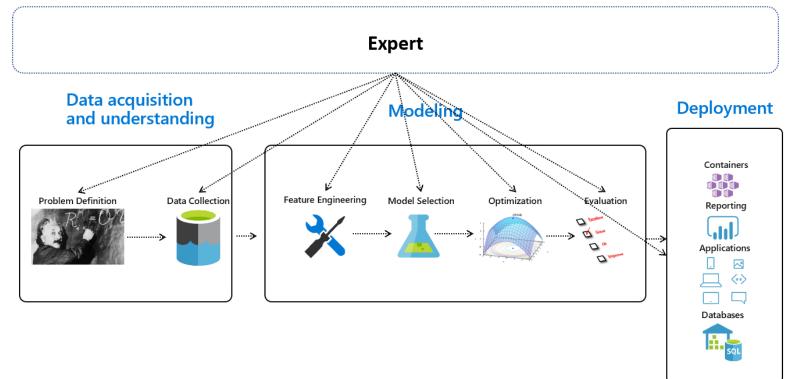
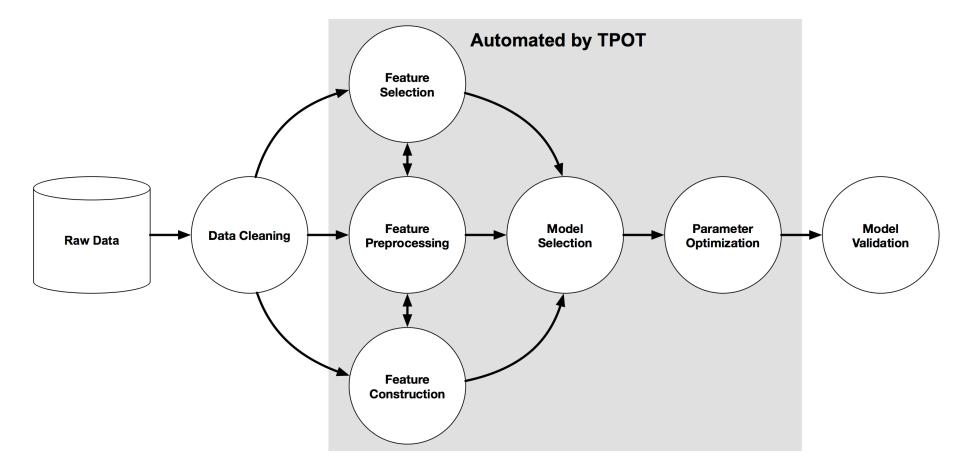
Automatic Machine Learning

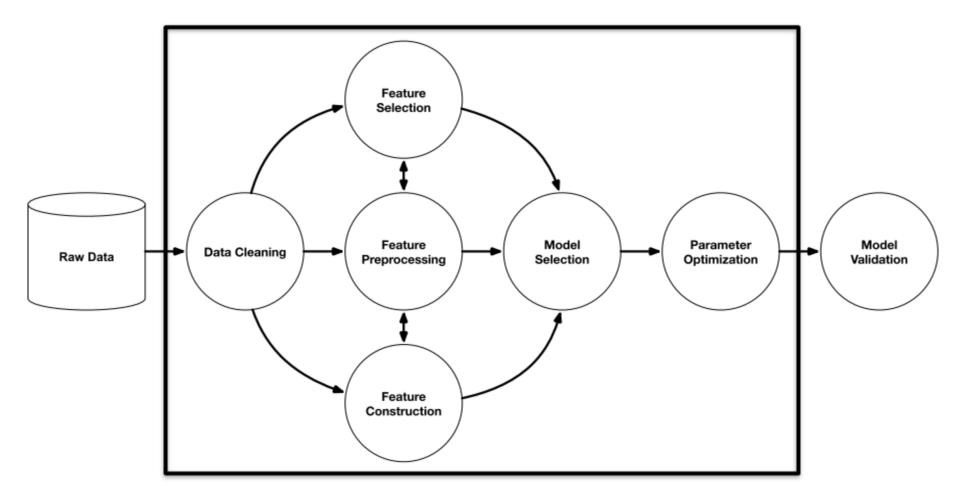
Jianping Fan Department of Computer Science UNC-Charlotte

Course Website: http://webpages.uncc.edu/jfan/itcs5152.html

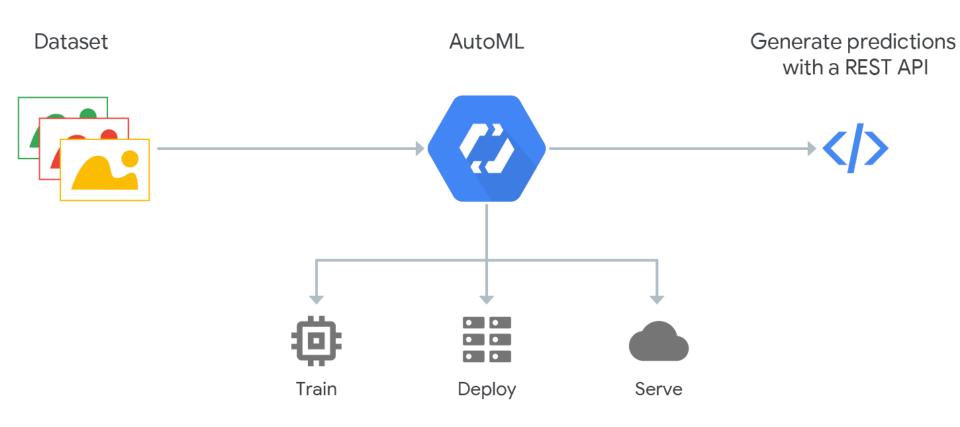
End-to-end Machine Learning Pipeline







Google Cloud AutoML



In the definition of Automated Machine Learning, AutoML includes:

(a) automated feature engineering

(b) automated model selection and hyperparameter tuning

(c) automated neural network architecture selection

(d) automated deployment

The future of AutoML in the next 3–5 years:

- (a) AutoML will also handle most of the data cleaning process
- (b) AutoML will vastly improve deep learning
- (c) AutoML will scaled to large data sets
- (d) AutoML will become human competitive
- (e) AutoML will transform the practice of data science as we know it
- (f) AutoML is only a small part of a greater metalearning movement

The advantages of AutoML Default parameters are almost always bad



AutoML handles this for you!

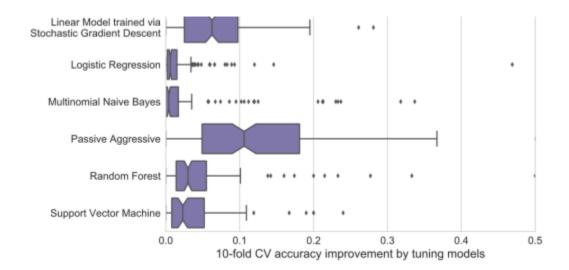


Image source: R. Olson & W. La Cava et. al. (2017) "Data-driven advice for applying machine learning to bioinformatics problems."

The advantages of AutoML There is no "best" ML algorithm for all problems

% out of 165 datasets where model A outperformed model B

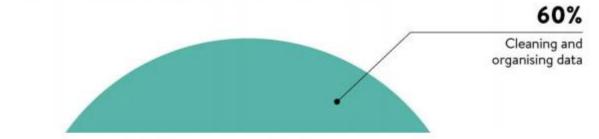
AutoML handles this for you!

AdaBoost -	1%	7%	10%	15%	30%		32%			47%	59%	76%	77%
Logistic Regression -	5%	10%	3%	8%	11%	31%	33%	35%			54%	79%	81%
Passive Aggressive -	2%	6%	1%	5%	0%	18%	28%	28%	13%		50%	81%	79%
Bernoulli Naive Bayes -	0%	2%	2%	4%	10%	13%	18%	15%	22%	25%		62%	68%
Gaussian Naive Bayes -	0%	1%	3%	2%	6%	6%	11%	12%	9%	10%	22%		45%
Multinomial Naive Bayes -	1%	1%	2%	2%	2%	5%	10%	14%	4%	5%	13%	39%	
	бтв	ŔF	svм	ERF	sģD	ĸŃN	τα	ÅВ	LR	PA	BNB	GNB	MNB
		Losses											

Image source: R. Olson & W. La Cava et. al. (2017) "Data-driven advice for applying machine learning to bioinformatics problems."

The advantages of AutoML AutoML is a huge time-saver

WHAT DATA SCIENTISTS SPEND THE MOST TIME DOING



AutoML handles some of this for you!

