
Automatic Search of Neural Network
Architectures

Jianping Fan

Department of Computer Science

UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html

Neural Network Architecture Selection

One of the most tedious tasks in the world of Machine Learning

is designing and building neural network architectures.

Typically humans will spend hours or days trying to iterate

through different neural network architecture with different

hyper parameters in order to optimize an objective function for

a task at hand. This is very time consuming and often prone to

errors.

Google introduced the idea of implementing Neural Network

Search by employing evolutionary algorithms and

reinforcement learning in order to design and find optimal

neural network architecture. In essence, what this is doing is

that it is training to create a layer and then stacking those

layers to create a Deep Neural Network architecture. This area

of research has a drawn a lot of attention recently.

NASNet: Learning Transferable Architectures for Scalable Image

Recognition, CVPR 2017

Tradeoffs for deployable DNN models
for automotive deep learning practitioners

4

Low
Develop

ment

Cost

Low
Comp

ute
Resour

ce
Usage

Low
Error

Benchmark-winning
off-the-shelf DNNs

Under-provisioned
less-accurate DNNs

Manually design a new DNN from scratch

Neural Architecture Search (NAS) to the Rescue
NAS can co-optimize resource-efficiency and accuracy

5

Low
Develop

ment

Cost

Low
Comp

ute
Resour

ce
Usage

Neural
Architec

ture
Search

(NAS)
Low
Error

Under-provisioned
less-accurate DNNs

Manually design a new DNN from scratch

Benchmark-winning
off-the-shelf DNNs

• Related work on
• Neural Architecture Search

Neural Architecture Search

• We want to find networks that are the best tradeoff
of compute and accuracy in some search space

• Within some search space we can vary the number
of layers, channels, kernel size, connections, etc…

• It is beyond intractable to train every one

• Can we do better?
• Random Search
• Genetic Search

• Reinforcement Learning
• Differential Search (Gradient Based)

8

• NAS with
Reinforcement

• Learning
• Block-level search [1]• Use a Recurrent Neural Network in a RL

loop to generate entire child network for
the CIFAR dataset updating after each
model has trained

• Achieved 0.09% better accuracy at the
time and 1.05x faster on CIFAR-10

• 800 Nvidia K40 GPUs for 28 days =
537,600 GPU Hours

• Search performed on small dataset

• Better than brute force approach but still
too much compute too be practical

• [1] B. Zoph, Q. Le. Neural Architecture Search with
Reinforcement Learning. ICLR, 2018.

9

• Use a Recurrent Neural Network in a
RL loop to generate cells using CIFAR-
10 as proxy task then adapted to
ImageNet

• Achieved 1.20% better accuracy
while being 28% faster on
ImageNet1000

• 500 Nvidia P100 GPUs for 4 days =
48,000 GPU Hours

• cells are all the same (unlike [1])

• More efficient than previous method
but still expensive

• [1] B. Zoph, Q. Le. Neural Architecture Search
with Reinforcement Learning. ICLR, 2018.

• [2] B. Zoph et al. Learning Transferable
Architectures for Scalable Image Recognition.
CVPR, 2018.

• NAS with
Reinforcement

• Learning
• Cell-level search [2]

10

• Differential
Search

• FBNet [3]• Use a gradient based stochastic supernet
that is dually optimized on a 10% subset
of ImageNet which is then trained on
ImageNet 1k

• Uses Gumbel-Softmax to sample from
categorical distribution for layer choices
weighted by learnable parameters

• FBNet-B achieved MobileNetV2-1.3
Accuracy while being 1.5x lower latency

• 216 P100 GPU hours Search Cost

• Search Space inspired by MobilenetV2

• [3] B. Wu, et al. FBNet: Hardware-Aware Efficient
ConvNet Design via Differentiable Neural
Architecture Search. CVPR, 2019.

Other Related Work

• Genetic Search
• AmoebaNet[1]

• Tournament Selection Evolutionary on Cell Space

• 75,600 K40 GPU hours

• Reinforcement Learning
• MnasNet[2]

• Latency Aware Block level Search

on proxy ImageNet

• 6912 TPUv2 hours ≈ 48,000 P100 GPU hours

• Differential Search
• DARTS[3]

• Gradient Based Cell Search performed

on CIFAR-10

• 96 1080 TI GPU hours

[1] E. Real et al. Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019.
[2] M. Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019.
[3] H. Liu et al. DARTS: Differentiable Architecture Search. ICLR, 2019.

