

Jianping Fan Dept of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html

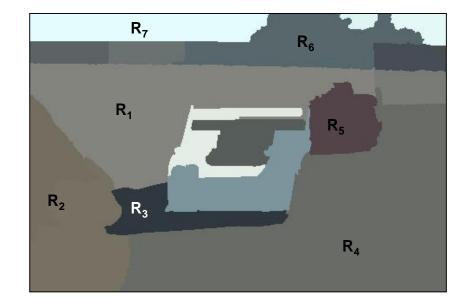
Seeded Region Growing

K-Means Clustering

Graph Cut & Normalized Cut

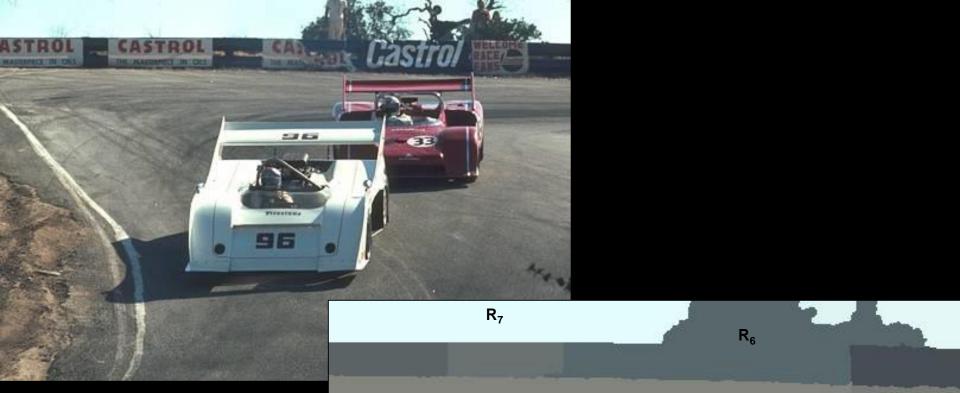
Definitions

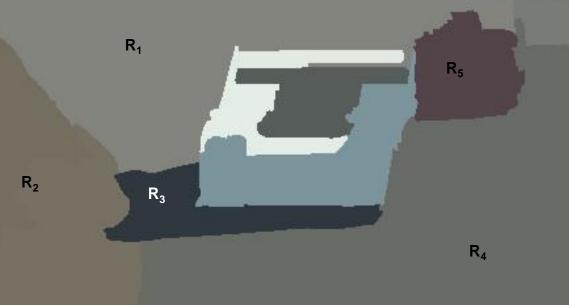
- Based on sets.
- Each image R is a set of regions R_i.
 - Every pixel belongs to one region.
 - One pixel can only belong to a single region.



$$R = \bigcup_{i=1}^{S} R_i$$

$$R_i \bigcap R_j = \emptyset$$





Basic Formulation

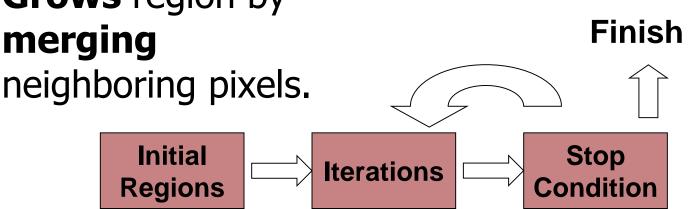
- Let R represent the entire image region. Segmentation partitions R into n subregions, R_1 , R_2 , ..., R_n , such that:
- a) $\bigcup_{i=1}^n R_i = R$
- b) R_i is a connected region, i = 1, 2, ..., n.
- c) $R_i \cap R_j = \phi$ for all *i* and $j, i \neq j$
- d) $P(R_i) = TRUE$ for i = 1, 2, ..., n.
- e) $P(R_i \cup R_j) = FALSE$ for $i \neq j$.

- a) Every pixel must be in a region
- b) Points in a region must be connected.
- c) Regions must be disjoint.
- All pixels in a region satisfy specific properties.
- e) Different regions have different properties.

- Groups pixels into larger regions.
- Starts with a seed region.
- Grows region by merging

Iterative process

- How to start?
- How to iterate?
- When to stop?



Similarity Criteria

- Homogeneity of regions is used as the main segmentation criterion in region growing.
 - gray level
 - color, texture
 - shape
 - model

Choice of criteria affects segmentation results dramatically!

etc.

Inter-Pixel Similarity Calculation

(a) Pixel Neighborhood Similarity Calculation

$$(x-1, y-1) \quad (x, y-1) \quad (x+1, y-1)$$
$$(x-1, y) \quad (x, y) \quad (x+1, y)$$
$$(x-1, y+1) \quad (x, y+1) \quad (x+1, y+1)$$

Inter-Pixel Similarity Calculation

(1) Inter-Pixel **Similarity**

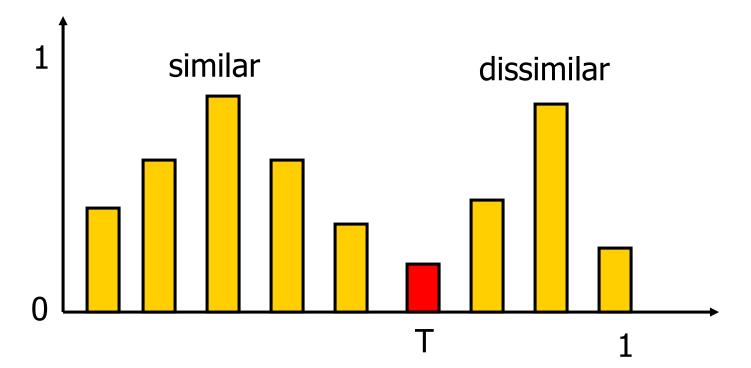
$$D[(x, y), (x-1, y-1)] = |I(x, y) - I(x-1, y-1)|$$

(2) Binary Classification

$$S(x, y) = \begin{cases} 1, similar, D[(x, y), (x-1, y-1)] < T \\ 0, dissimilar, D[(x, y), (x-1, y-1)] \ge T \end{cases}$$

Threshold Determination for Decision Making Relationships among neighboring pixels can defined as:

similar versus dissimilar



Threshold Determination for Decision Making

Entropy for similar and dissimilar pixels:

$$H(\overline{T}) = \max_{T=0,1,\ldots,M} \{H_{\text{nsc}}(T) + H_{\text{sc}}(T)\}.$$

$$P_{nsc}(i) = \frac{f_i}{\sum_{h=0}^{T} f_h}, \quad 0 \le i \le T,$$

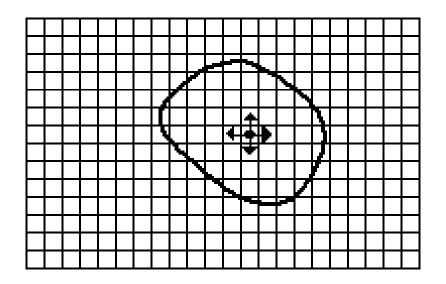
Threshold Determination for Decision Making

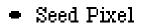
$$\begin{split} H_{\rm nsc}(T+1) &= -\sum_{i=0}^{T+1} \frac{f_i}{P_0(T+1)} \log \frac{f_i}{P_0(T+1)} \\ &= -\frac{P_0(T)}{P_1(T+1)} \sum_{i=0}^{T+1} \frac{f_i}{P_0(T)} \log \left\{ \frac{f_i}{P_0(T)} \frac{P_0(T)}{P_0(T+1)} \right\} \\ &= \frac{P_0(T)}{P_0(T+1)} H_{\rm nsc}(T) - \frac{f_{T+1}}{P_0(T+1)} \log \frac{f_{T+1}}{P_0(T+1)} \\ &- \frac{P_0(T)}{P_0(T+1)} \log \frac{P_0(T)}{P_0(T+1)}, \\ H_{\rm sc}(T+1) &= -\sum_{i=T+2}^{M} \frac{f_i}{P_1(T+1)} \log \frac{f_i}{P_1(T+1)} \log \left\{ \frac{f_i}{P_1(T+1)} \frac{P_1(T)}{P_1(T+1)} \right\} \\ &= -\frac{P_1(T)}{P_1(T+1)} \sum_{i=T+2}^{M} \frac{f_i}{P_1(T)} \log \left\{ \frac{f_i}{P_1(T)} \frac{P_1(T)}{P_1(T+1)} \right\} \\ &= \frac{P_1(T)}{P_1(T+1)} H_{\rm sc}(T) + \frac{f_{T+1}}{P_1(T+1)} \log \frac{f_{T+1}}{P_1(T+1)} \\ &- \frac{P_1(T)}{P_1(T+1)} \log \frac{P_1(T)}{P_1(T+1)}. \end{split}$$

ł

Gray-Level Criteria

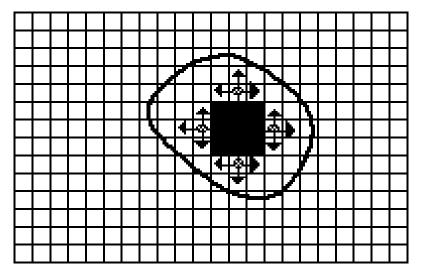
- Comparing to Original Seed Pixel
 Very sensitive to choice of seed point.
 Comparing to Neighbor in Region
 Allows gradual changes in the region.
 Can cause significant drift.
- Comparing to Region Statistics
 Acts as a drift dampener.
- Other possibilities!





