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Neural Network Architecture Selection

One of the most tedious tasks in the world of Machine Learning 

is designing and building neural network architectures. 

Typically humans will spend hours or days trying to iterate 

through different neural network architecture with different 

hyper parameters in order to optimize an objective function for 

a task at hand. This is very time consuming and often prone to 

errors. 

Google introduced the idea of implementing Neural Network 

Search by employing evolutionary algorithms and 

reinforcement learning in order to design and find optimal 

neural network architecture. In essence, what this is doing is 

that it is training to create a layer and then stacking those 

layers to create a Deep Neural Network architecture. This area 

of research has a drawn a lot of attention recently.



NASNet: Learning Transferable Architectures for Scalable Image 

Recognition, CVPR 2017



Tradeoffs for deployable DNN models
for automotive deep learning practitioners
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Neural Architecture Search (NAS) to the Rescue
NAS can co-optimize resource-efficiency and accuracy
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• Related work on 
• Neural Architecture Search



Neural Architecture Search

• We want to find networks that are the best tradeoff 
of compute and accuracy in some search space

• Within some search space we can vary the number 
of layers, channels, kernel size, connections, etc…

• It is beyond intractable to train every one

• Can we do better?
• Random Search
• Genetic Search

• Reinforcement Learning
• Differential Search (Gradient Based)
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• NAS with 
Reinforcement 

• Learning
• Block-level search [1]• Use a Recurrent Neural Network in a RL 

loop to generate entire child network for 
the CIFAR dataset updating after each 
model has trained

• Achieved 0.09% better accuracy at the 
time and 1.05x faster on CIFAR-10

• 800 Nvidia K40 GPUs for 28 days = 
537,600 GPU Hours

• Search performed on small dataset

• Better than brute force approach but still 
too much compute too be practical

• [1] B. Zoph, Q. Le. Neural Architecture Search with 
Reinforcement Learning. ICLR, 2018.
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• Use a Recurrent Neural Network in a 
RL loop to generate cells using CIFAR-
10 as proxy task then adapted to 
ImageNet

• Achieved 1.20% better accuracy 
while being 28% faster on 
ImageNet1000

• 500 Nvidia P100 GPUs for 4 days = 
48,000 GPU Hours

• cells are all the same (unlike [1])

• More efficient than previous method 
but still expensive

• [1] B. Zoph, Q. Le. Neural Architecture Search 
with Reinforcement Learning. ICLR, 2018.

• [2] B. Zoph et al. Learning Transferable 
Architectures for Scalable Image Recognition. 
CVPR, 2018.

• NAS with 
Reinforcement 

• Learning
• Cell-level search [2]
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• Differential 
Search

• FBNet [3]• Use a gradient based stochastic supernet
that is dually optimized on a 10% subset 
of ImageNet which is then trained on 
ImageNet 1k

• Uses Gumbel-Softmax to sample from 
categorical distribution for layer choices 
weighted by learnable parameters

• FBNet-B achieved MobileNetV2-1.3 
Accuracy while being 1.5x lower latency

• 216 P100 GPU hours Search Cost

• Search Space inspired by MobilenetV2

• [3] B. Wu, et al. FBNet: Hardware-Aware Efficient 
ConvNet Design via Differentiable Neural 
Architecture Search. CVPR, 2019.



Other Related Work

• Genetic Search
• AmoebaNet[1]

• Tournament Selection Evolutionary on Cell Space 

• 75,600 K40 GPU hours

• Reinforcement Learning
• MnasNet[2]

• Latency Aware Block level Search 

on proxy ImageNet 

• 6912 TPUv2 hours  ≈ 48,000 P100 GPU hours

• Differential Search
• DARTS[3]

• Gradient Based Cell Search performed 

on CIFAR-10

• 96 1080 TI GPU hours

[1] E. Real et al. Regularized Evolution for Image Classifier Architecture Search. AAAI, 2019.
[2] M. Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR, 2019.
[3] H. Liu et al. DARTS: Differentiable Architecture Search. ICLR, 2019.



• Applying NAS to design DNNs for 
semantic segmentation



Classification vs Semantic Segmentation

Examples of image classification 

(ImageNet[1])

Example of Semantic 

Segmentation (Cityscapes[2])• Image level prediction
• Location Invariant
• Low Resolution (224x224 input)
• SOTA Networks compute: ~10 GFLOPs

• Networks designed for task and are trained 
from scratch

• Pixel level prediction
• Location Variant
• High Resolution (1024x2048 input)
• SOTA Networks range: ~1 TFLOPS

• SS Networks are adapted from classification 
networks and then retrained.

[1] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, 

2015.

[2] M. Cordts et al. The Cityscapes Dataset for Semantic Urban Scene 

Understanding. CVPR, 2016.



Classification vs Semantic Segmentation (cont.)

Examples of image classification Example of Semantic 

Segmentation (DeepLabV3[1])

[1] LC. Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation, 2017.

• Image level prediction
• Location Invariant
• Low Resolution (224x224 input)
• SOTA Networks compute: ~10 GFLOPs

• Networks designed for task and are trained 
from scratch

• Pixel level prediction
• Location Variant
• High Resolution (1024x2048 input)
• SOTA Networks range: ~1 TFLOPS

• SS Networks are adapted from classification 
networks and then retrained.



Applying NAS to design DNNs for semantic 
segmentation

• Goal: advance the frontier of accuracy/efficiency on Semantic Segmentation 

• Related work typically starts with ImageNet training, then adapts and fine-tunes 
the DNN for semantic segmentation

• If we do NAS directly on sematic segmentation (rather than starting with 
ImageNet), will this give us better results? 