• Applying NAS to design DNNs for
semantic segmentation

Classification vs Semantic Segmentation

Examples of image classification

(ImageNet[1])

Example of Semantic

Segmentation (Cityscapes[2])• Image level prediction
• Location Invariant
• Low Resolution (224x224 input)
• SOTA Networks compute: ~10 GFLOPs

• Networks designed for task and are trained
from scratch

• Pixel level prediction
• Location Variant
• High Resolution (1024x2048 input)
• SOTA Networks range: ~1 TFLOPS

• SS Networks are adapted from classification
networks and then retrained.

[1] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV,

2015.

[2] M. Cordts et al. The Cityscapes Dataset for Semantic Urban Scene

Understanding. CVPR, 2016.

Classification vs Semantic Segmentation (cont.)

Examples of image classification Example of Semantic

Segmentation (DeepLabV3[1])

[1] LC. Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation, 2017.

• Image level prediction
• Location Invariant
• Low Resolution (224x224 input)
• SOTA Networks compute: ~10 GFLOPs

• Networks designed for task and are trained
from scratch

• Pixel level prediction
• Location Variant
• High Resolution (1024x2048 input)
• SOTA Networks range: ~1 TFLOPS

• SS Networks are adapted from classification
networks and then retrained.

Applying NAS to design DNNs for semantic
segmentation

• Goal: advance the frontier of accuracy/efficiency on Semantic Segmentation

• Related work typically starts with ImageNet training, then adapts and fine-tunes
the DNN for semantic segmentation

• If we do NAS directly on sematic segmentation (rather than starting with
ImageNet), will this give us better results?

Examples of image classification

(ImageNet)

Example of Semantic

Segmentation (Cityscapes)

SqueezeNAS: An Adaptation of FBNet for
Semantic Segmentation Search
• Stochastic Super Network

• Run all units in parallel

• Perform weighted sum of activations where weights

are sampled from Gumbel-Softmax

• 2 types of learned parameters: Convolution

parameters and architecture parameters

• Resource aware learned architecture parameter

• A unit in the meta-network is chosen by its
architecture parameter plus a random variable

• Optimize parameters of network (convolutions) and
parameters for unit choices in an alternating fashion

• Proxylesstraining
• We train directly on high-resolution cityscapes

• Training until both convolution parameters and unit
parameters converge

Figure courtesy of Bichen Wu

• Training scheme

NAS on
ImageNet-

100
(classificat

ion)

Select best
DNNs;

train them on
ImageNet-1k

(classification)

FBNet training flow

SuperNetw
ork Training

on
Cityscapes

Fine
(segmentat

ion)

Select best
DNNs;

train them on
ImageNet-1k

(classification)

SqueezeNAS training flow

Finetune on
COCO

(segmentati
on)

Finetune on
Cityscapes

Coarse
(segmentatio

n)

Finetune on
Cityscapes

Fine
(segmentati

on)

Sample
candidate
networks

from
SuperNetwo

rk

Evaluate
candidates

on
ImageNet-

100
Validation

setSample
candidate
networks

from
SuperNetwo

rk

Evaluate
candidates

on
Cityscapes

fine
Validation

set

• Search
Space

Expansi

on 6

Expansion

3

Expansion

1

Expansion

1

(grouped

conv)

3x3 3x3

dilate

d

5x5 skip

• Search
Space

• (cont)

SqueezeNAS

We employ the encoder-decoder depthwise head from

DeepLab V3+[1] while allowing the base network to be

completely learned

[1] Chen et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, ECCV 2018

• SqueezeNAS Results

SqueezeNAS: CityScapes Results

Enet[1]

CCC2[

2]

EDANet[

3]

MobileNetV2[4]

SqueezeNA

S-3

SqueezeNA

S-9

SqueezeNAS-

23

Name MACs
(Billions)

Class mIOU
on Cityscapes

SqueezeNAS-3 3.5 67.5

SqueezeNAS-9 9.4 72.4

SqueezeNAS-
23

23.2 74.8

Enet[1] 4.4 58.3

CCC2[2] 6.3 62.0

EDANet[3] 9.0 65.1

MobileNetV2
OS=16[4]

21.3 [5] 70.7 [5]

CCC DRN
A50[6]

68.7 67.6

CCC DRN

A50[6]

[1] Paszke, Adam et al. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, 2016

[2] Park, Hyojin et al. Concentrated-Comprehensive Convolutions for lightweight semantic segmentation, 2018

[3] Lo, Shao-Yuan et al. Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation, 2018

[4] Sandler, Mark et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018.