🕇 Direction of Growth

(a) Start of Growing a Region

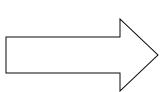


- Grown Pixels
- Pixels Being Considered

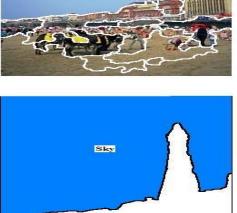
(b) Growing Process After a Few Iterations

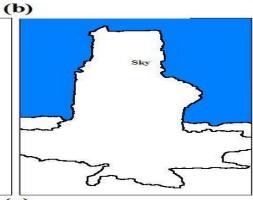
- Algorithm
 - Divide image into an initial set of regions.
 - One region per pixel.
 - Define a similarity criteria for merging regions.
 - Merge similar regions.
 - Repeat previous step until no more merge operations are possible.

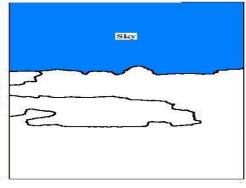
Region Growing Results



Region Growing Region Growing Results

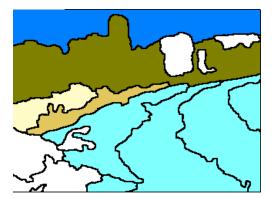


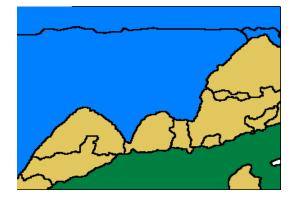


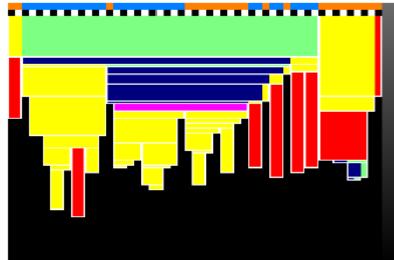


(c)

Region Growing Results







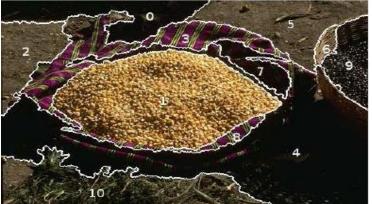
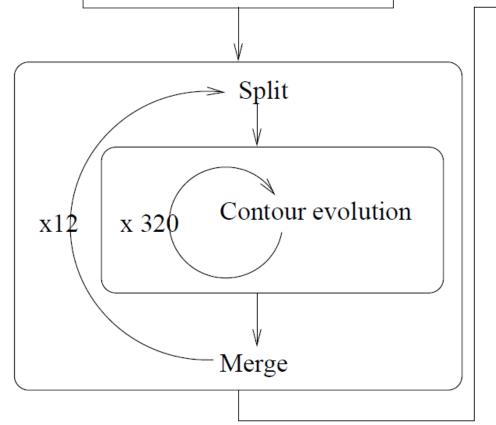
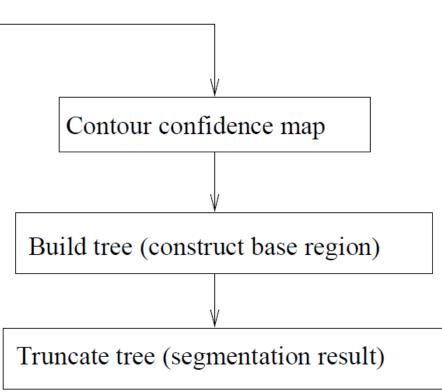
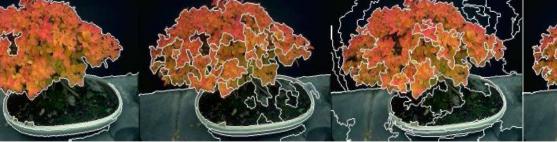


Image Segmentation

Image (color + texture)







- Observations
 - Only segmentation from visual information cannot support automatic image understanding & interpretation!
 - Image segmentation results may not make sense to human beings!

Seeded Image Segmentation

- Color image segmentation polices:
 - Threshold
 - Boundary-based
 - Region-based
 - Hybrid techniques

Hybrid techniques

Seeding region growing (SRG)
 Different merging order possibility

Automatic seed selection algorithm

- Condition 1:
 - A seed pixel candidate must have the similarity higher than a threshold values.
- Condition 2:
 - A seed pixel candidate must have the maximum relative Euclidean distance to its eight neighbors less than a threshold value.

Automatic seed selection algorithm

Calculate the maximum₈ distance to its neighbors as : $d_{\max} = \max_{i=1}^{8} d_i$

$$d_{i} = \frac{\sqrt{(Y - Y_{i})^{2} + (C_{b} - C_{b_{i}})^{2} + (C_{r} - C_{r_{i}})^{2}}}{\sqrt{Y^{2} + C_{b}^{2} + C_{r}^{2}}}, i = 1...8$$

- YC_bC_r of the pixel, $Y_iC_{b_i}C_{r_i}$ of its neighbors
- Not on the boundary
- 0.05

Condition 2: A seed pixel candidate must have the maximum relative Euclidean distance to its eight neighbors less than a threshold value. 28

Automatic seed selection algorithm

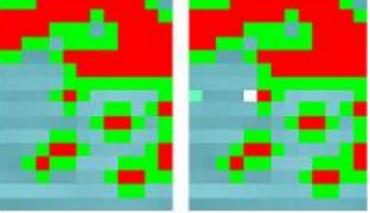
Connected seeds are considered as one seed.

Original color image

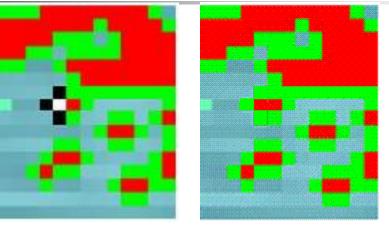
the detected seeds are shown in red color

The pixels that are unclassified and neighbors of at least one region, calculate the distance:

$$d_{i} = \frac{\sqrt{(Y_{i} - \overline{Y})^{2} + (C_{b_{i}} - \overline{C}_{b_{i}})^{2} + (C_{r_{i}} - \overline{C}_{r_{i}})^{2}}}{\sqrt{Y_{i}^{2} + C_{b_{i}}^{2} + C_{r_{i}}^{2}}}$$



- 1. red pixels are the seeds and the green pixels are the pixels in the sorted list T in a decreasing order of distances.
- 2. the white pixel is the pixel with the minimum distance to the seed regions
- 3. check its 4-neighbors



- 1. If all labeled neighbors of **p** have a same label, set **p** to this label.
- 2. If the labeled neighbors of p have different labels, calculate the distances between p and all neighboring regions and classify p to the nearest region.
- 3. Then update the mean of this region, and add 4 neighbors of p, which are neither classified yet nor in T, to T in a decreasing order of distances.
- 4. Until the T is empty.

- Consider the color different and size of regions :
 - Color different between two adjacent region Ri and Rj is defined as:

$$d(Ri, Rj) = \frac{\sqrt{(\overline{Y_i} - \overline{Y_j})^2 + (\overline{C_{b_i}} - \overline{C_{b_j}})^2 + (\overline{C_{r_i}} - \overline{C_{r_j}})^2}}{\min\left(\sqrt{\overline{Y_i}^2 + \overline{C_{b_i}}^2 + \overline{C_{r_i}}^2}, \sqrt{\overline{Y_j}^2 + \overline{C_{b_j}}^2 + \overline{C_{r_i}}^2}\right)}$$

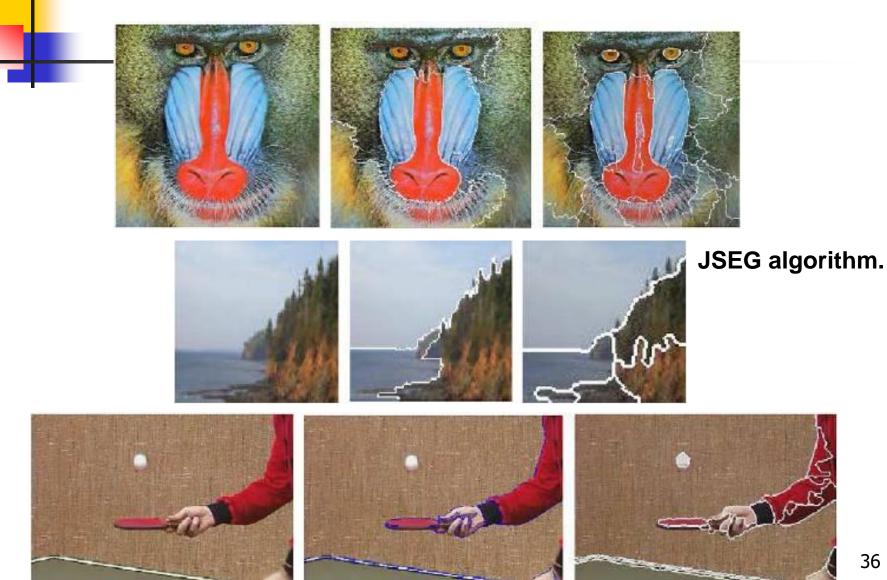
- Size
 - select $\frac{1}{150}$ of the total number of pixels in an image as the threshold.