Examples of image classification 

(ImageNet)

Example of Semantic 

Segmentation (Cityscapes)



SqueezeNAS: An Adaptation of FBNet for 
Semantic Segmentation Search
• Stochastic Super Network

• Run all units in parallel 

• Perform weighted sum of activations where weights 

are sampled from Gumbel-Softmax

• 2 types of learned parameters: Convolution 

parameters and architecture parameters

• Resource aware learned architecture parameter

• A unit in the meta-network is chosen by its 
architecture parameter plus a random variable

• Optimize parameters of network (convolutions) and 
parameters for unit choices in an alternating fashion

• Proxylesstraining
• We train directly on high-resolution cityscapes

• Training until both convolution parameters and unit 
parameters converge

Figure courtesy of Bichen Wu



• Training scheme
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• Search 
Space

• (cont)

SqueezeNAS

We employ the encoder-decoder depthwise head from 

DeepLab V3+[1] while allowing the base network to be 

completely learned

[1] Chen et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, ECCV 2018



• SqueezeNAS Results



SqueezeNAS: CityScapes Results

Enet[1]

CCC2[

2]

EDANet[

3]

MobileNetV2[4]

SqueezeNA

S-3

SqueezeNA

S-9

SqueezeNAS-

23

Name MACs 
(Billions)

Class mIOU
on Cityscapes

SqueezeNAS-3 3.5 67.5

SqueezeNAS-9 9.4 72.4

SqueezeNAS-
23

23.2 74.8

Enet[1] 4.4 58.3

CCC2[2] 6.3 62.0

EDANet[3] 9.0 65.1

MobileNetV2 
OS=16[4]

21.3 [5] 70.7 [5]

CCC DRN 
A50[6]

68.7 67.6

CCC DRN 

A50[6]

[1] Paszke, Adam et al. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, 2016 

[2] Park, Hyojin et al. Concentrated-Comprehensive Convolutions for lightweight semantic segmentation, 2018

[3] Lo, Shao-Yuan et al. Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation, 2018

[4] Sandler, Mark et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018.

[5] https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md

[6] Yu, Fisher et al. Dilated Residual Networks, CVPR 2017.
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Analysis of Networks

• Dilation (Atous) Convolutions use later in the network
• All of our Searches led to heavily dilated networks towards the head with no 

priors

• This follows human intuition from many SOTA segmentation papers 

(DeepLab V3)

• DownsampleUnits
• Our networks also typically picked the most computationally expensive unit 

when performing a Downsample (strided unit)

• This is different from typical networks which usually perform a 3x3 kernel 

when performing a strided convolution

• Non-Uniform Compute
• Our networks varied the amount of compute each unit used unlike typical 

networks (ResNet, MobileNet, etc) which use the same of amount of compute 

per unit throughout the network

• The low-compute, high-compute alternating pattern could be explained by the 

network trading off spatial features vs pixel-wise features 



SqueezeNAS: Search Time Results

Name NAS 
Method

Search Time 
(GPU Hours)

Dataset Searched on 

SqueezeNAS-3 gradient 152 CityScapes

SqueezeNAS-9 gradient 248 CityScapes

SqueezeNAS-23 gradient 316 CityScapes

Neural Architecture Search with Reinforcement 
Learning 

RL 537,600 CIFAR-10

NASNet RL 48,000 CIFAR-10

mNasNet RL 48,000* Proxy ImageNet

AmoebaNet genetic 75,600 CIFAR-10

FBNet gradient 216 Proxy ImageNet

DARTS gradient 96 CIFAR-10

* Approximated from TPUv2 Hours



SqueezeNAS: Implementation details
• 13 candidates per unit for 22 layers (1024 possible networks)

• Randomly initialize SuperNetworkand train only convolution weights early on then switch to 
alternating pattern

• We train in FP16 (half precision) for network and FP32 for the architecture parameters. This also cut 
GPU memory use in half and allowed us to leverage tensor cores

• We train the SuperNetworkon Cityscapes fine with 768x768 patches with flip, crop and scale 
augmentations 

• After SuperNetworkhas converged:
• Sample candidate networks via the Gumbel-Softmax
• Run each sampled candidate network on the validation set of Cityscapes 

fine. 
• Put best of these candidates through the full DeepLabv3+[1] training 

Regime*
• ImageNet 90 epochs at 224x224

• COCO 30 epochs at 768x768

• CityScapes Coarse (40 epochs) and Fine (100 epochs) with the same regime as the SuperNetwork

[1] Chen et al. Encoder-Decoder with AtrousSeparable Convolution for Semantic Image Segmentation, ECCV 2018



PNASNet: Progressive Neural Architecture Search, ECCV 2018









































ENAS — Efficient Neural Architecture Search

https://arxiv.org/pdf/1802.03268.pdf


















































DARTS: DIFFERENTIABLE ARCHITECTURE 

SEARCH, ICLR 2019



An overview of DARTS: (a) Operations on the edges are 

initially unknown. (b) Continuous relaxation of the search 

space by placing a mixture of candidate operations on each 

edge. (c) Joint optimization of the mixing probabilities and 

the network weights by solving a bi-level optimization 

problem. (d) Inducing the final architecture from the learned 

mixing probabilities.



AmoebaNet — Regularized Evolution for Image Classifier Architecture 

Search, AAAI 2018

https://arxiv.org/abs/1802.01548