[5] https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md

[6] Yu, Fisher et al. Dilated Residual Networks, CVPR 2017.

• Resulting
Network

s

Legend

(Unit

Type)
1x1->unit-

>1x1MobileN

etV2

Classific

ationMobileNet

V2

DeepLabV

3SqueezeN

AS-3

SqueezeN

AS-9

SqueezeN

AS-23

3x3 3x3

dilated

5x5 3x3
downsam

ple

5x5
downsam

ple

MACs
(Giga)

mIOU
%

21.3 70.71

3.5 67.5

9.4 72.4

23.2 74.8

Box Width

represents

channel

expansion

S q u e e z e N A S

skip

Analysis of Networks

• Dilation (Atous) Convolutions use later in the network
• All of our Searches led to heavily dilated networks towards the head with no

priors

• This follows human intuition from many SOTA segmentation papers

(DeepLab V3)

• DownsampleUnits
• Our networks also typically picked the most computationally expensive unit

when performing a Downsample (strided unit)

• This is different from typical networks which usually perform a 3x3 kernel

when performing a strided convolution

• Non-Uniform Compute
• Our networks varied the amount of compute each unit used unlike typical

networks (ResNet, MobileNet, etc) which use the same of amount of compute

per unit throughout the network

• The low-compute, high-compute alternating pattern could be explained by the

network trading off spatial features vs pixel-wise features

SqueezeNAS: Search Time Results

Name NAS
Method

Search Time
(GPU Hours)

Dataset Searched on

SqueezeNAS-3 gradient 152 CityScapes

SqueezeNAS-9 gradient 248 CityScapes

SqueezeNAS-23 gradient 316 CityScapes

Neural Architecture Search with Reinforcement
Learning

RL 537,600 CIFAR-10

NASNet RL 48,000 CIFAR-10

mNasNet RL 48,000* Proxy ImageNet

AmoebaNet genetic 75,600 CIFAR-10

FBNet gradient 216 Proxy ImageNet

DARTS gradient 96 CIFAR-10

* Approximated from TPUv2 Hours

SqueezeNAS: Implementation details
• 13 candidates per unit for 22 layers (1024 possible networks)

• Randomly initialize SuperNetworkand train only convolution weights early on then switch to
alternating pattern

• We train in FP16 (half precision) for network and FP32 for the architecture parameters. This also cut
GPU memory use in half and allowed us to leverage tensor cores

• We train the SuperNetworkon Cityscapes fine with 768x768 patches with flip, crop and scale
augmentations

• After SuperNetworkhas converged:
• Sample candidate networks via the Gumbel-Softmax
• Run each sampled candidate network on the validation set of Cityscapes

fine.
• Put best of these candidates through the full DeepLabv3+[1] training

Regime*
• ImageNet 90 epochs at 224x224

• COCO 30 epochs at 768x768

• CityScapes Coarse (40 epochs) and Fine (100 epochs) with the same regime as the SuperNetwork

[1] Chen et al. Encoder-Decoder with AtrousSeparable Convolution for Semantic Image Segmentation, ECCV 2018

PNASNet: Progressive Neural Architecture Search, ECCV 2018

ENAS — Efficient Neural Architecture Search

https://arxiv.org/pdf/1802.03268.pdf

DARTS: DIFFERENTIABLE ARCHITECTURE

SEARCH, ICLR 2019

An overview of DARTS: (a) Operations on the edges are

initially unknown. (b) Continuous relaxation of the search

space by placing a mixture of candidate operations on each

edge. (c) Joint optimization of the mixing probabilities and

the network weights by solving a bi-level optimization

problem. (d) Inducing the final architecture from the learned

mixing probabilities.

AmoebaNet — Regularized Evolution for Image Classifier Architecture

Search, AAAI 2018

https://arxiv.org/abs/1802.01548