- We first examine the two regions having the smallest color different among others.
 - If d(Ri, Rj) < threshold, merge the two regions and re-compute the mean of the new region.
 - We repeat the process until no region has the distance less than the threshold.
 - Threshold=0.1

 If the size with number of pixels in a region is smaller than a threshold, the region is merged into its neighboring region with the smallest color difference.

This procedure is repeated until no region has size less than the threshold.

Experimental results

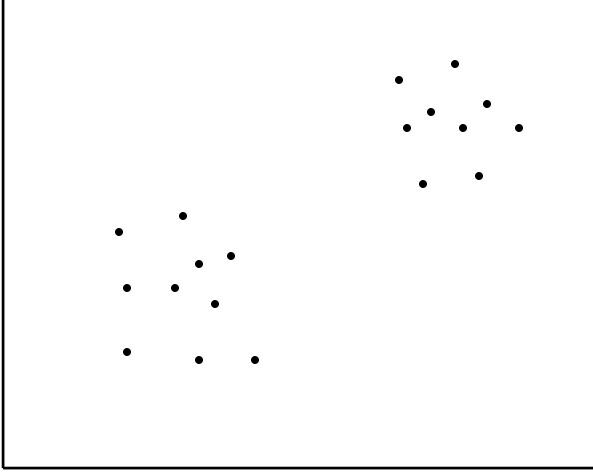


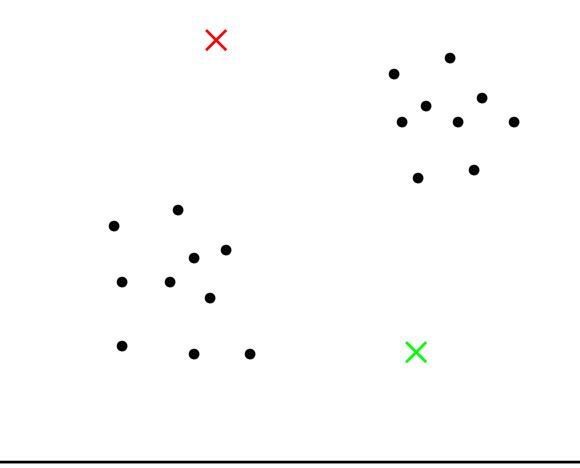
Experimental results

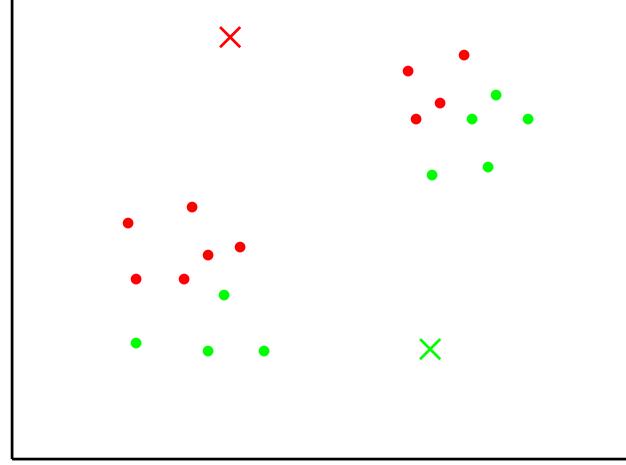
JSEG algorithm.

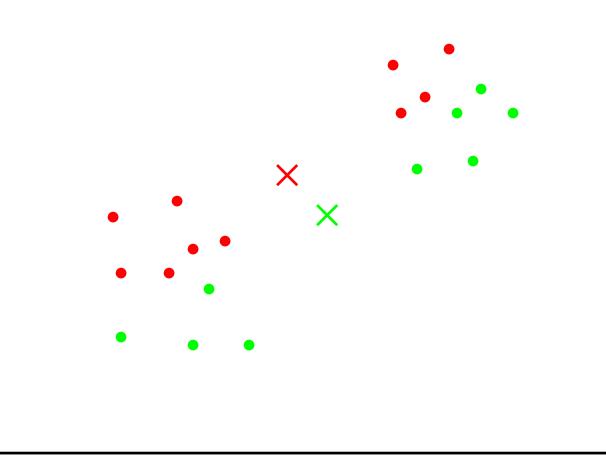
JSEG algorithm.

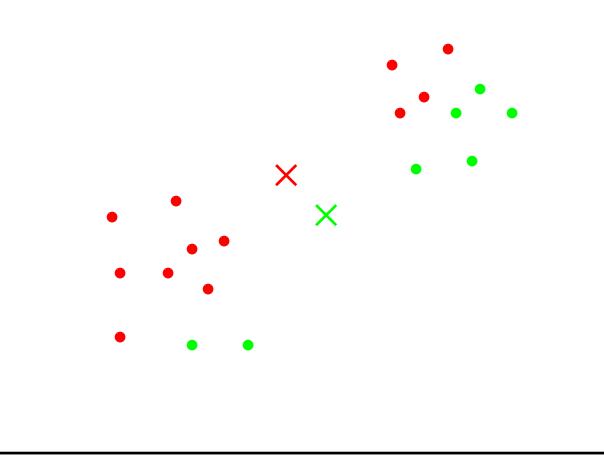
- 1. Partition the data points into K clusters randomly. Find the centroids of each cluster.
- 2. For each data point:
 - Calculate the distance from the data point to each cluster.
 - Assign the data point to the closest cluster.
- **3.** Re-compute the centroid of each cluster.
- 4. Repeat steps 2 and 3 until there is no further change in the assignment of data points (or in the centroids).

