}+C_{r}^{2}}}, i=1 \ldots 8
$$

- $Y C_{b} C_{r}$ of the pixel, $Y_{i} C_{b_{i}} C_{r_{i}}$ of its neighbors
- Not on the boundary
- 0.05

Condition 2:
A seed pixel candidate must have the maximum relative Euclidean distance to its eight neighbors less than a threshold value. 28

Automatic seed selection algorithm

- Connected seeds are considered as one seed.

Original color image

the detected seeds are shown in red color

Region growing

- The pixels that are unclassified and neighbors of at least one region, calculate the distance:

$$
d_{i}=\frac{\sqrt{\left(Y_{i}-\bar{Y}\right)^{2}+\left(C_{b_{i}}-\bar{C}_{b}\right)^{2}+\left(C_{r_{i}}-\bar{C}_{r}\right)^{2}}}{\sqrt{Y_{i}^{2}+C_{b_{i}}{ }^{2}+C_{r_{i}}{ }^{2}}}
$$

Region growing

1. red pixels are the seeds and the green pixels are the pixels in the sorted list \mathbf{T} in a decreasing order of distances.
2. the white pixel is the pixel with the minimum distance to the seed regions
3. check its 4-neighbors

Region growing

1. If all labeled neighbors of p have a same label, set p to this label.
2. If the labeled neighbors of p have different labels, calculate the distances between p and all neighboring regions and classify p to the nearest region.
3. Then update the mean of this region, and add 4 neighbors of p, which are neither classified yet nor in T, to T in a decreasing order of distances.
4. Until the T is empty.

Region merging

- Consider the color different and size of regions:
- Color different between two adjacent region Ri and Rj is defined as:
- Size

$$
d(R i, R j)=\frac{\sqrt{\left(\bar{Y}_{i}-\bar{Y}_{j}\right)^{2}+\left(\bar{C}_{b_{i}}-\bar{C}_{b_{j}}\right)^{2}+\left(\bar{C}_{r_{i}}-\bar{C}_{r_{j}}\right)^{2}}}{\min \left(\sqrt{\bar{Y}_{i}^{2}+\bar{C}_{b_{i}}{ }^{2}+\bar{C}_{r_{i}}}, \sqrt{\bar{Y}_{j}^{2}+\bar{C}_{b_{j}}{ }^{2}+\bar{C}_{r_{i}}{ }^{2}}\right)}
$$

- select $\frac{1}{150}$ of the total number of pixels in an image as the threshold.

Region merging

- We first examine the two regions having the smallest color different among others.
- If $d\left(R i, R_{j}\right)<$ threshold, merge the two regions and re-compute the mean of the new region.
- We repeat the process until no region has the distance less than the threshold.
- Threshold=0.1

Region merging

- If the size with number of pixels in a region is smaller than a threshold, the region is merged into its neighboring region with the smallest color difference.
- This procedure is repeated until no region has size less than the threshold.

Experimental results

JSEG algorithm.

Experimental results

JSEG algorithm.

JSEG algorithm.

K-Means Clustering

1. Partition the data points into K clusters randomly. Find the centroids of each cluster.
2. For each data point:

- Calculate the distance from the data point to each cluster.
- Assign the data point to the closest cluster.

3. Re-compute the centroid of each cluster.
4. Repeat steps $\mathbf{2}$ and $\mathbf{3}$ until there is no further change in the assignment of data points (or in the centroids).

K-Means Clustering

K-Means Clustering

Example

K-Means Clustering

- RGB vector

K-means clustering minimizes

$$
\sum_{i \in \text { clusters }}\left\{\sum_{j \text { elelements of fith chuster }}\left\|x_{j}-\mu_{i}\right\|^{2}\right\}
$$

Clustering

- Example
D. Comaniciu and \mathbf{P}. Meer, Robust Analysis of Feature Spaces: Color Image Segmentation, 1997.

Bahadir K. Gunturk
EE 7730 - Image Analysis I

K-Means Clustering

- Example

Original

$K=5$

$K=11$

K-means, color and position is used in segmentation, four clusters (out of 20) are shown here.

Each vector is ($\mathbf{R}, \mathrm{G}, \mathrm{B}, \mathrm{x}, \mathrm{y}$).

K-Means Clustering: Axis Scaling

- Features of different types may have different scales.
\square For example, pixel coordinates on a 100×100 image vs. RGB color values in the range $[0,1]$.
- Problem: Features with larger scales dominate clustering.
- Solution: Scale the features.