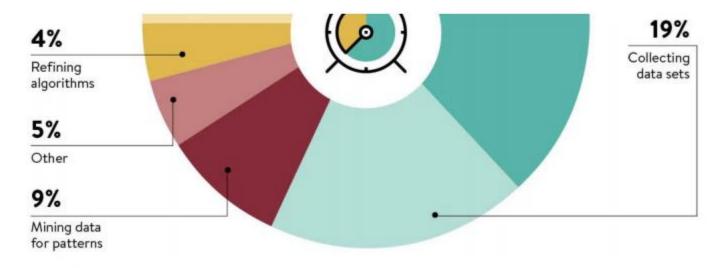


Image source: visit.crowdflower.com/data-science-report.html

Early AutoML focused on only parameter tuning

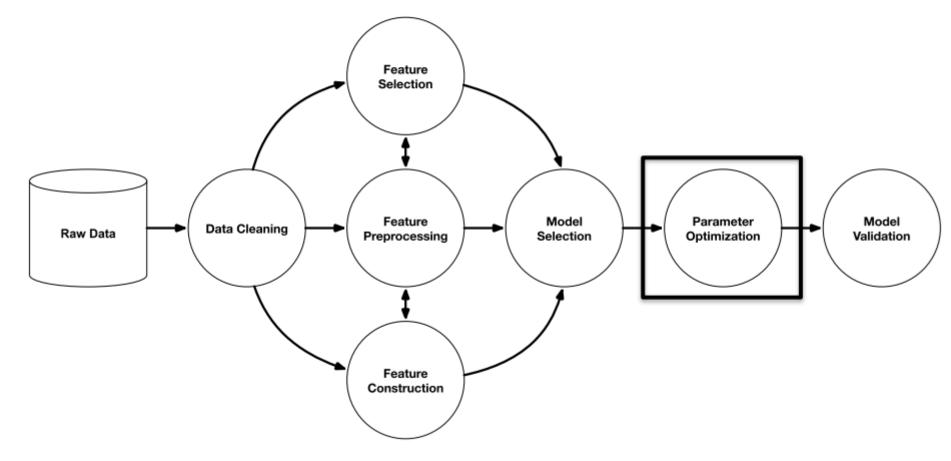
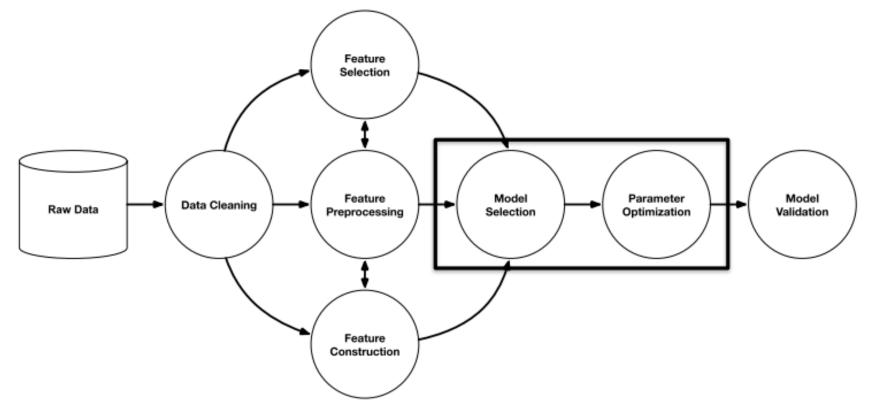


Image source: R. Olson et. al. (2016) "Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science."

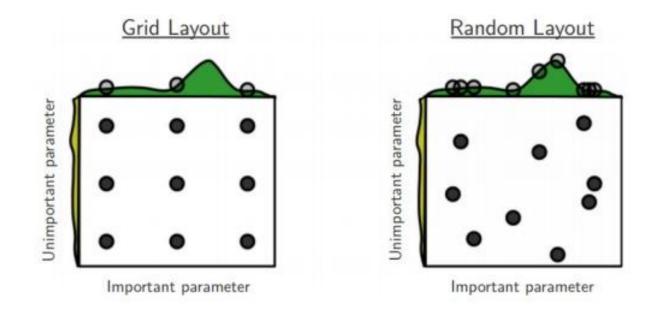
Early AutoML focused on only parameter tuning



... and maybe (limited) model selection

Image source: R. Olson et. al. (2016) "Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science."

We mostly used grid search and random search



Nowadays, we wouldn't really call this AutoML

Modern AutoML optimizes the entire ML workflow

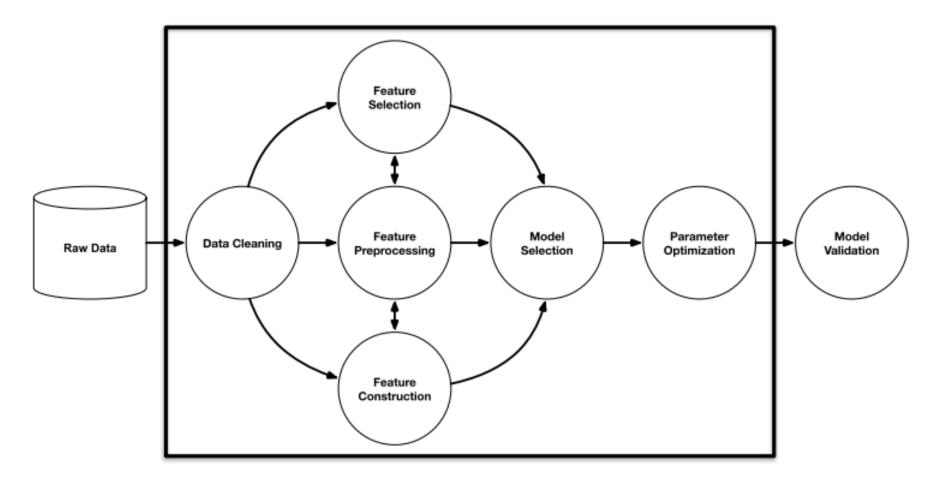
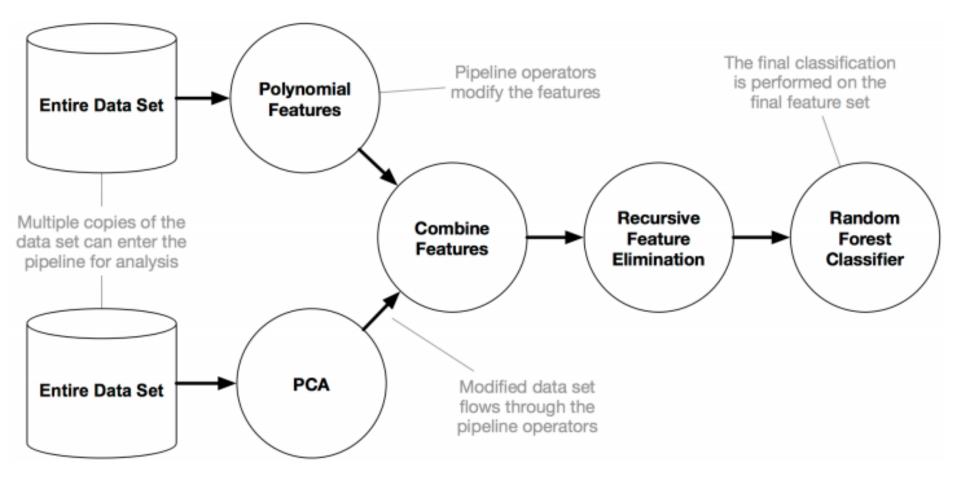


Image source: R. Olson et. al. (2016) "Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science."

Machine Learning analyses can be complex



Larger search spaces require smarter optimization

- Meta-learning
- Bayesian optimization
- Genetic programming
- Multi-armed bandit

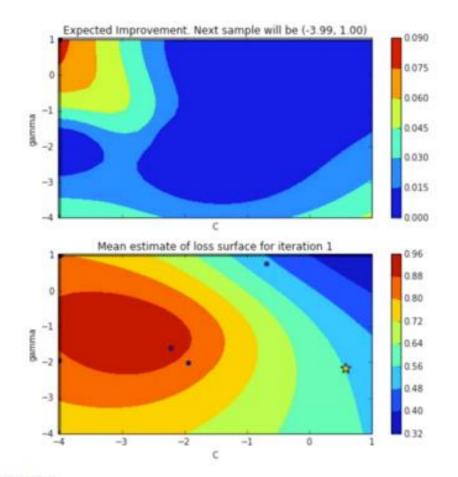


Image source: thuijskens.github.io/2016/12/29/bayesian-optimisation/

AutoML in the near future

- AutoML will also handle most of the data cleaning process
 - Unstructured data → tabular data ready for analysis
 - Capture & automate human approaches to data cleaning
- AutoML will vastly improve Deep Learning
 - Automated DNN architecture design
 - Automated preprocessing of data prior to modeling

AutoML will scale to large datasets

- Most AutoML tools are very slow on "Big Data"
- Spark, Dask, TensorFlow, etc. will help bring AutoML to scale
- H2O AutoML and TPOT on Dask already shows promise for scalability