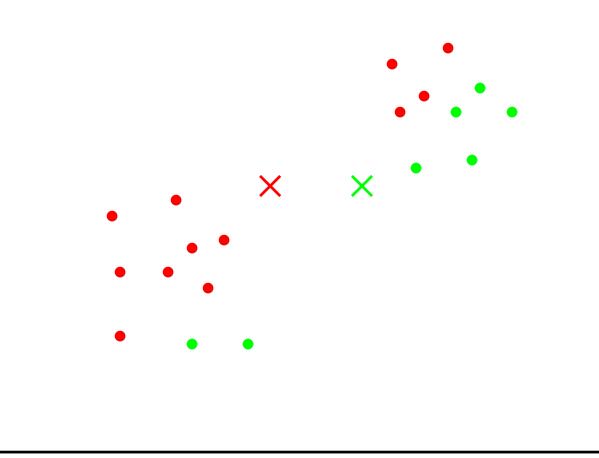


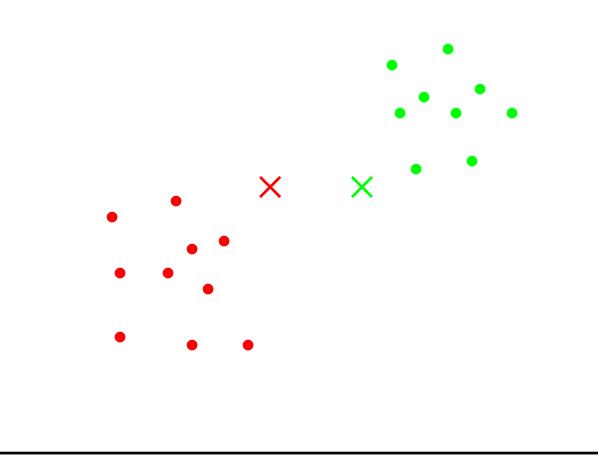


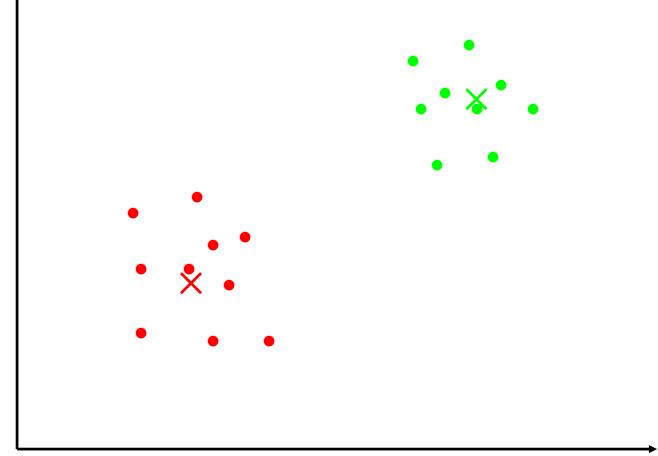


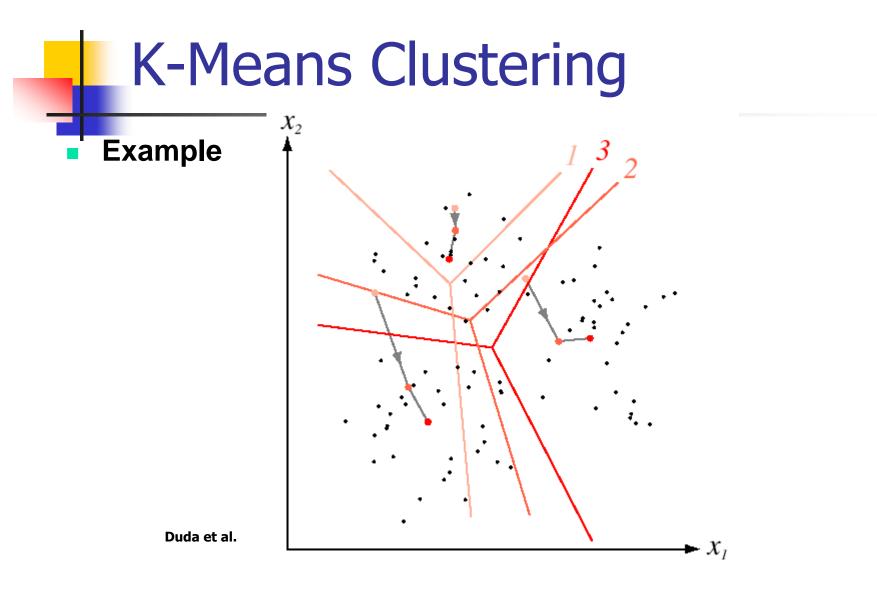


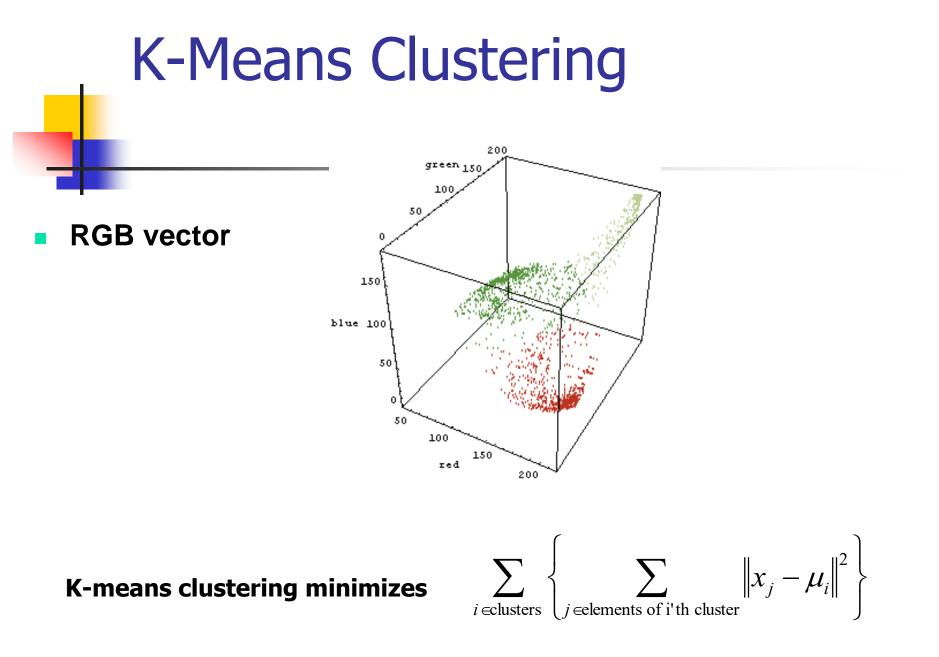










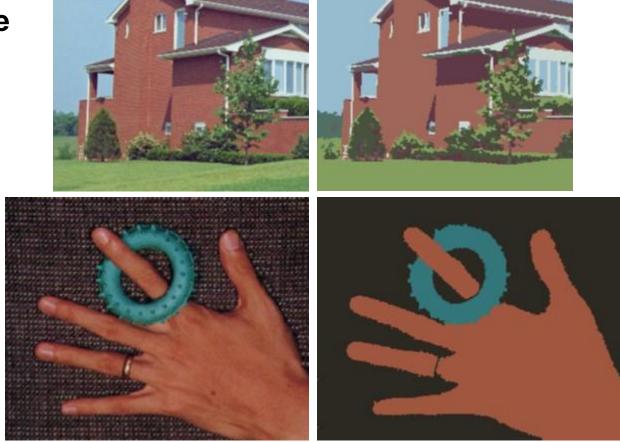


Bahadir K. Gunturk

EE 7730 - Image Analysis I

Clustering

Example



D. Comaniciu and P. Meer, *Robust Analysis of Feature Spaces: Color Image Segmentation*, 1997.

EE 7730 - Image Analysis I

Example

Original

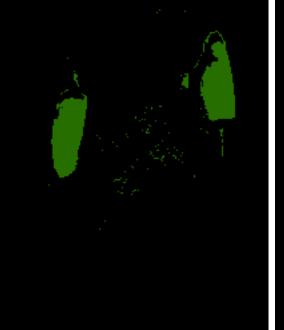
K=5

K=11

Bahadir K. Gunturk

EE 7730 - Image Analysis I

K-means, only color is used in segmentation, four clusters (out of 20) are shown here.



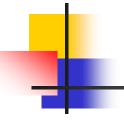
K-means, color and position is used in segmentation, four clusters (out of 20) are shown here.

Each vector is (R,G,B,x,y).

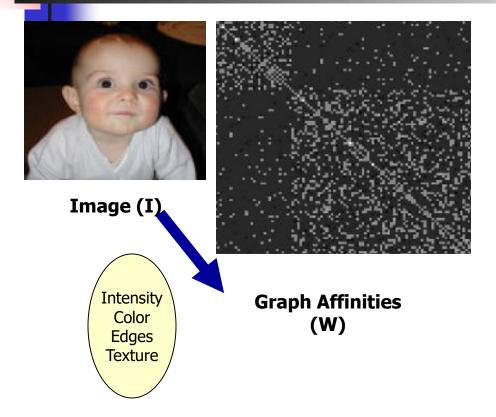
Bahadir K. Gunturk

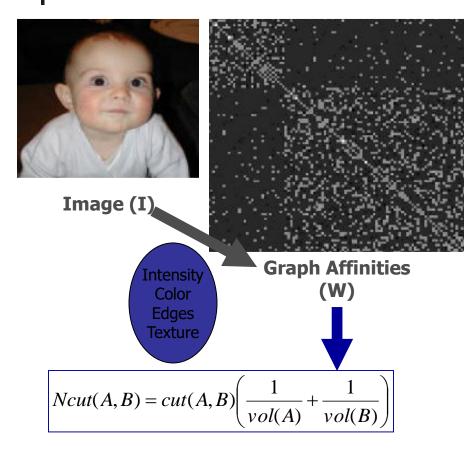
K-Means Clustering: Axis Scaling

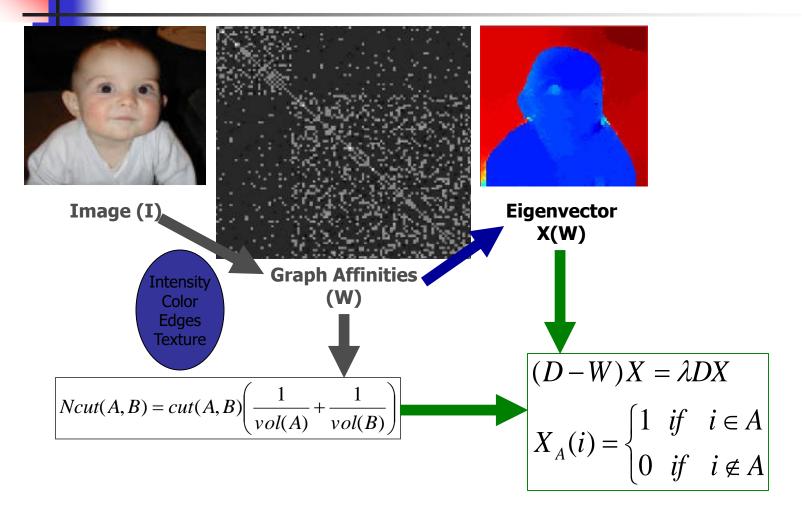
- Features of different types may have different scales.
 - For example, pixel coordinates on a 100x100 image vs. RGB color values in the range [0,1].
- Problem: Features with larger scales dominate clustering.
- Solution: Scale the features.