Spectral Clustering for Image Segmentation

Graph-based Image Segmentation

Image (I)

Graph Affinities
(W)

Graph-based Image Segmentation

Graph-based Image Segmentation

Eigenvector
X(W)

$(D-W) X=\lambda D X$
$X_{A}(i)=\left\{\begin{array}{lll}1 & \text { if } & i \in A \\ 0 & \text { if } & i \notin A\end{array}\right.$

Graph-based Image Segmentation

Image (I)

Eigenvector

$$
\begin{aligned}
& (D-W) X=\lambda D X \\
& X_{A}(i)=\left\{\begin{array}{lll}
1 & \text { if } & i \in A \\
0 & \text { if } & i \notin A
\end{array}\right.
\end{aligned}
$$

2

Discretization

Slide from Timothee Cour (http://www.seas.upenn.edu/~timothee)

Graph-based Image Segmentation

$$
\mathbf{G}=\{\mathbf{V}, \mathrm{E}\}
$$

V: graph nodes
E: edges connection nodes

Pixels Pixel similarity

Graph terminology

- Similarity matrix: $W=\left\lfloor w_{i, j}\right\rfloor$

Affinity matrix

Graph terminology

- Degree of node:

$$
d_{i}=\sum_{j} w_{i, j}
$$

Graph terminology

- Volume of set:

$$
\operatorname{vol}(A)=\sum_{i \in A} d_{i}, A \subseteq V
$$

Graph terminology

- Cuts in a graph:

$$
\operatorname{cut}(A, \bar{A})=\sum_{i \in A, j \in \bar{A}} w_{i, j}
$$

Representation

Partition matrix X :

$$
X=\left[X_{1}, \ldots, X_{K}\right]
$$

Pair-wise similarity matrix $W: W(i, j)=a f f(i, j)$
Degree matrix $D: \quad D(i, i)=\sum_{j} w_{i, j}$
Laplacian matrix $L: L=D-W$

Pixel similarity functions

Intensity

$$
W(i, j)=e^{\frac{-\left\|I_{(i)}-I_{(j)}\right\|_{2}^{2}}{\sigma_{I}^{2}}}
$$

Distance

$$
W(i, j)=e^{\frac{-\left\|X_{(i)}-X_{(j)}\right\|_{2}^{2}}{\sigma_{X}^{2}}}
$$

Texture

$$
W(i, j)=e^{\frac{-\left\|c_{(i)}-c_{(j)}\right\|_{2}^{2}}{\sigma_{c}^{2}}}
$$

Pixel similarity functions

Definitions

- Methods that use the spectrum of the affinity matrix to cluster are known as spectral clustering.
- Normalized cuts, Average cuts, Average association make use of the eigenvectors of the affinity matrix.
- Why these methods work?

Spectral Clustering

[^0]
Eigenvectors and blocks

- Block matrices have block eigenvectors:

$$
\lambda_{1}=2 \quad \lambda_{2}=2 \quad \lambda_{3}=0
$$

1	1	0	0
1	1	0	0
0	0	1	1
0	0	1	1

- Near-block matrices have near-block eigenvectors:

1	1	.2	0
1	1	0	-.2
.2	0	1	1
0	-.2	1	1

$\lambda_{1}=2.02$		$\lambda_{2}=2.02$	$\lambda_{3}=-0.02$
eigensolver	. 71	0	$\lambda_{4}=-0.02$
	. 69	-. 14	
	. 14	. 69	
	0	. 71	

Spectral Space

${ }^{-}$'Can put items into blocks by eigenvectors:

1	1	.2	0
1	1	0	-.2
.2	0	1	1
0	-.2	1	1

1	.2	1	0
.2	1	0	1
1	0	1	-.2
0	1	-.2	1

How do we extract a good cluster?

- Simplest idea: we want a vector x giving the association between each element and a cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another
- We could maximize $x^{T} W x$
- But need the constraint $x^{T} x=1$
- This is an eigenvalue problem - choose the eigenvector of W with largest eigenvalue.

Minimum cut

- Criterion for partition:

Normalized Cut

Normalized cut or balanced cut:

$$
\operatorname{Ncut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)
$$

Normalized Cut

- Volume of set (or association):

$$
\cdots \operatorname{vol}(A)=\operatorname{assoc}(A, V)=\sum_{u \in A, t \in \underline{V}} w(u, t)
$$

Normalized Cut

- Volume of set (or association):

$$
\operatorname{vol}(A)=\operatorname{assoc}(A, V)=\sum_{u \in A, t \in V} w(u, t)
$$

- Define normalized cut: "a fraction of the total edge connections to all the nodes in the graph":
- Define normalized association: "how tightly on average nodes within the cluster are connected to each other"

Observations(I)

- Maximizing Nassoc is the same as minimizing Ncut, since they are related:

$$
\operatorname{Ncut}(A, B)=2-\operatorname{Nassoc}(A, B)
$$

- How to minimize Ncut?
- Transform Ncut equation to a patricial form.
- After simplifying:

$$
\begin{array}{ccc}
\min _{x} \operatorname{Ncut}(x)=\min _{y} \frac{y^{T}(D-W) y}{y^{T} D y} & \begin{array}{c}
\text { NPA's values are } \\
\text { quantized }
\end{array} \\
\text { Subject to: } y^{T} D 1=0 & \text { Rayleigh quotient } &
\end{array}
$$

Observations(II)

- Instead, relax into the continuous domain by solving generalized eigenvalue system:

$$
\min _{y}\left(y^{T}(D-W) y\right) \text { subject to }\left(y^{T} D y=1\right)
$$

- Which gives: $(D-W) y=\lambda D y$
- Note that $(D-W) 1=0 \quad$ so, the first eigenvector is $y_{0}=1$ with eigenvalue 0 .
- The second smallest eigenvector is the real valued solution to this problem!!