AutoML will become human-competitive

- Already human-competitive on several Kaggle challenges (top 10% of entries)
- Already human-competitive in DNN architecture design (Google AutoML)

AutoML in the future

- AutoML will transform the practice of data science as we know it
 - "Data Science Assistant" → Junior Data Scientist level
 - Less focus on choosing the right ML workflow
 - More focus on posing the right questions, collecting & curating the right data, and "thinking like a data scientist"
- AutoML is only a small part of a greater meta-learning movement
 - Computer programming is focused on automating rote tasks
 - Machine learning is focused on automating the automation of rote tasks
 - Meta-learning is focused on automating the automation of automation
 - i.e., enabling the machine to learn how to learn in the best way possible

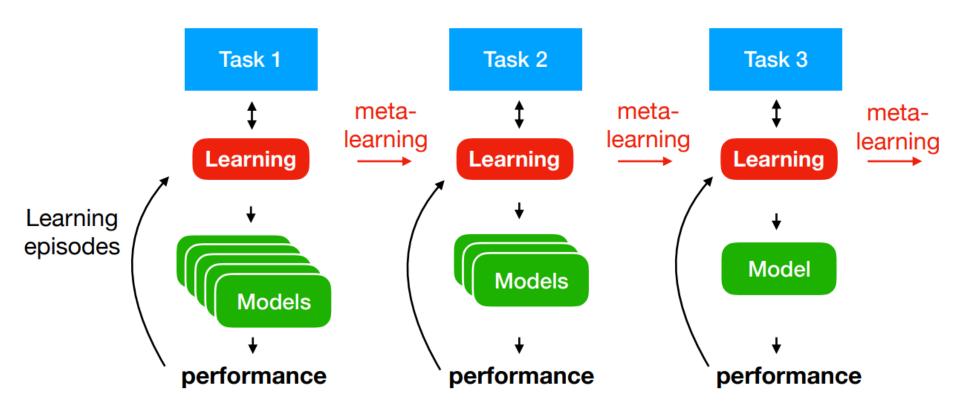
Frank Hutter, Joaquin Vanschoren, NeurIPS 2018 Tutorial on Automatic Machine Learning

Learning to Learn

Learning is a never-ending process

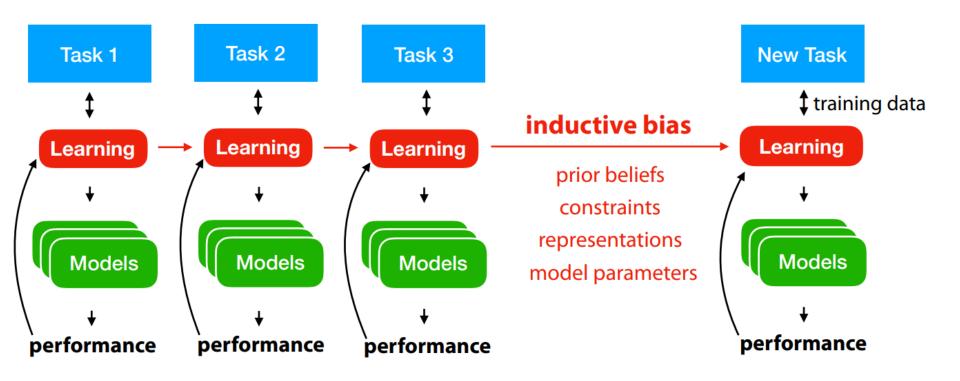
Tasks come and go, but learning is forever

Learn more effectively: less trial-and-error, less data



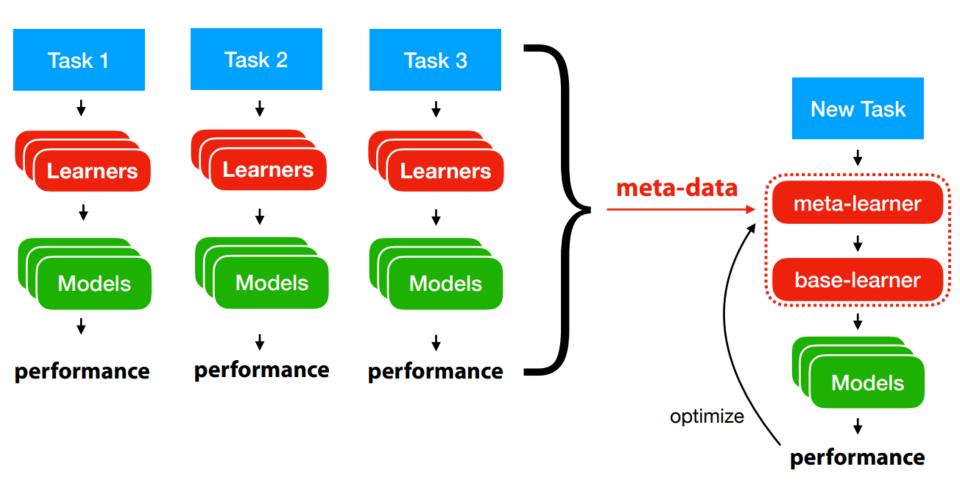
Learning to learn

Inductive bias: all assumptions added to the training data to learn effectively If prior tasks are *similar*, we can *transfer* prior knowledge to new tasks (if not it may actually harm learning)



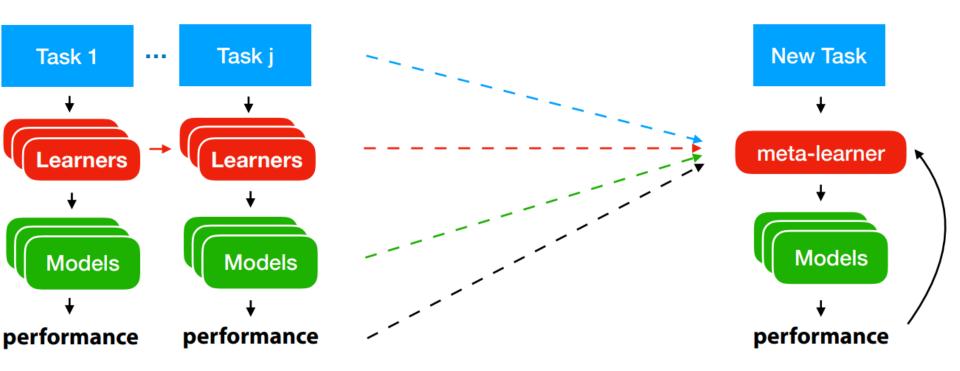
Meta-learning

Collect meta-data about learning episodes and learn from them Meta-learner *learns* a (base-)learning algorithm, *end-to-end*



Three approaches for increasingly similar tasks

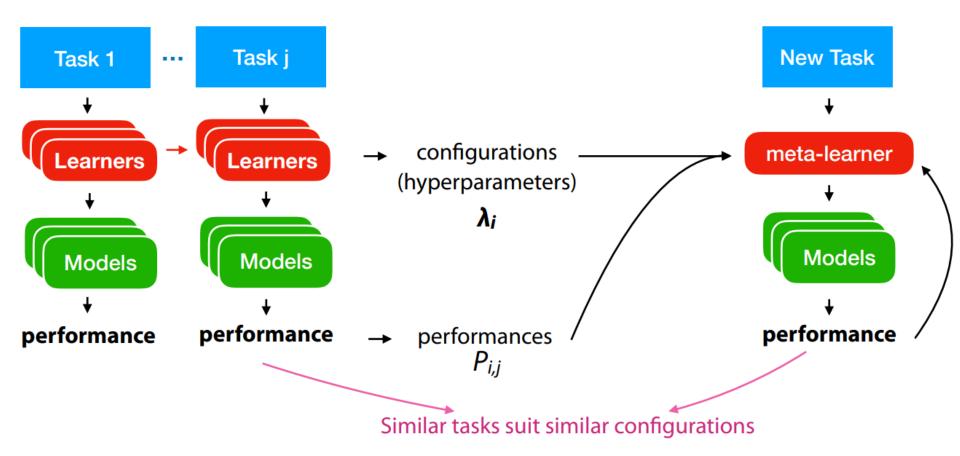
- 1. Transfer prior knowledge about what generally works well
- 2. Reason about model performance across tasks
- 3. Start from models trained earlier on similar tasks



1. Learning from prior evaluations

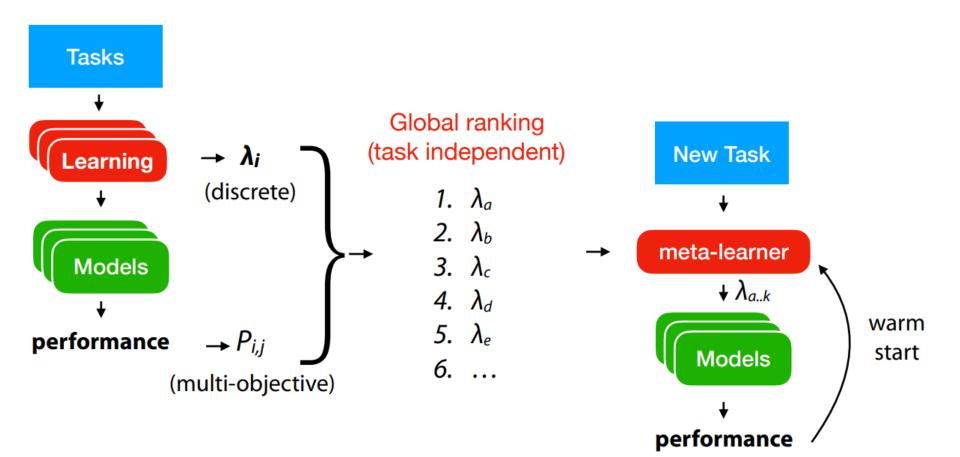
Configurations: settings that uniquely define the model

(algorithm, pipeline, neural architecture, hyper-parameters, ...)