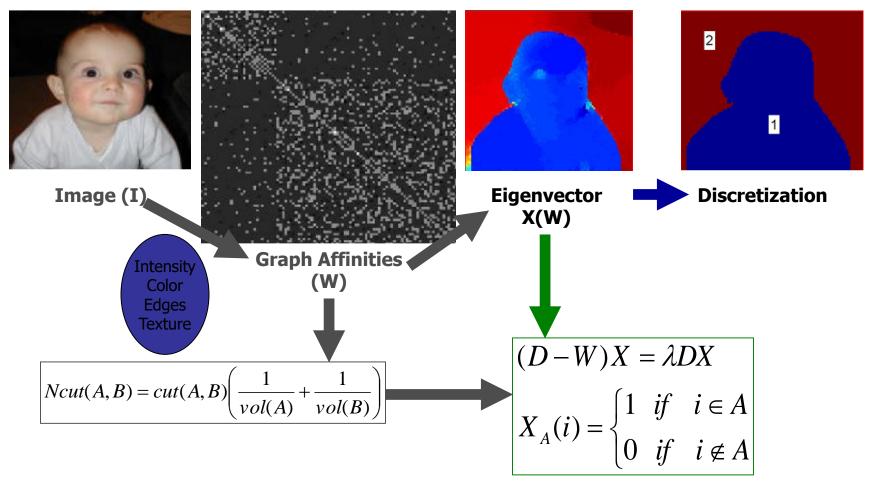


Spectral Clustering for Image Segmentation

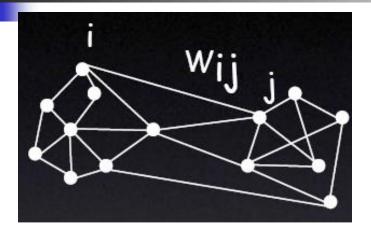








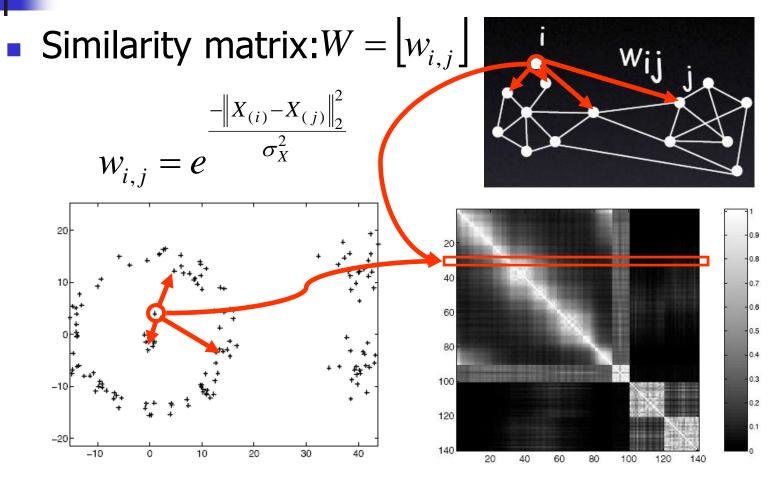
Slide from Timothee Cour (http://www.seas.upenn.edu/~timothee)



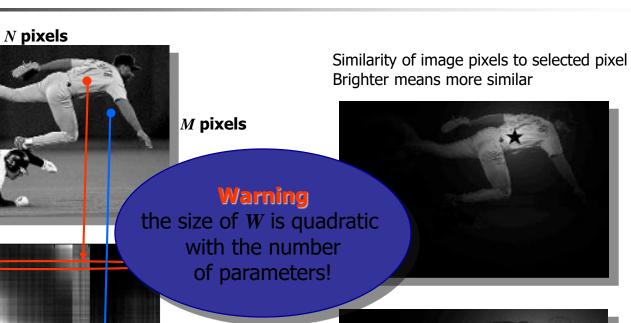
 $\mathbf{G} = \{\mathbf{V}, \mathbf{E}\}$

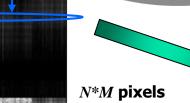
V: graph nodes E: edges connection nodes

Slides from Jianbo Shi



Slides from Jianbo Shi

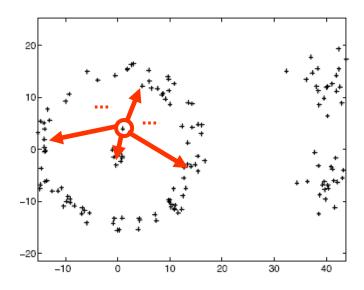


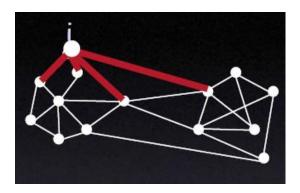


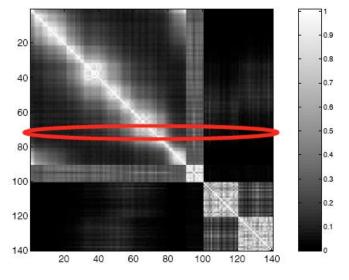
*N*M* pixels

Degree of node:

 $d_i = \sum_j w_{i,j}$



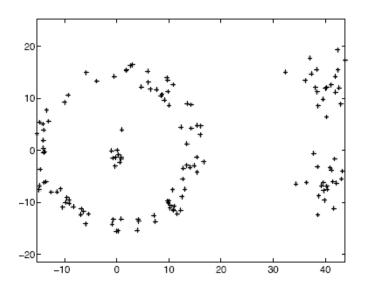


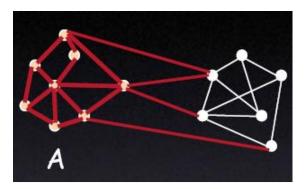


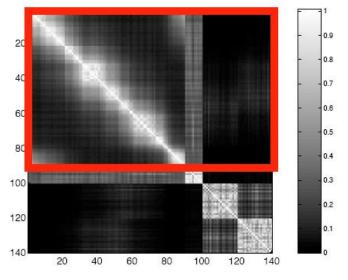
Slides from Jianbo Shi

Volume of set:

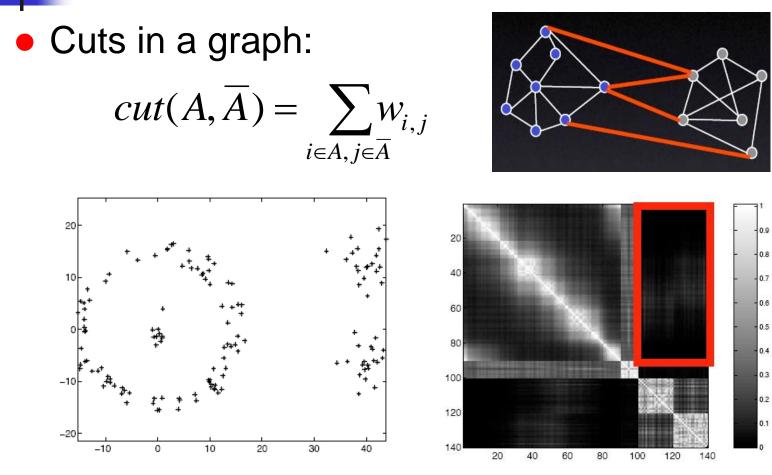
$$vol(A) = \sum_{i \in A} d_i, A \subseteq V$$





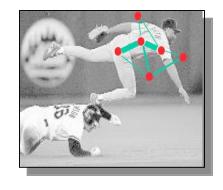


Slides from Jianbo Shi

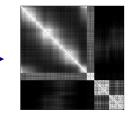


Slides from Jianbo Shi

Partition matrix X: $X = \begin{bmatrix} X_1, \dots, X_K \end{bmatrix}$ $X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

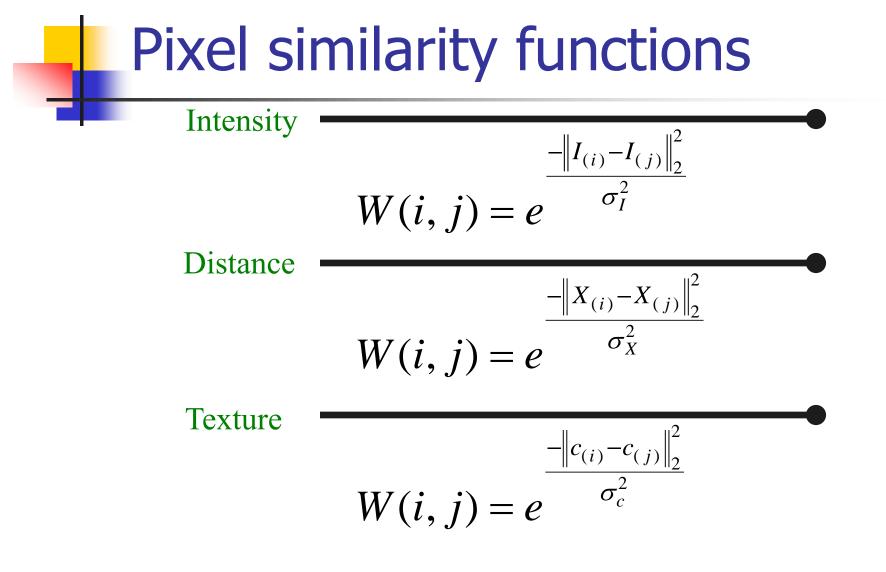


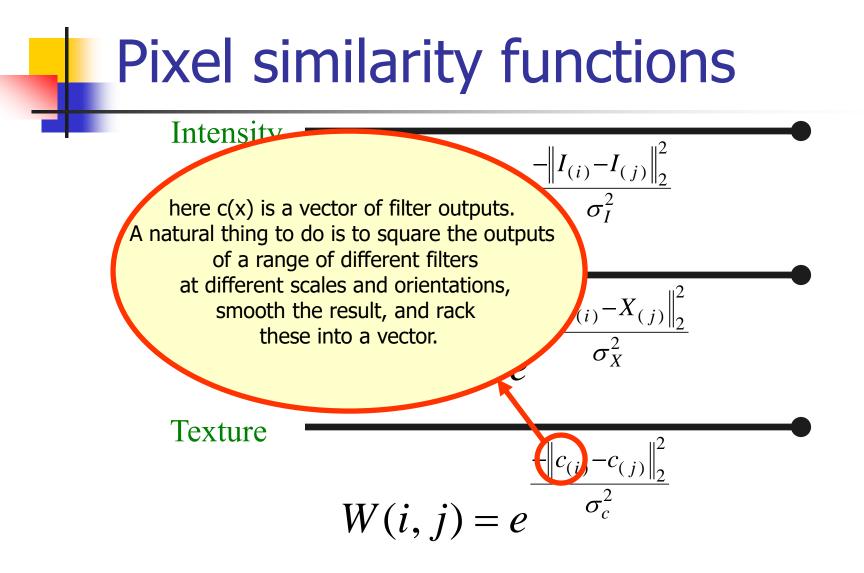
Pair-wise similarity matrix *W*: W(i, j) = aff(i, j)