Algorithm

1. Define a similarity function between 2 nodes. i.e.:

$$
w_{i, j}=e^{\frac{\left.-\mid F_{i, i}-F_{i}()_{2}\right)}{\sigma_{i}^{2}} \frac{\left.-\mid x_{i(1)}-x_{e}\right)\left.\right|_{2} ^{2}}{\sigma_{x}^{2}}}
$$

2. Compute affinity matrix (W) and degree matrix (D).
3. Solve $(D-W) y=\lambda D y$
4. Use the eigenvector with the second smallest eigenvalue to bipartition the graph.
5. Decide if re-partition current partitions.

Note: since precision requirements are low, \boldsymbol{W} is very sparse and only few eigenvectors are required, the eigenvectors can be extracted very fast using Lanczos algorithm.

Discretization

Sometimes there is not a clear threshold to binarize since eigenvectors take on continuous values.

- How to choose the splitting point?
a) Pick a constant value (0, or 0.5).
b) Pick the median value as splitting point.
c) Look for the splitting point that has the minimum Ncut value:

1. Choose n possible splitting points.
2. Compute Ncut value.
3. Pick minimum.

Use k-eigenvectors

- Recursive 2-way Ncut is slow.
- We can use more eigenvectors to re-partition the graph, however:
- Not all eigenvectors are useful for partition (degree of smoothness).
- Procedure: compute k-means with a high k. Then follow one of these procedures:
a) Merge segments that minimize k-way Ncut criterion.
b) Use the k segments and find the partitions there using exhaustive search.

1	1	.2	0
1	1	0	-.2
.2	0	1	1
0	-.2	1	1

- Compute Q (next slides).

Example

Eigenvectors

Segments

Experiments

Define similarity:

$$
w_{i, j}=e^{\frac{-\left\|F_{(i)}-F_{j(j)}\right\|_{2}^{2}}{\sigma_{I}^{2}}+\frac{-\left\|X_{(i)}-X_{(j)}\right\|_{2}^{2}}{\sigma_{X}^{2}}}
$$

- $F(i)=1$ for point sets.
- $F(i)=I(i)$ for brightness images.
- $F(i)=[v, v . s . \sin (h)$, v.s. $\cos (h)]$ for HSV images.
- $F(i)=\left[\left|I * f_{1}\right|, \cdots,\left|I^{*} f_{n}\right|\right]$ in case of texture.

Experiments (I)

- Point set segmentation:

(a) Pointset generated by Poisson process. (b) Segmentation results.

Experiments (II)

- Synthetic images:

(a)

(b)

(c)

(a)

(b)

(c)

(d)

Experiments (III)

- Weather radar:

(e)

(f)

(g)

Experiments (IV)

- Motion segmentation

(a)
(b)

(c)

(d)

(e)

(f)

(g)

Other methods

- Average association
- Use the eigenvector of W associated to the biggest eigenvalue for partitioning.
- Tries to maximize:

$$
\frac{\operatorname{assoc}(A, A)}{|A|}+\frac{\operatorname{assoc}(B, B)}{|B|}
$$

- Has a bias to find tight clusters. Useful for Gaussian distributions.

Other methods

- Average cut
- Tries to minimize:

$$
\frac{\operatorname{cut}(A, B)}{|A|}+\frac{\operatorname{cut}(A, B)}{|B|}
$$

- Very similar to normalized cuts.
- We cannot ensure that partitions will have a a tight within-group similarity since this equation does not have the nice properties of the equation of normalized cuts.

Other methods

Finding clumps
Finding splits

Other methods

20 points are randomly distributed from 0.0 to 0.5 12 points are randomly distributed from 0.65 to 1.0

Average cut

(b)

(a)

Average association

Other methods

Other methods

20 points are randomly distributed from 0.0 to 0.5 12 points are randomly distributed from 0.65 to 1.0

(b)

Average cut

(c)

(d)

Spectral Clustering for Image Segmentation

- Good news:
- Simple and powerful methods to segment images.
- Flexible and easy to apply to other clustering problems.
- Bad news:
- High memory requirements (use sparse matrices).
- Very dependant on the scale factor for a specific problem.

$$
W(i, j)=e^{\frac{\left.-\| x_{(i)}-x_{(j)}\right)_{2}^{2}}{\sigma_{\bar{\sigma}}}}
$$

Examples

$$
w_{i, j}=e^{\frac{-\left\|X_{(i)}-X_{(j)}\right\|_{2}^{2}}{\sigma_{X}^{2}}}
$$

Spectral
Clutering

Spectral clustering

- 'Makes use of the spectrum of the similarity matrix of the data to cluster the points.

$$
\mathrm{w}(\mathrm{i}, \mathrm{j}) \rightarrow \text { distance node } \mathrm{i} \text { to node } \mathrm{j}
$$

Graph terminology

Similarity matrix: $W=\left\lfloor w_{i, j}\right\rfloor \quad$ Degree of node: $d_{i}=\sum w_{i, j}$

Volume of set:

Graph cuts:

[^0]: * Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