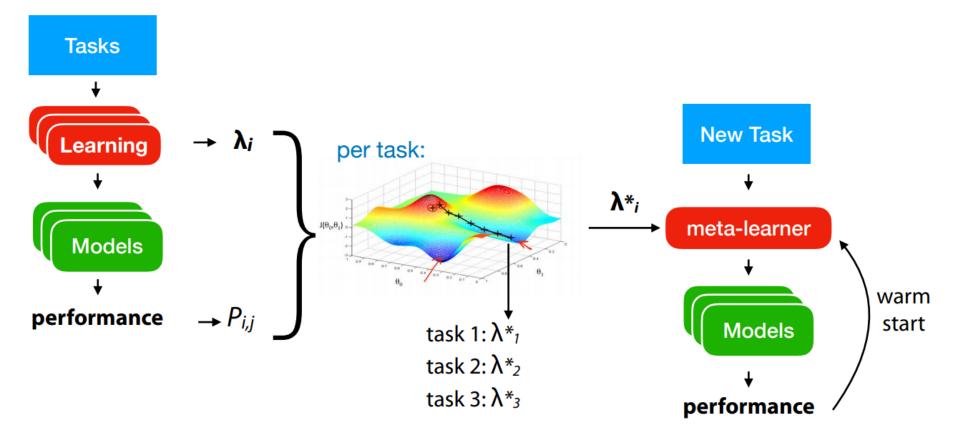
Top-K recommendation

- Build a global (multi-objective) ranking, recommend the top-K
- Requires fixed selection of candidate configurations (portfolio)
- Can be used as a warm start for optimization techniques



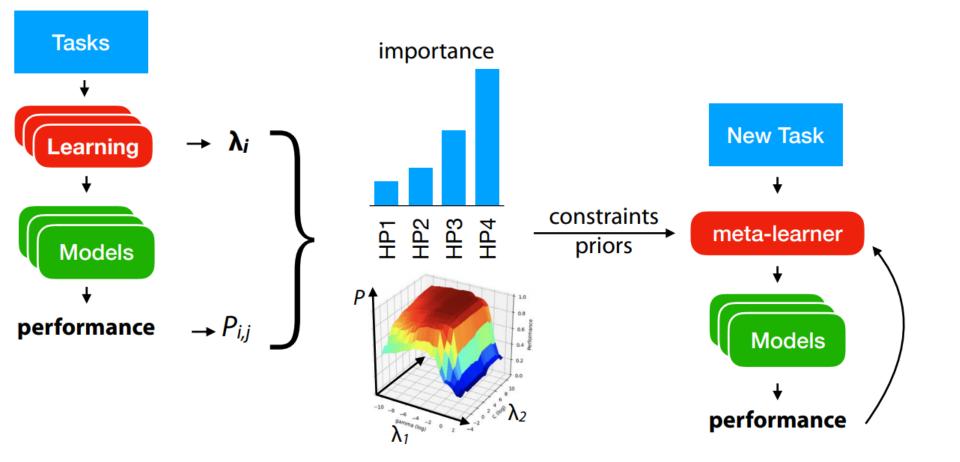
Warm-starting with plugin estimators

- What if prior configurations are not optimal?
- Per task, fit a differentiable plugin estimator on all evaluated configurations
- Do gradient descent to find optimized configurations, recommend those



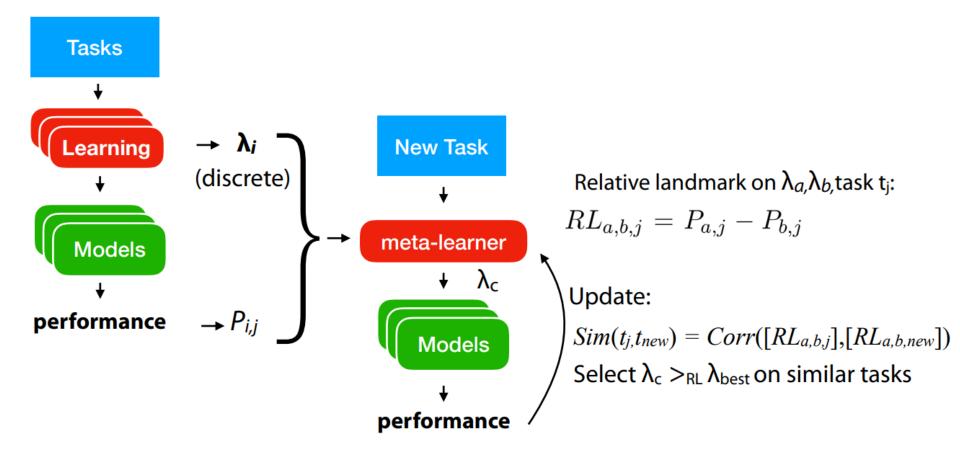
Configuration space design

- Functional ANOVA: select hyperparameters that cause variance in the evaluations¹
- **Tunability**: improvement from tuning a hyperparameter vs. using a good default²
- Search space pruning: exclude regions yielding bad performance on similar tasks³



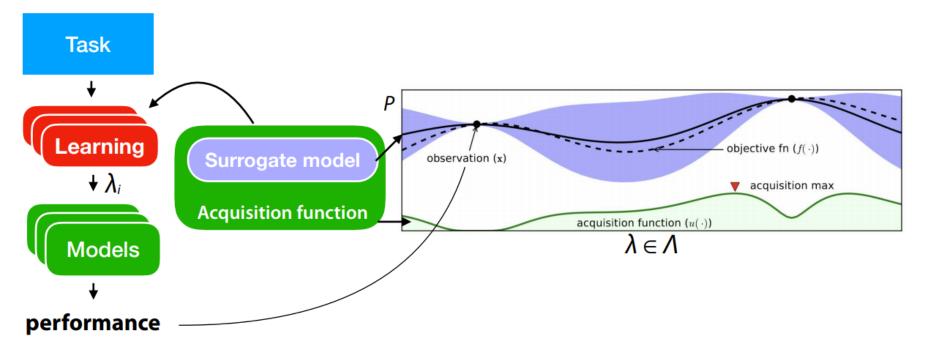
Active testing

- Task are similar if observed relative performance of configurations is similar
- Tournament-style selection, warm-start with overall best configurations λ_{best}
- Next candidate λ_c : the one that beats current λ_{best} on similar tasks (from portfolio)



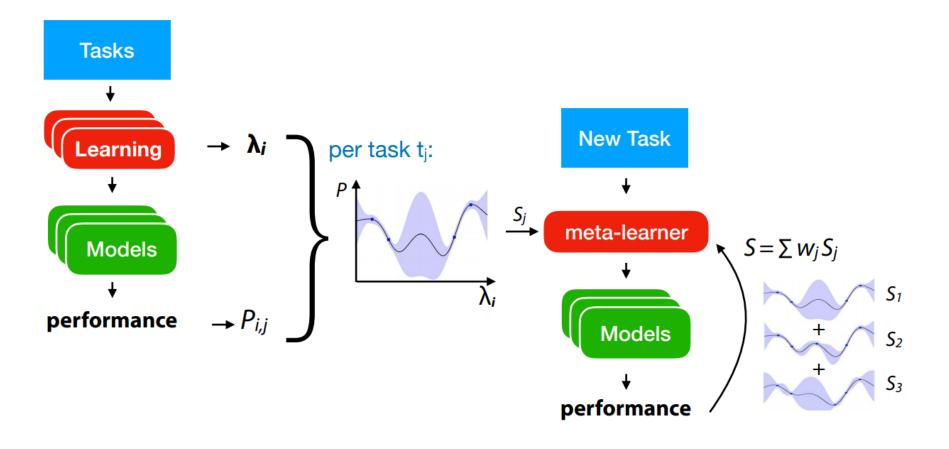
Bayesian optimization (refresh)

- Learns how to learn within a single task (short-term memory)
- Surrogate model: *probabilistic* regression model of configuration performance
- Can we transfer what we learned to new tasks (long term memory)?