Degree matrix *D*: $D(i,i) = \sum_{j} W_{i,j}$

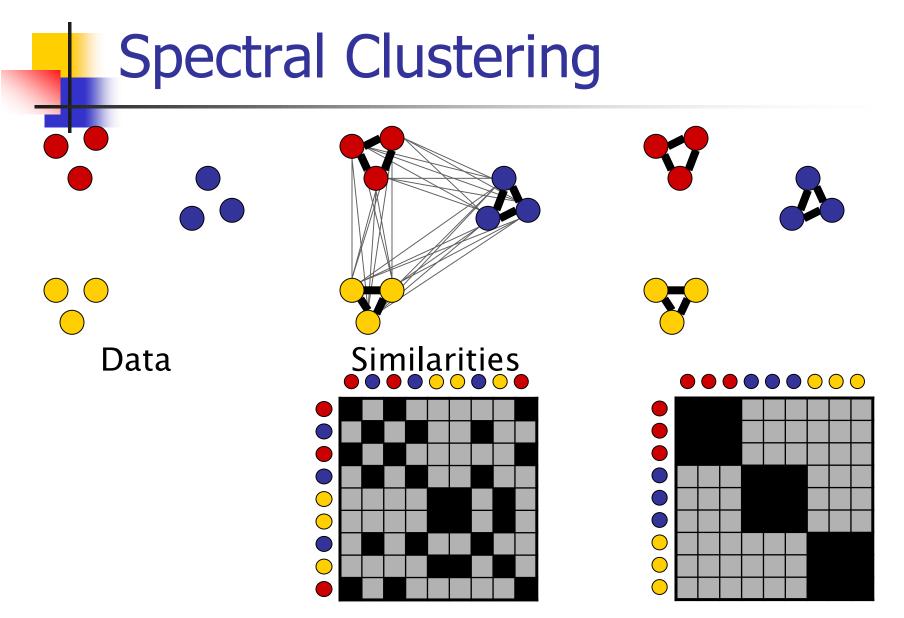
Laplacian matrix *L*: L = D - W





Definitions

- Methods that use the spectrum of the affinity matrix to cluster are known as spectral clustering.
- Normalized cuts, Average cuts, Average association make use of the eigenvectors of the affinity matrix.
- Why these methods work?



* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

Eigenvectors and blocks

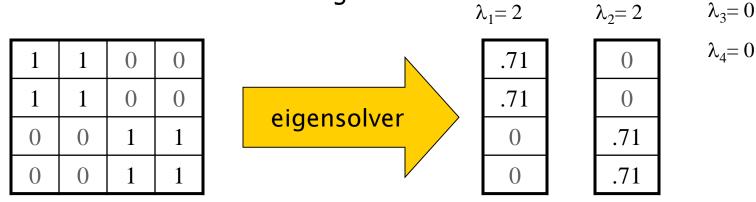
Block matrices have block eigenvectors:

1

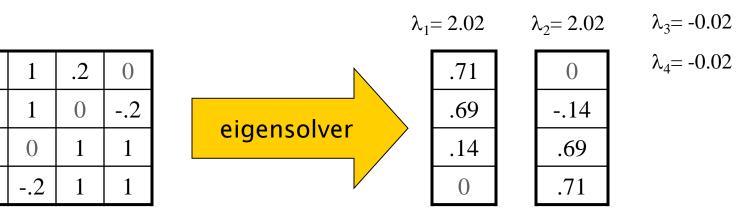
1

.2

()

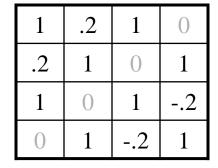


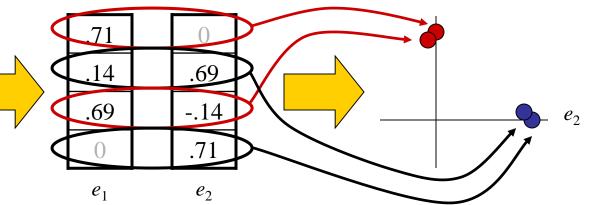
• Near-block matrices have near-block eigenvectors:



* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

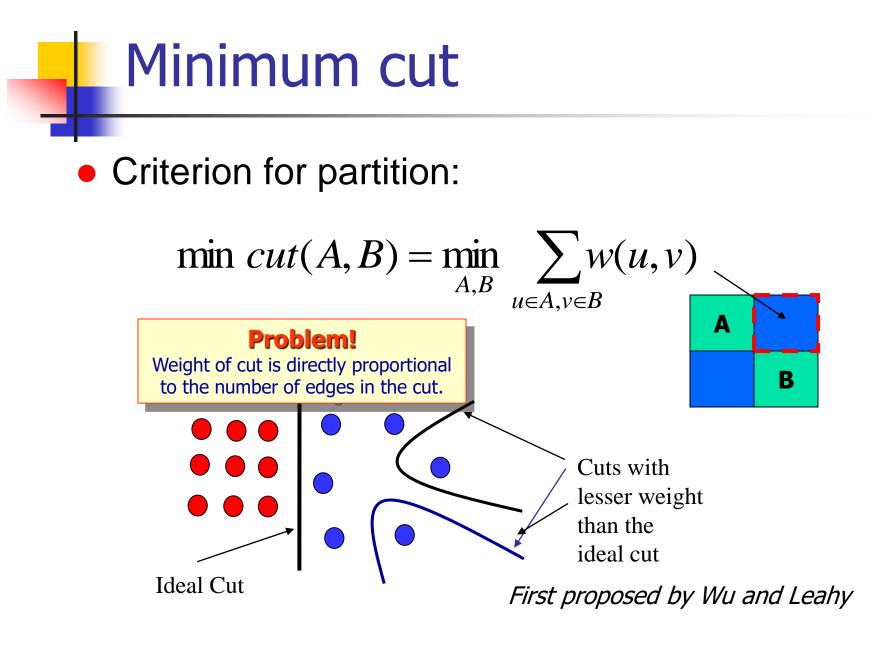
Spectral Space Can put items into blocks by eigenvectors: e_1 .2 1 69 -.2 -.14 1 1 () .2 14 .69 1 ()1 e_2 -.2 • Clusters clear regardless of row ordering: e_1





How do we extract a good cluster?

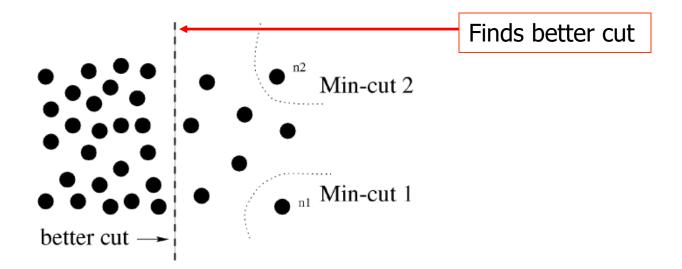
- Simplest idea: we want a vector x giving the association between each element and a cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another
- We could maximize $x^T W x$
- But need the constraint $x^T x = 1$
- This is an eigenvalue problem choose the eigenvector of W with largest eigenvalue.