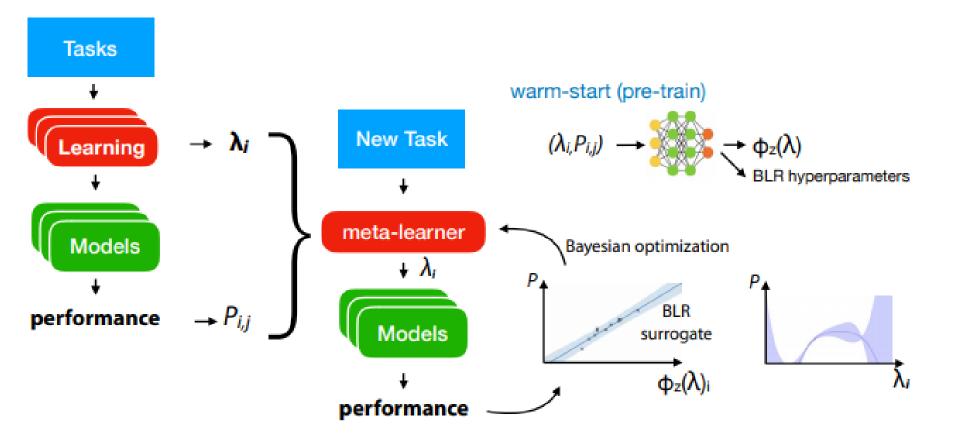
Surrogate model transfer

- If task j is similar to the new task, its surrogate model S_j will do well
- Sum up all S_j predictions, weighted by task similarity (relative landmarks)¹
- Build combined Gaussian process, weighted by current performance on new task²



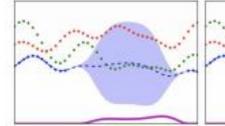
Warm-started multi-task learning

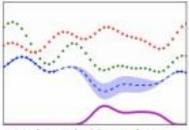
- Bayesian linear regression (BLR) surrogate model on every task
- Learn a suitable basis expansion $\phi_z(\lambda)$, joint representation for all tasks
- Scales linearly in # observations, transfers info on configuration space



Multi-task Bayesian optimization

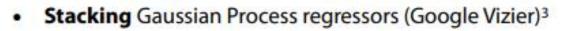
- Multi-task Gaussian processes: train surrogate model on t tasks simultaneously¹
 - If tasks are similar: transfers useful info
 - Not very scalable



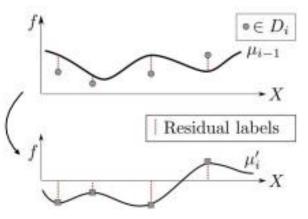


- Independent GP predictions
- Multi-task GP predictions

- Bayesian Neural Networks as surrogate model²
 - Multi-task, more scalable

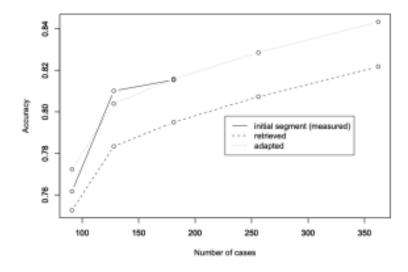


- Sequential tasks, each similar to the previous one
- Transfers a prior based on residuals of previous GP



Other techniques

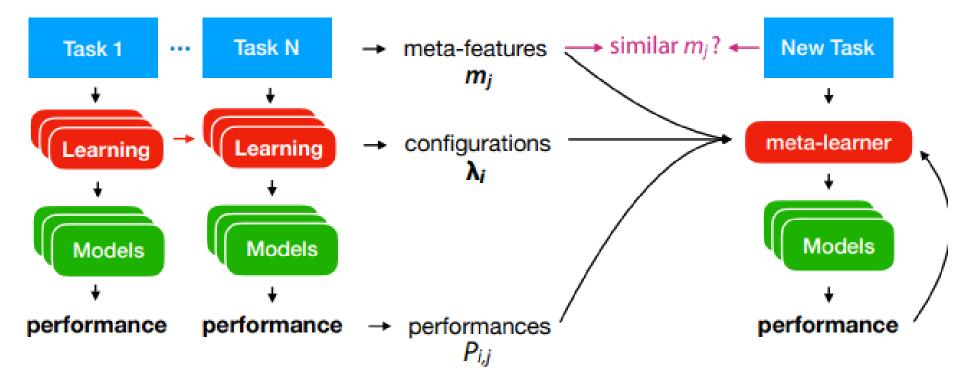
- Transfer learning with multi-armed bandits¹
 - View every task as an arm, learn to `pull` observations from the most similar tasks
 - Reward: accuracy of configurations recommended based on these observations
- Transfer learning curves^{2,3}
 - Learn a partial learning curve on a new task, find best matching earlier curves
 - Predict the most promising configurations based on earlier curves



2. Reason about model performance across tasks

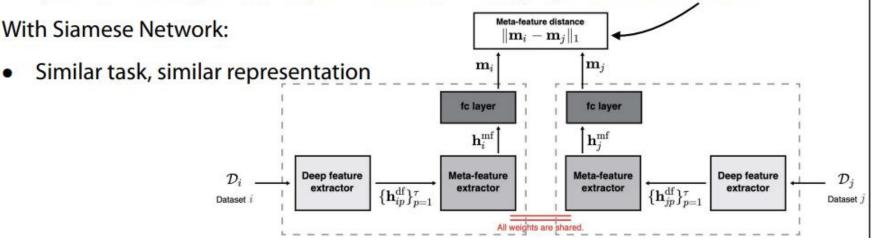
Meta-features: measurable properties of the tasks

(number of instances and features, class imbalance, feature skewness,...)



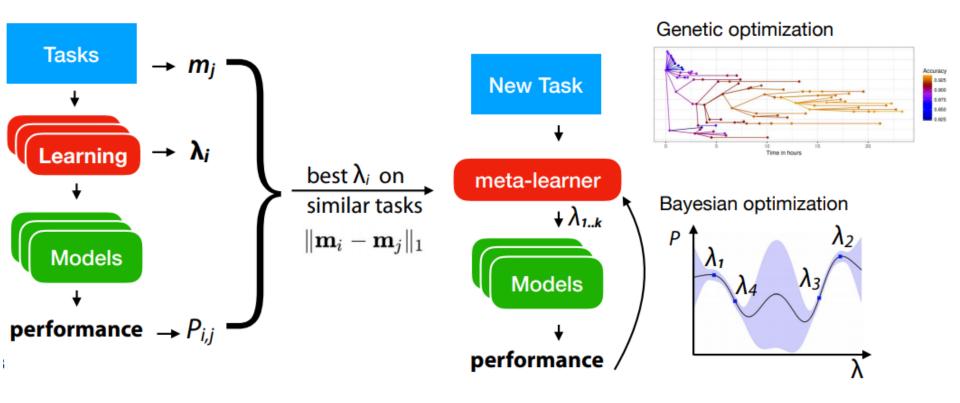
Meta-features

- Hand-crafted (interpretable) meta-features¹
 - Number of instances, features, classes, missing values, outliers,...
 - Statistical: skewness, kurtosis, correlation, covariance, sparsity, variance,...
 - Information-theoretic: class entropy, mutual information, noise-signal ratio,...
 - Model-based: properties of simple models trained on the task
 - Landmarkers: performance of fast algorithms trained on the task
 - Domain specific task properties
- Learning a joint task representation
 - Deep metric learning: learn a representation *h*^{mf} using a ground truth distance²



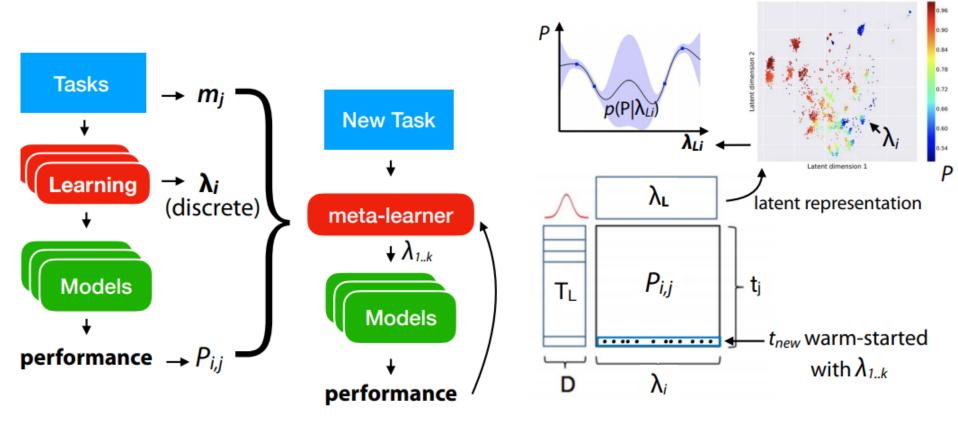
Warm-starting from similar tasks

- Find k most similar tasks, warm-start search with best θ_i
 - Genetic hyperparameter search¹
 - Auto-sklearn: Bayesian optimization (SMAC)²
 - Scales well to high-dimensional configuration spaces



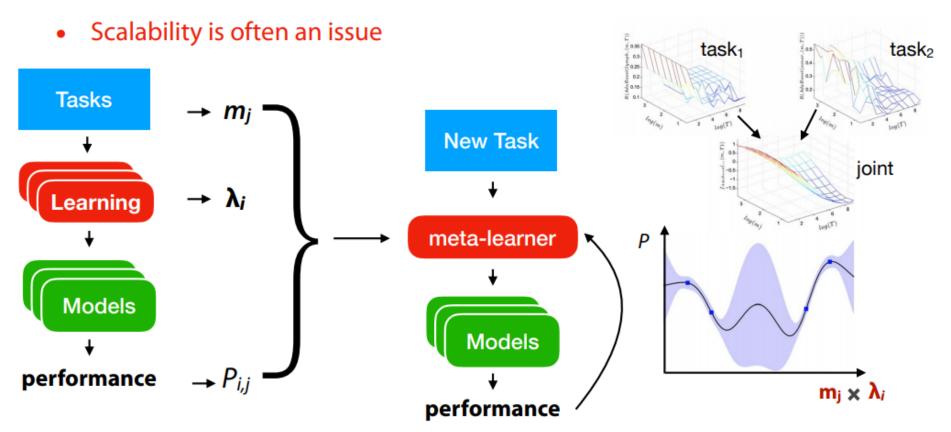
Warm-starting from similar tasks

- Collaborative filtering: configurations λ_i are `rated' by tasks t_j
 - Probabilistic matrix factorization
 - Learns a latent representation for tasks and configurations
 - Returns probabilistic predictions for Bayesian optimization
 - Use meta-features to warm-start on new task



Global surrogate models

- Train a task-independent surrogate model with meta-features in inputs
 - SCOT: Predict ranking of λ_i with surrogate ranking model + m_j.¹
 - Predict P_{i,j} with multilayer Perceptron surrogates + m_{j.}²
 - Build joint GP surrogate model on most similar ($\|\mathbf{m}_i \mathbf{m}_j\|_2$) tasks. ³



Meta-models

- Learn direct mapping between meta-features and Pi,j
 - Zero-shot meta-models: predict best λ_i given meta-features ¹

 $m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{best}$

• Ranking models: return ranking $\lambda_{1..k}^2$

 $m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{1..k}$

Predict which algorithms / configurations to consider / tune³

 $m_j \rightarrow \text{meta-learner} \rightarrow \Lambda$

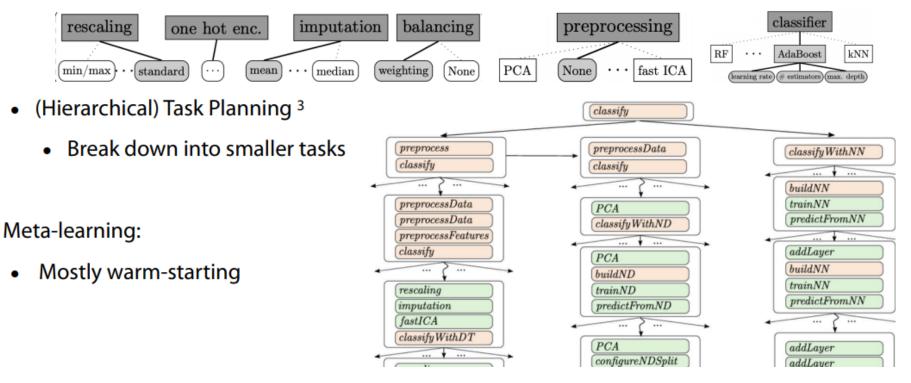
Predict performance / runtime for given θ_i and task⁴

 $m_{j}, \lambda_{i} \rightarrow \text{meta-learner} \rightarrow P_{ij}$

Can be integrated in larger AutoML systems: warm start, guide search,...

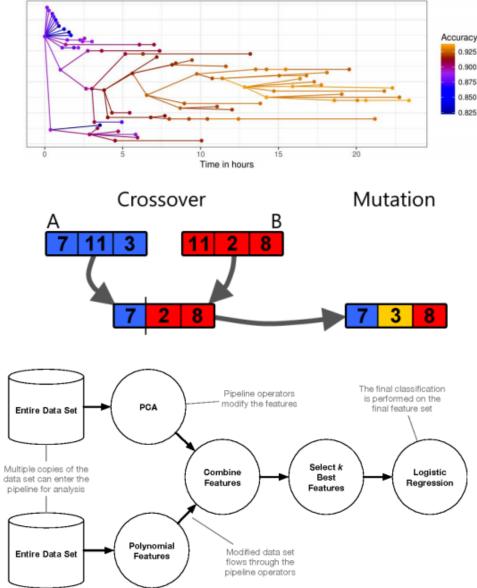
Learning Pipelines

- Compositionality: the learning process can be broken down into smaller tasks
 - Easier to learn, more transferable, more robust
- Pipelines are one way of doing this, but how to control the search space?
 - Select a fixed set of possible pipelines. Often works well (less overfitting)¹
 - Impose a fixed structure on the pipeline ²



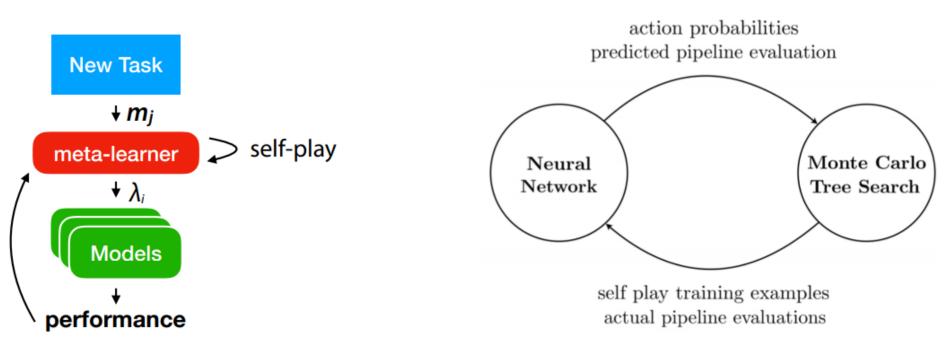
Evolving pipelines

- Start from simple pipelines
- Evolve more complex ones if needed
- Reuse pipelines that do specific things
- Mechanisms:
 - Cross-over: reuse partial pipelines
 - Mutation: change structure, tuning
- Approaches:
 - TPOT: Tree-based pipelines¹
 - GAMA: asynchronous evolution²
 - RECIPE: grammar-based³
- Meta-learning:
 - Largely unexplored
 - Warm-starting, meta-models



Learning to learn through self-play

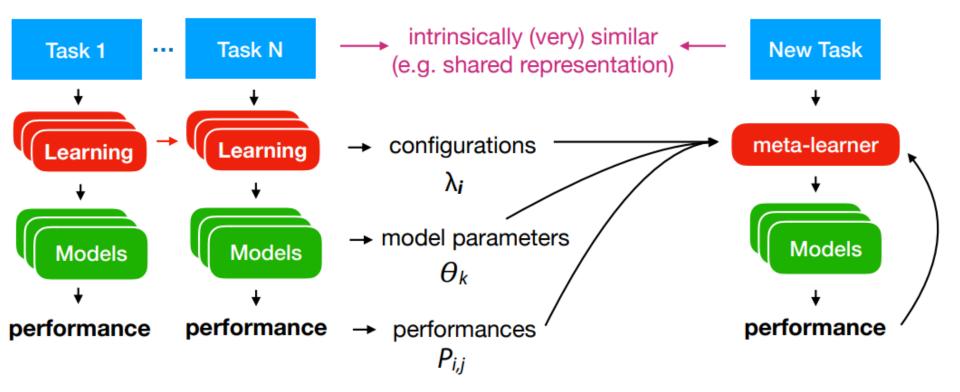
- Build pipelines by selecting among actions
 - insert, delete, replace pipeline parts
- Neural network (LSTM) receives task meta-features, pipelines and evaluations
 - Predict pipeline performance and action probabilities
- Monte Carlo Tree Search builds pipelines based on probabilities
 - Runs multiple simulations to search for a better pipeline



3. Learning from trained models

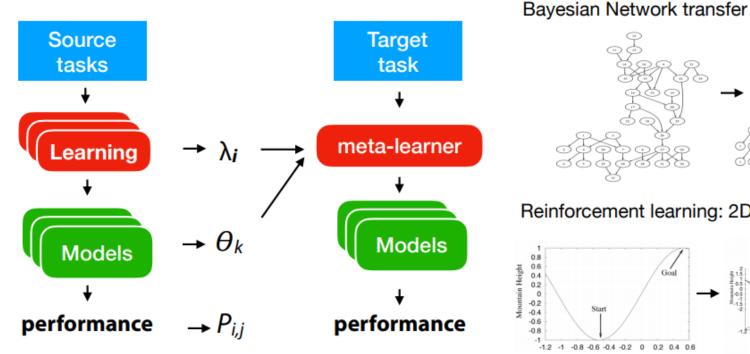
Models trained on similar tasks

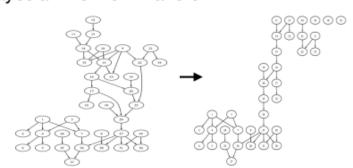
(model parameters, features,...)