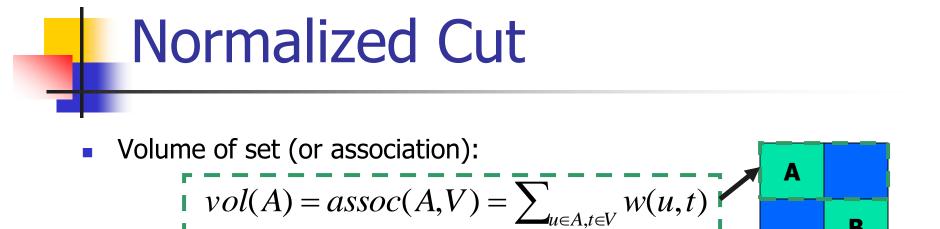


Normalized Cut

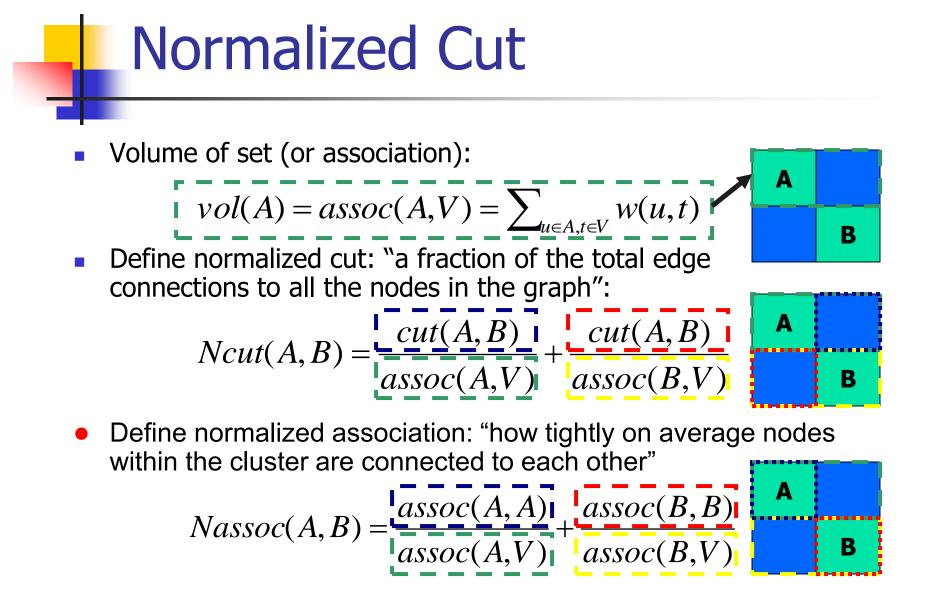
Normalized cut or balanced cut:

$$Ncut(A,B) = cut(A,B) \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right)$$





В



Observations(I)

Maximizing *Nassoc* is the same as minimizing *Ncut*, since they are related:

$$Ncut(A, B) = 2 - Nassoc(A, B)$$

• How to minimize Ncut? • Transform Ncut equation to a matricial form. • After simplifying: $\min_{x} Ncut(x) = \min_{y} \underbrace{y^{T}(D+W)y}_{y^{T}Dy}$ NP-Hard! Subject to: $y^{T}D1 = 0$ • NP-Hard! y's values are y's values are

Observations(II)

 Instead, relax into the continuous domain by solving generalized eigenvalue system:

 $\min_{y} (y^{T} (D - W)y) \text{ subject to } (y^{T} Dy = 1)$

- Which gives: $(D-W)y = \lambda Dy$
- Note that (D-W)1=0 so, the first eigenvector is $y_0=1$ with eigenvalue 0.
- The second smallest eigenvector is the real valued solution to this problem!!

Algorithm

Define a similarity function between 2 nodes. i.e.:

$$w_{i,j} = e^{\frac{-\|F_{(i)} - F_{(j)}\|_{2}^{2}}{\sigma_{I}^{2}} + \frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$$

2. Compute affinity matrix (W) and degree matrix (D).

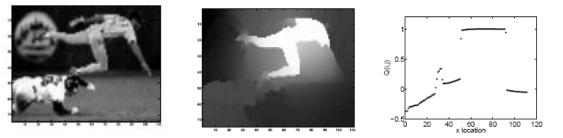
3. Solve
$$(D-W)y = \lambda Dy$$

- 4. Use the eigenvector with the second smallest eigenvalue to bipartition the graph.
- 5. Decide if re-partition current partitions.

Note: since precision requirements are low, *W* is very sparse and only few eigenvectors are required, the eigenvectors can be extracted very fast using Lanczos algorithm.

Discretization

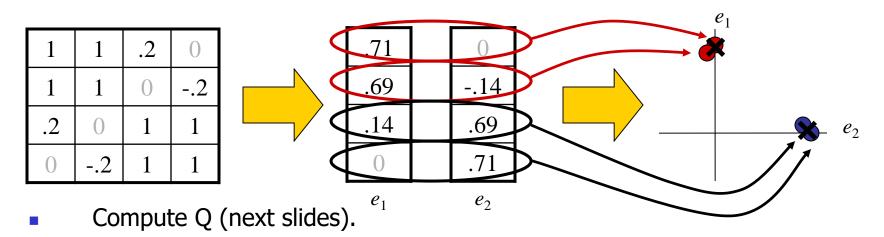
Sometimes there is not a clear threshold to binarize since eigenvectors take on continuous values.



- How to choose the splitting point?
 - a) Pick a constant value (0, or 0.5).
 - b) Pick the median value as splitting point.
 - c) Look for the splitting point that has the minimum *Ncut* value:
 - 1. Choose *n* possible splitting points.
 - 2. Compute *Ncut* value.
 - 3. Pick minimum.

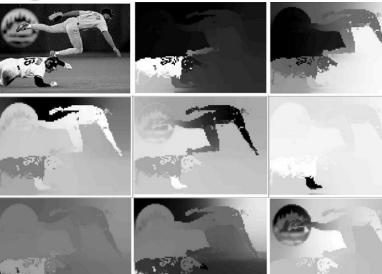
Use *k*-eigenvectors

- Recursive 2-way *Ncut* is slow.
- We can use more eigenvectors to re-partition the graph, however:
 - Not all eigenvectors are useful for partition (degree of smoothness).
- Procedure: compute *k*-means with a high *k*. Then follow one of these procedures:
 - ^{a)} Merge segments that minimize *k*-way *Ncut* criterion.
 - b) Use the k segments and find the partitions there using exhaustive search.



Example

Eigenvectors

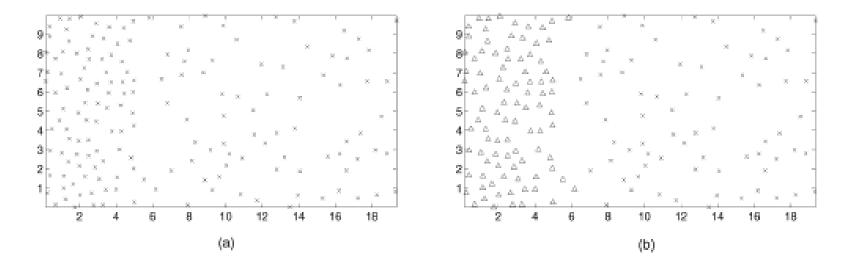


Segments

Experiments

Define similarity: $w_{i,j} = e^{\frac{-\|F_{(i)} - F_{(j)}\|_{2}^{2} + -\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{I}^{2}} + \frac{\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$ F(i) = 1 for point sets. F(i) = I(i) for brightness images. $F(i) = [v, v.s. \sin(h), v.s. \cos(h)] \text{ for HSV images.}$ $F(i) = [|I^{*} f_{1}|, \dots, |I^{*} f_{n}|] \text{ in case of texture.}}$

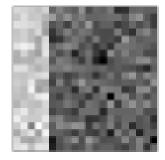
Point set segmentation:

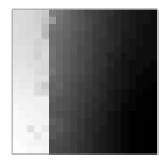


(a) Pointset generated by Poisson process. (b) Segmentation results.

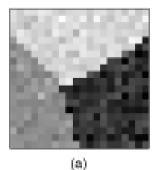
Experiments (II)

Synthetic images:

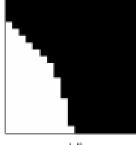




(a)



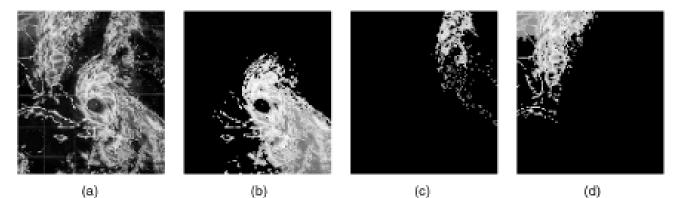
(b)

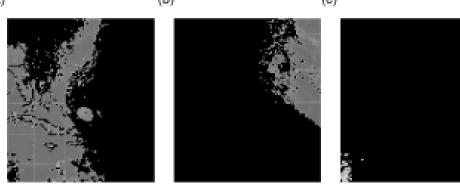


(d)

Experiments (III)

Weather radar:



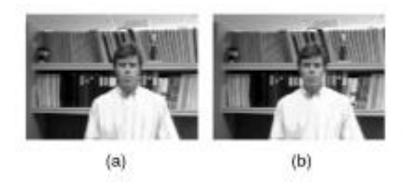


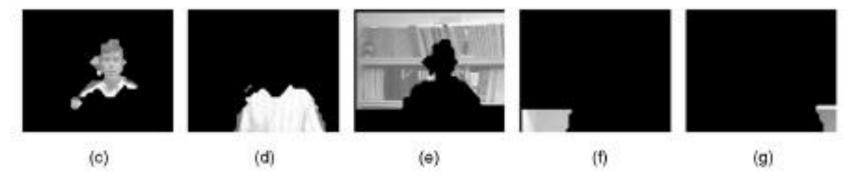
 (\mathbf{e})

(g)

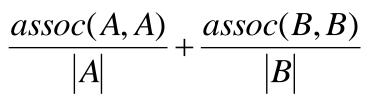
Experiments (IV)

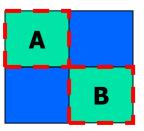
Motion segmentation





- Average association
 - Use the eigenvector of W associated to the biggest eigenvalue for partitioning.
 - Tries to maximize:

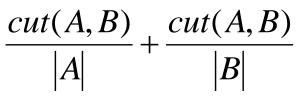




 Has a bias to find tight clusters. Useful for Gaussian distributions.