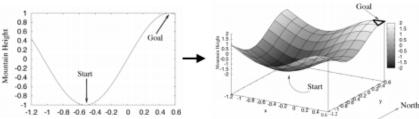
Transfer Learning

- Select source tasks, transfer trained models to similar target task ¹
- Use as starting point for tuning, or *freeze* certain aspects (e.g. structure)
 - Bayesian networks: start structure search from prior model ²
 - Reinforcement learning: start policy search from prior policy ³



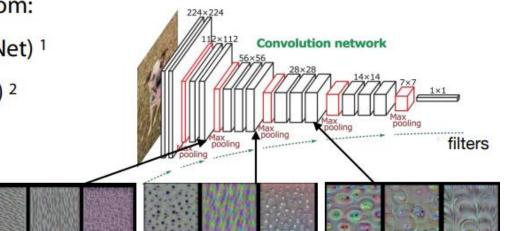


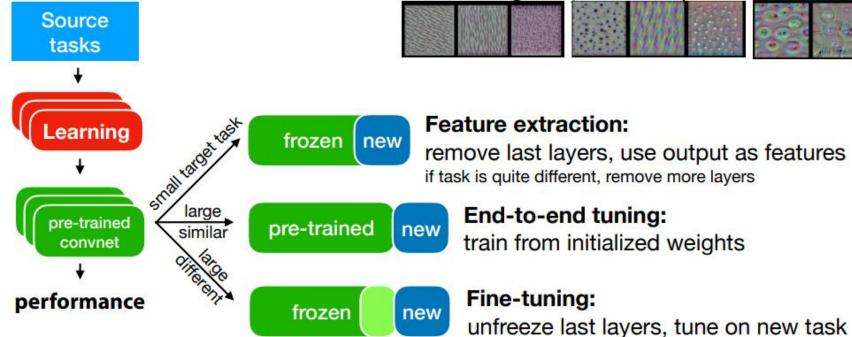
Reinforcement learning: 2D to 3D mountain car



Transfer features, initializations

- For neural networks, both structure and weights can be transferred
- Features and initializations learned from:
 - Large image datasets (e.g. ImageNet)¹
 - Large text corpora (e.g. Wikipedia)²
- Fails if tasks are not similar enough ³

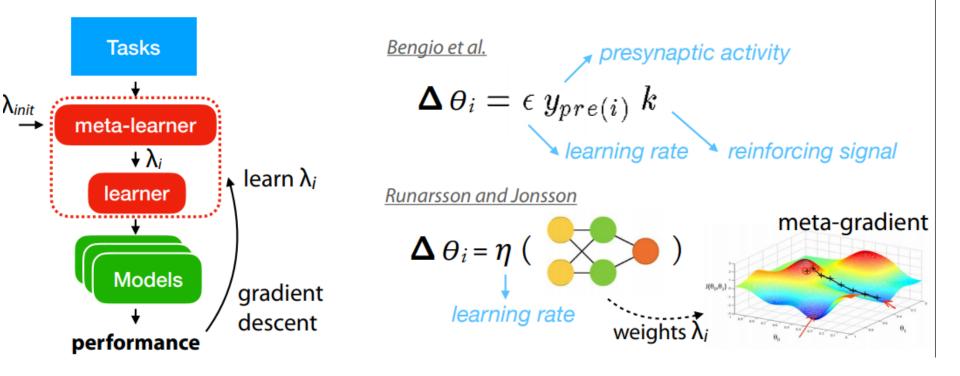




Learning to learn by gradient descent

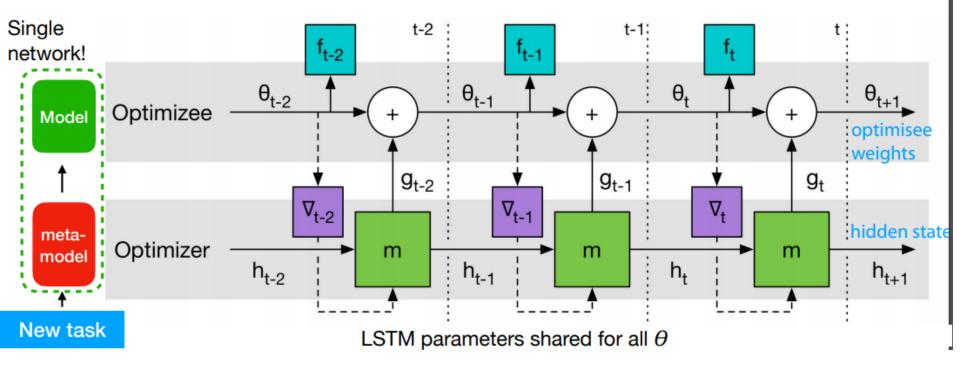
- Our brains *probably* don't do backprop, replace it with:
 - Simple parametric (bio-inspired) rule to update weights ¹
 - Single-layer neural network to learn weight updates ²
- Learn parameters across tasks, by gradient descent (meta-gradient)

 Δw_{ii}



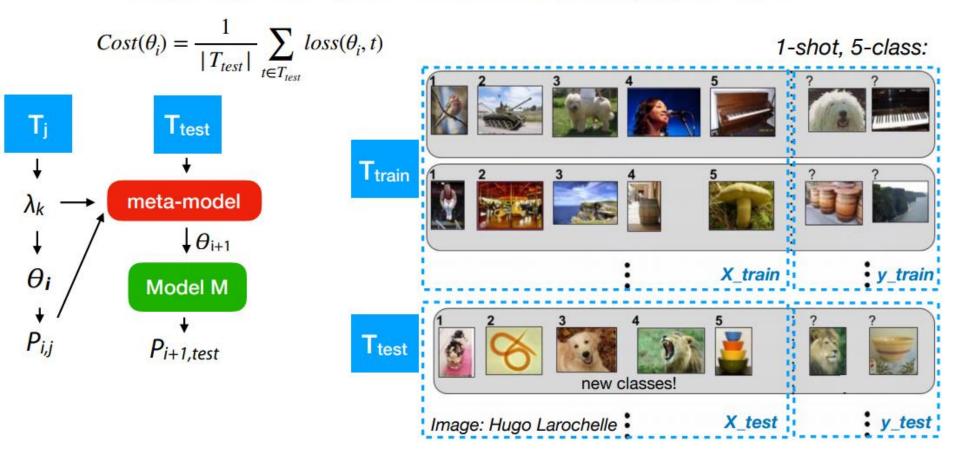
Learning to learn gradient descent by gradient descent

- Replace backprop with a recurrent neural net (LSTM)¹, not so scalable
- Use a coordinatewise LSTM [m] for scalability/flexibility (cfr. ADAM, RMSprop)²
 - Optimizee: receives weight update g_t from optimizer
 - Optimizer: receives gradient estimate ∇_t from optimizee
 - Learns how to do gradient descent across tasks



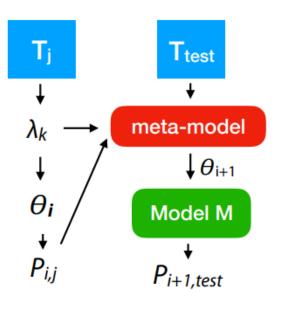
Few-shot learning

- Learn how to learn from few examples (given similar tasks)
 - Meta-learner must learn how to train a base-learner based on prior experience
 - Parameterize base-learner model and learn the parameters θ_i



Few-shot learning: approaches

. . .