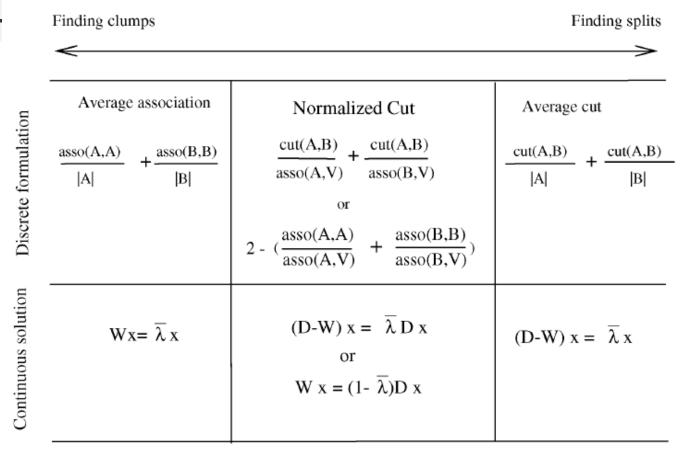
Average cut

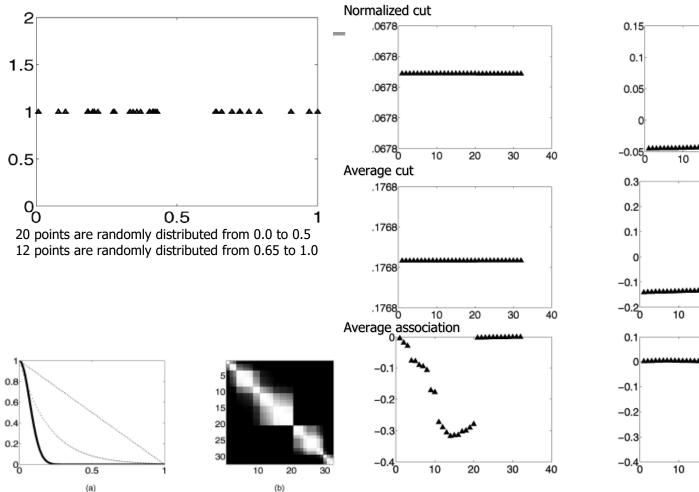
Tries to minimize:

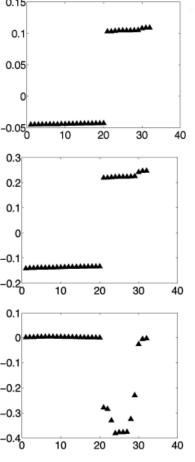


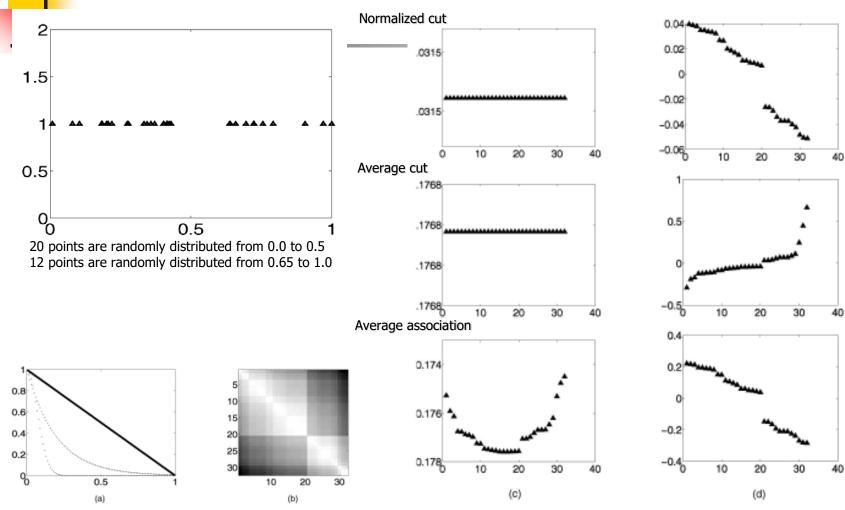
Very similar to normalized cuts.

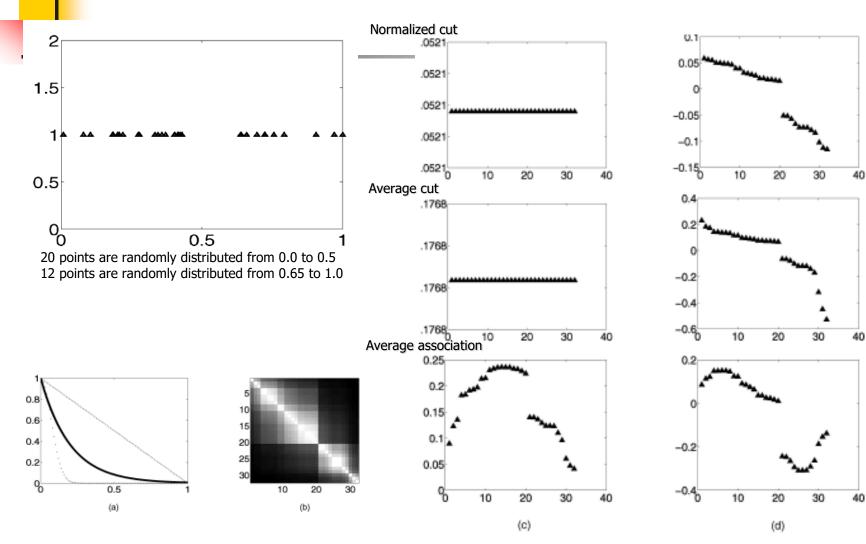
 We cannot ensure that partitions will have a a tight within-group similarity since this equation does not have the nice properties of the equation of normalized cuts.











Spectral Clustering for Image Segmentation

Good news:

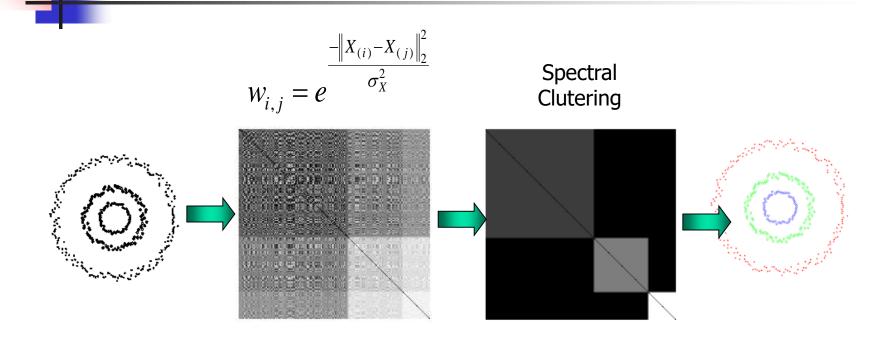
- Simple and powerful methods to segment images.
- Flexible and easy to apply to other clustering problems.

Bad news:

- High memory requirements (use sparse matrices).
- Very dependant on the scale factor for a specific problem. $-\|X_{(i)}-X_{(j)}\|_{2}^{2}$

$$W(i,j) = e^{\frac{\pi}{\sigma_X^2}}$$

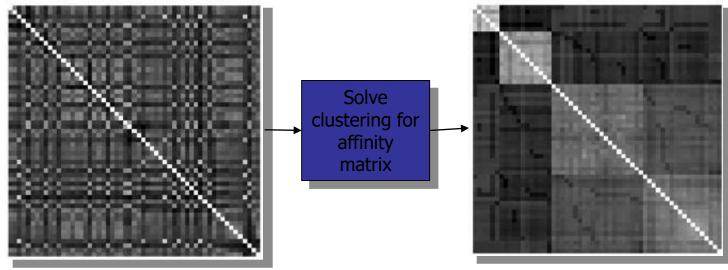
Examples



Images from Matthew Brand (TR-2002-42)

Spectral clustering

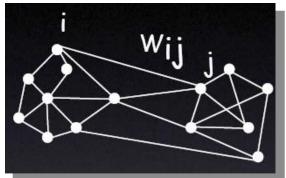
Makes use of the spectrum of the similarity matrix of the data to cluster the points.



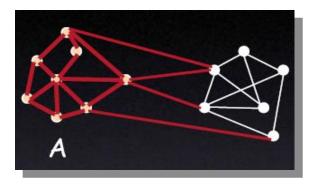
 $w(i,j) \rightarrow$ distance node i to node j

Graph terminology

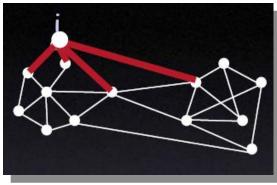
Similarity matrix:
$$W = \left[w_{i,j} \right]$$



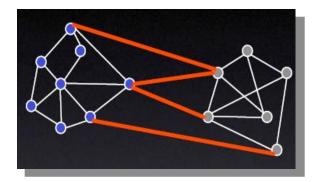
Volume of set:



Degree of node:
$$d_i = \sum w_{i,j}$$



Graph cuts:



Normalized cuts results