- LSTM + gradient descent
 <u>Ravi and Larochelle 2017</u>
- Learn θ_{init+} gradient descent
- kNN-like: Memory + similarity
- Learn embedding + classifier

<u>Finn et al. 2017</u>

Vinyals et al. 2016

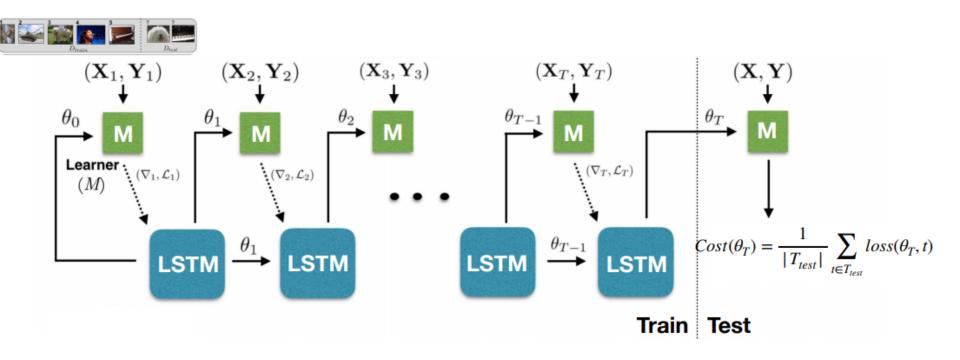
<u>Snell et al. 2017</u>

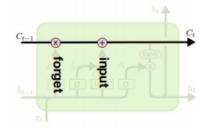
- $Cost(\theta_i) = \frac{1}{|T_{test}|} \sum_{t \in T_{test}} loss(\theta_i, t)$
- Black-box meta-learner
 - Neural Turing machine (with memory) Santoro et al. 2016
 - Neural attentive learner

- Mishus at al 2010
- <u>Mishra et al. 2018</u>

LSTM meta-learner + gradient descent

- Gradient descent update θ_t is similar to LSTM cell state update c_t
 - $\theta_t = \theta_{t-1} \alpha_t \nabla_{\theta_{t-1}} \mathcal{L}_t \qquad c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- Hence, training a meta-learner LSTM yields an update rule for training M
 - Start from initial θ_{0} , train model on first batch, get gradient and loss update
 - Predict θ_{t+1} , continue to t=T, get cost, backpropagate to learn LSTM weights, optimal θ_0





Model-agnostic meta-learning

- Quickly learn new skills by learning a model *initialization* that generalizes better to similar tasks
 — meta-learning
 - Current initialization θ
 - On K examples/task, evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$
 - Update weights for $\theta_1, \theta_2, \theta_3$
 - Update θ to minimize sum of per-task losses
 - Repeat $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{i=1}^{n}$

task losses

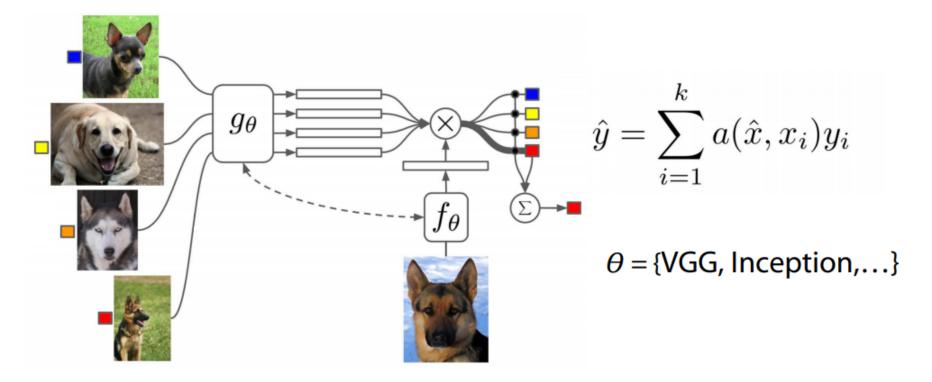
$$\nabla \mathcal{L}_{1}$$
 $\nabla \mathcal{L}_{2}$
 $\nabla \mathcal{L}_{1}$
 θ_{1}^{*}

---- learning/adaptation

- More resilient to overfitting
- Generalizes better than LSTM approaches
- Universality: no theoretical downsides in terms of expressivity when compared to alternative meta-learning models.
- REPTILE: do SGD for k steps in one task, only then update initialization weights³

1-shot learning with Matching networks

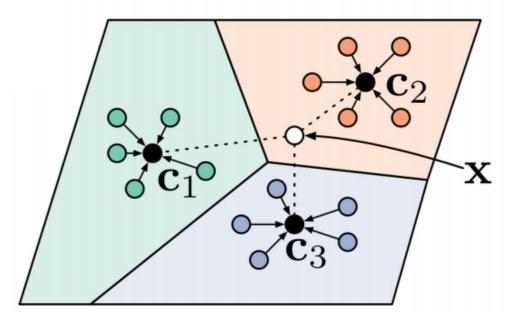
- Don't learn model parameters, use non-parameters model (like kNN)
- Choose an embedding network f and g (possibly equal)
- Choose an attention kernel $a(\hat{x}, x_i)$, e.g. softmax over cosine distance
- Train complete network in minibatches with few examples per task



Prototypical networks

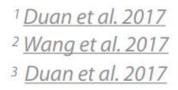
<u>Snell et al. 2017</u> <u>Ren et al. 2018</u>

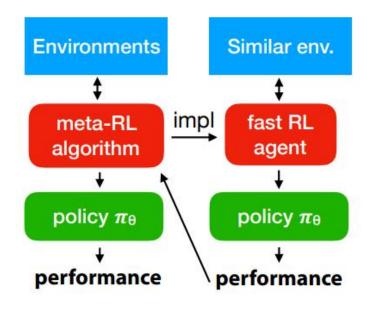
- Train a "prototype extractor" network
- Map examples to p-dimensional embedding so examples of a given class are close together
- Calculate a prototype (mean vector) for every class
- Map test instances to the same embedding, use softmax over distance to prototype
- Using more classes during meta-training works better!

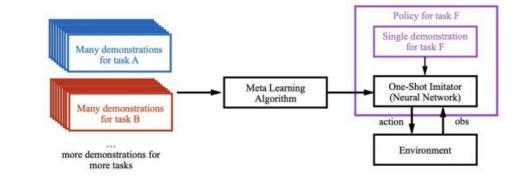


Learning to reinforcement learn

- Humans often learn to play new games much faster than RL techniques do
- Reinforcement learning is very suited for learning-to-learn:
 - Build a learner, then use performance as that learner as a reward
- Learning to reinforcement learn 1,2
 - Use RNN-based deep RL to train a recurrent network on many tasks
 - · Learns to implement a 'fast' RL agent, encoded in its weights







- Also works for few-shot learning ³
 - Condition on observation + upcoming demonstration
- You don't know what someone is trying to teach you, but you prepare for the lesson

Learning to learn more tasks

- Active learning
 - Deep network (learns representation) + policy network
 - Receives state and reward, says which points to query next
- Density estimation
 - Learn distribution over small set of images, can generate new ones
 - Uses a MAML-based few-shot learner
- Matrix factorization
 - Deep learning architecture that makes recommendations
 - Meta-learner learns how to adjust biases for each user (task)
- Replace hand-crafted algorithms by learned ones.
- Look at problems through a meta-learning lens!

Pang et al. 2018

Reed et al. 2017

<u>Vartak et al. 2017</u>

Meta-data sharing building a shared memory Vanschoren et al. 2014

- OK, but how do I get large amounts of meta-data for meta-learning?
- OpenML.org
 - Thousands of uniform datasets
 - 100+ meta-features
 - Millions of evaluated runs
 - Same splits, 30+ metrics
 - Traces, models (opt)
 - APIs in Python, R, Java,...
 - Publish your own runs
 - Never ending learning
 - Benchmarks

Open positions! Scientific programmer Teaching PhD

```
import openml as oml
from sklearn import tree
task = oml.tasks.get_task(14951)
clf = tree.ExtraTreeClassifier()
flow = oml.flows.sklearn_to_flow(clf)
run = oml.runs.run_flow_on_task(task, flow)
myrun = run.publish()
```

run locally, share globally

Joaquin Vanschoren **Hilde Weerts** edorigatti frontier . loel Goossens Niels Hellinga Minopeivu Zhano Evertian Peer stevens jethefer Hongliang Qiu . Yezi Zhu János Szedelényi Chin-Fang Lin Wenting Xion Lirong Zhang M de Roode Tianyu Zhou **Ruud Andriessen** Angelo Majoor

Towards human-like learning to learn

- Learning-to-learn gives humans a significant advantage
 - Learning how to learn any task empowers us far beyond knowing how to learn specific tasks.
 - It is a **universal** aspect of life, and how it evolves
- Very exciting field with many unexplored possibilities
 - Many aspects not understood (e.g. task similarity), need more experiments.
- Challenge:
 - Build learners that never stop learning, that learn from each other
 - Build a *global memory* for learning systems to learn from
 - Let them explore by themselves, active learning